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DNA and RNA structure prediction 
ERIC WESTHOF, PASCAL AUFFINGER, and CHRISTINE GASPIN 

1. Introduction 
An understanding of the functional mechanisms of a biological macro
molecule requires the knowledge not only of its precise molecular organiza
tion in space but also of its internal dynamics. Molecular modelling attempts 
to construct the three-dimensional (3D) structure of a.macromolecule on the 
basis of a mixture of theoretical · and experimental data. Hence, prediction 
methods range from the most mathematically oriented ones, relying solely on 
computer algorithms, to the most pragmatical and· operational one in which 
insights come alternatively from theory and experiment . Our contention is 
that modelling and simulation are most interesting in molecular biology when 
they possess a high predictive power. 

Thus, we view modelling as a heuristic tool which should help in the ratio
. nalization of experimental observations but also, and most importantly, 
. should suggest new relations between the various components of the mod
elled molecule. Without a 3D model , mutagenesis of a macromolecule will 

· be, by necessity, somewhat random and, not always informative. In the 
absence . of a 3D model able to organize the data at a higher level, mutagene
sis experiments performed under such conditions will mainly confirm an 
availab le· secondary structure (2D) of a RNA molecule. Such experiments 

. can be useful, however, for bootstrapping a 3D structure which will serve as a 
· framework for organizing existing data and suggesting new mutagenesis. Fur-
• tller, the history of structural discovery shows that there is no correlation 
-between either accuracy or precision ·and predictive power. For example, 
molecular biology was born with the 1953 paper by Watson and Crick on the 
DNA double helix (1 ), but the structure, although accurate, was ·not precise 
fiy present standar ds. 

The power of visualizing 3D relations is such that models need not always 
be detailed. On the contrary, extremely precise and detailed X-ray .structures 
can be of no use for uncovering or understanding the function of a crystal
lized molecule without prior or further biochemical exploration and charac-

. terization. In the end, the validity and the accuracy of the model obtained 
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will depend on the nature of the experimental observations collected. How
ever, a mathematical proof guaranteeing the correctness of the derived 
model is only possible with crystallographic methods (the Fourier theorem). 
Otherwise, the best that can be achieved is a network of evidence converging 
on the spatial contacts and relations embodied by a model. 

The experimental observations used for deriving a 3D structure can be· of 
quite different nature depending on the techniques employed and on the 
chemical nature of the macromolecule: from biophysical methods (partial X
ray diffraction data, NMR couplings , or NOEs , and other spectroscopic 
methods like UV, RAMAN, or circular dichroism) , to biochemical 
approaches (chemical probing or enzymatic attack), and biological data 
(sequences, phylogenies). High-resolution X-ray crystallographic analysis 
(diffraction data at 1.5-1.0 A resolution) yields a wealth of unequalled 3D 
information. However, this requires not only the crystallization of the macro
molecule but also the solution to a phase problem. Generally, with biological 
macromolecules, the problem is compounded by their size and complexity. 
Besides, nucleic acids are very difficult to crystallize, since they are highly 
·charged macromolecules which, in the case of RNA molecules, can undergo 
spontaneous cleavages. In addition, large, nucleic acids and especially RN As, 
often exchange between various base pairings and foldings. Recently, NMR 
methods have proved their usefulness in this area. Chemical and enzymatic 
probing of nucleic acids in solution yields important mforination on the 
stability of the structures and on those bases protected from ·Chemical or 
enzymatic attack. However, such experimental approaches will not reveal the 
nature of the interacting partners. Cross-linking experiments have the poten
tial to give that information , but the cross-linking reactions take place in an 
assembly of molecules generally not all in the same state, and it is difficult to 
prove that the reactions occurred solely on functional molecules. Sequence 
data are extremely rich in potential 3D information, since they result from 
adaptative evolution over millions of years . Thus, if the function is identical 
and the sequences are sufficiently diverse , the noise level ( or covariations 
resulting from contingencies) will be decreased by sequence comparisons. 
However, the extraction of 3D content from sequences is difficult and the 
method will strongly depend on the type of macromolecule under study. For 
example, self-splicing autocatalytic group I and group II intrans, which 
require only water and ions to function, are more amenable to sequence com
parisons than the catalytic RNase P RNA in ribonucleic particles which con
tains the history of its evolution with the tRNA substrate and with the 
protein co-factor. 

The · former experimental approaches (2-4) will not be discussed here. 
However, it should be kept in mind that the methods described in -this chap
ter range from those in which the incorporation of experimental data is 
restricted to physical chemistry to those which use and exploit ·biological 
information. Molecular mechanics and dynamics belong to the first category. 
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RNA secondary structure prediction is simplified and on firmer ground with 
the incorporation of . biological and - chemical information, and successful 
RNA 3D modelling is best achieved on the basis of sequence comparisons 
and chemicalprobing. 

2. Molecular mechanic~ and molecular dynamics 
methods 

Molecular mechanics (MM) minimizes a particular energy function for a 
molecular system. The energy function contains steric and geometric terms as 
well as terms related to atomic interactions. A specific force-field is associ
ated with a given energy function. Molecular dynamics (MD) simulations use 
similar force-fields and energy functions but, by integration of Newton's 
equatfon of motion, allow one to generate time-dependent trajectories of 
chemical or biochemical systems (5-7). These methods are usually used to 
add a dynamical perspective to systems for which time-dependent experi
mental knowledge is scarce and, most importantly, they are also used to pro
cess and refine crystallographic (8) or NMR data (AMBER (9), Xplor (10, 
11) ), or to calculate free energy differences between related systems by 
perturbation methods (12, -13).The advantages of MM are its easy implemen
tation and short computing times.· The main drawback is that the system 
might become locked in false minima which depend on possible inaccuracies 
resulting from the construction of the initial coordinate set or on the choice 
of the starting conformation. One way to relieve these undesirable effects is 
to minimize several starting .conformations by varying one or more internal 
coordinates (torsion angles, for example) , On the other hand, MD simula
tions, combined with energy minimizations , are well adapted to the sampling 
of the . conformational space and the localization of local -or global energy 
minima. As it is impossible to recommend, at the actual level of the tech
nique, any definite protocol that one could follow in order to obtain physi
cally meaningful MD simulations, we choose to discuss in this chapter 
general methodological details with, as guideline protocols, those that we 
apply in our laboratory on simulations of hydrated DNA and RNA frag
ments which include the aqueous environment and the counterions (14-16) . 
Other details on simulations of nucleic acids can be found in two reviews (6, 
17). 

2.1 The potential energy function 
The potential energy function, which -describes in a simplified way the inter
actions between the atoms constituting the system, is central to the problem 
of molecular mechanics and molecular dynamics. A general form of this func
tion, used in the AMBER MDpackage(9), is given by the equation: 
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where the first three terms represent the interactions between atoms sepa
rated by less than three bonds, the fourth and fifth term corresponding 
respectively to the van der Waals and electrostatic interactions occurring 
between non-bonded atoms. In the electrostatic term, the · dielectric par
ameter £ is either a constant or a function of the distance between the 
charges. . 

In addition to the classical terms mentioned above, there is a great variety 
of additional terms describing for example 10-12 hydrogen bonds {18-20), or 
mixed terms which couple bond length and bond angle vibrations (21). Other 
·specifics (like choice of parameters, of options, of functions, etc.) can be 
found in the AMBER (18, 19), CHARMm (20), GROMOS (22), or OPLS 
(23, 24) force-fields. It should be noted that the use of united atom force
fields, where the CH, CH2, · and CH3 groups are represented by large 
hydrophobic atoms, compared with the all atom force 0fields, is no longer jus
tified, either for simulations in vacup or for simulations taking into account a 
solvent environment, since the gain · in computer time is not worth the 
approximations introduced in the system. 

The choice of a set of partial atomic charges is of particular .importance. 
Next to the classical ways of extracting charges from quantum mechanics cal
culations, charges derived from experiment were published (25) and recently 
tested in our laboratory on a simulation of tbe anticodon arm of tRNA Asp_ 

They were shown to giye better agreep.1ent with known experimental struc
tures than the .standard AMBER set of charges: Other methods like multi
pole distributions, in which partial charges are no longer restricted to the 
atomic positions, have to be ·considered in the future to increase the accuracy 
of the electrostatic representation. Ultimately, with adequate computational 
pow~r, a full electrostatic treatment taking info account the atomic polariz
ability will be necessary (7). A cµoice :has .also to be made concerning .the 
water m.odel to be used. Improving the ,classical SPC, TIP3P, or .TIP4P 
fl;lOdels {26), the SPC/E model(~7) is known to reproduce the diffusion 
coefficients of water and, therefore, shouldgive more reliable time-dependent 
quantities. . _ · 

Th¢ treatment of longsrange eleetrostatic interaetions _(proportional to 
llr;j) is an issue of great concern. B_ecause of computational limitations, it is 
very difficult to calcufate electrostatic ifi!rractions up to a distance greater 
than -a given cuhoff value, usualJy 8-10.A. Thi~tiu _ncation method is not very 

> . . •. . , 
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satisfactory and some authors have shown that they introduce non-negligible 
artefacts in the calculations (28, 29). To ameliorate the straight truncation of 
electrostatic forces, a wide range of switching and shifting functions has been 
employed and discussed (30, 31). Other approaches are possible, like the 
Ewald summation method used in simulations of a rigid DNA duplex with 
various counterions and co-ions (32) and of a rigid DNA triple helix in a 
1.0 M NaCl aqueous solution (33). 

2.2 Molecular dynamics simulation protocols 
The fo1lowing protocols are of course not unique and have to be adapted to 
each particular system and to the available computational means. 

2.2.1 Construction of the system 
All available experimental knowledge should be used in order to choose rea
sonable and interesting starting configurations. They can be extracted from 
the NDB (Nucleic Acid Data Base) (34) which contains most of the pub
lished crystallographic nucleic acid structures as well as structures derived 
from NMR experiments. Some of those structures are also contained in the 
PDB (Protein Data Bank) (35). Subsequently, the molecule needs to be sol
vated. This can be achieved at various levels of approximation. •Pa:rtfal salva
tion can be performed by putting a shell .of water around the entire solute, or 
only around a site of particular interest (complexation or catalytic sites). 
There are different ways of constraining the solvent molecules located at the 
surface of the solvation shell , but some researchers let the water move freely 
in their sirnulations. ·We chose to use periodic boundary conditions which try 
to mimic an infinite system by replicating images of the simulation shell 
around the-central box. However, the truncation distance used for computing 
long-range forces limit the range of the 'infinity' of the model. 

Next, counterions are placed around the solute. Two methods are gener
ally used for nucleic acids. The first consists in placing the ion along the bisec
tor of the OPO angle at a distance of 4.5-6 A from the phosphorus atom (9), 
and the other consi.sts in replacing water molecules with the highest electro
static potential by counterions until neutrality or the desired total charge is 
obtained · (36). Various counterions have been used such as Na+, K+, NH4 +, 
Ca.2+. To our knowledge, no simulations using the high structuring Mg2+ ion 
hl}ve ·been undertaken so far. The choice and positioning of counterions can 
be circumvented by reducing, according to the Manning theory of counterion 
condensation (17), the charges on the phosphate groups, and omitting 
explicit representation of the ions. However, this leads to values for 
the charges on the phosphate group below those of some polar atoms in the 
bases, and therefore alters considerably, and -perhaps unrealistically, the 
water-phosphate interactions. 
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2.2.2 Equilibration and thermalization 
In order to produce stable MD simulations, a good equilibration protocol 
which avoids early deformations of the solute originating from strong and 
unfavourable solute-solute, solute-solvent, and solvent-solvent interactions, 
is essential. Usually, at the beginning, a few hundred steps of energy mini
mization is used to relieve the main unfavourable constraints from the start
ing configuration, and , afterwards, the system is brought to equilibrium in 
several. stages (Figure 1). First, the solvent alone is allowed to move around 
the fixed solute and counterions at constant temperature (300 K) and 
volume. Then, the constraints on the counterions are removed and 1 psec of 
dynamics at constant temperature and pressure (1 atm.) is performed at 
respectively 100, 200 K, followed by 5 psec at 300 K. Finally , the whole 
system is thermalized by a gradual increase of the temperature at each psec 
from 50 to 300 K by steps of50 K. Subsequently , the heating step is followed 
by 5 psec of equilibration at 300 K (16) . . 

Some authors have used constraints to maintain the base pairing of the 
starting structures during the equilibrium · step, or even during the whole 
simulation. Our recent results proved that this is not always necessary. 
Breaking of base pairs can result from insufficient equilibration as well as 
from inaccurate force-field or simulation parameters. 

2.2.3 Vacuum simulations 
Simulations using no solvent have the advantage of being extremely fast. This 
allows one to conduct longer simulations and to sample more extensively the 
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Figure "1. Equilibration protocol for a molecular dynamics simulation ·of a solvated 
nucleic acid with counterions. During part A, the solvent alone is allowed to move at 300 
K;·during part · B, constraints are relieved from the counterions in steps of iOO K; during 
part S, no constraints are applied on the system but after cooling the system ·down to 50 
K, it is warmed up in steps of 50 K; part D corresponds to the subsequent production 
phase at constant temperature and pressure. 
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configurational space. To compensate for the absence of solvent and coun
terions , various dielectric functions have been proposed, but they can give 
only approximate results since it is well known that specific local interactions 
with water are necessary to mainta in the three -dimensional structure of 
nucleic acids (37). 

2.3 Modelling large nucleic acids 
· For large nucleic acids, the all atom approach is no longer feasible. In order 
to be able to simulate such systems, Malhotra et al. (38) have developed mod
els of varying resolution ranging from one pseudoatom per helix to one pseu
doatom per nucleotide. This allows them to obtain useful but, consequently , 
much less precise information on the structure of these molecules. 

2.4 A.nalysis of the trajectories 
The analysis of the results of the calculations • is the last but not the least 
important part of MD simulations. For nucleic acids, the 'Curves ' (39) proce
dure for helical analysis has been used in a computer graphics utility called 
'Dials and Windows' (40) which can monitor and display the time evolution 
of all the conformational and helical parameters in a DNA oligonucleotide. 

3~ Fine structure and the search for specific regions in 
DNA 

DNA is not solely a storage medium for genetic information. Any sequence 
also contains control regions directing the binding of specific proteins as well 
as regions with static curvature or thermal lability. The prediction of the fine 
structure of DNA , i.e; the effects of base sequence on 3D structure ; is the 
subject of an enormous literature (41). Here, we will refet more specifically 
to those methods which possess documented softwares. For small systems (up 
to 200 base pairs), molecular mechanics methods, as developed in programs 
such as AMBER , GROMOS, or JUMNA (42) have been used, especially in 
conjunction with NMR data. JUMNA is particularly well adapted to nucleic 
acids with helical periodicity, either DNA or RNA with between one and 
four strands in parallel or antiparallel orientations. The study of sin.all sys
tems either by MM (41) or MD (15), allows the extraction of the behaviour 
of more global parameters (like the average twist angle betwe en two given 
base pairs or the average roll and tilt angles of a given base pair , i.e. the rota 
tion about the long, respectively short , axis of a base pair, see Figure 2). 
Those parameters can then be inserted in'programs using schematic and non
atomic representations -of base pairs. Such programs are especially useful for 
visualizing the path of the helical axis as a function of intra- or interbase pair 
parameters . Four programs have been extensively used for th·e prediction 
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Figure 2. The six parameters relating a base pair to the next one in a double-stranded 
helix: the three translations along x, y, z (shift, slide, rise) and the three rotations about 
the z axis (twist angle or rotation angle between base pairs), the y axis (roll angle), and 
the x axis (tilt angle). For a complete discussion, see Dickerson et al. (113). 

and display of bent DNA fragments. Bending results from curvature in the 
plane of the helical axis ( controlled mainly by the roll angle) and torsion out 
of the plane ( controlled by variations in the twist angle). The tilt angle is 
never large because of the resulting · compression of the sugar"phosphate 
backbone. In two programs, CURVATURE ( 43) and that of De Santis et al. 
( 44 ), a given set of those parameters or a mixture of them is used to compute 
the DNA path. In two other programs, AUGUR (45) and DNA (46), the 
user can choose among several sets of parameters or even introduce their 
own set. 

4. RNA secondary struc::ture prediction 
Folded 3D RNA molecules are stabilized by a variety of interactions, the 
most prevalent of which are .stacking and hydrogen bonding between bases 
on strands oriented in antiparallel directions . The 2D structure gives a subset 
of those interactions represented by Watson-Crick canonical (C-G, G-C, 
A-U, and U-A) and wobble (G-U and U-G) pairs of bases in double" 
stranded helices. Such a 2D fold provides an important constraint for deter
mining ,t,he 3D structure of RNA molecules (47, 48); Therefore, the 
determination of the 2D structure is an essential step in the study of the 
structure-function .relationships. Another task associated with RNA 2D 
structures concerns the automatic identification of specific RN As in genomic 
DNA sequences (49, 50). 

The determination of a 2D structure results generally from the combina
tion of several approaches, each one using specific knowledge depending on 
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the presence of a set of homologous sequences or of only a single sequence. 
This section is mainly devoted to the theoretical description of current meth
ods of RNA 2D folding and the associated available programs which are in 
use today. 

4.1 Representation 
A 2D fold can be represented on a circle graph where the N nucleotides of 
the sequence are represented as vertices (dots) and are connected by edges 
representing the phosphodiester bonds between consecutive nucleotides 
(along the circle) and hydrogen bonds between bases (across the circle). A 
valid 2D structure is usually defined as a structure for which the graph con
tains only edges which do not cross each other. Such a graph is a planar 
graph. In a more conventional representation, computed with programs such 
as Squiggle (51), LoopViewer (52), and Rnasearch (53), where bonds are rep
resented as edges of nearly the same size, the folding gives rise to characteris
tic secondary structural elements which are usually divided into six different 
types (Figure 3): helices, single-stranded regions, bulges, internal loops, hair
pin loops, and multibranched loops. 

• • 
•HPL • ·-. H•- • ·-. •- • 

• IL • ·-• •-. H•- • •-. ·•- • • 
·• 
• 
• 

MBL 
• H • • 

• • • B • H 
I I I • • • • • 

•
He- • • ·-•• 

•••• 111 HPL • 
• • • • ••• 

ss. 

Figure 3. Secondary structural elements. HPL represents a hairpin loop which is formed 
when an RNAstrand folds back on itself . IL represents an internal loop, At least one base 
is unpaired on each strand of the loop separating two paired regions. A mismatch is a 
special type ·of internal loop for which only one nucleotide on each strand is not 
Watson-Crick pair13d. B represents a bulge. A _bulge has unpaired nucleotides on only 
one strand. The other strand has uninterrupted base pairing. H represents a helix. A 
helix is a region of consecutive pairs of bases. MBL represents a multibranched loop or 
junction. A multibranched loop occurs when double-stranded regions ·separated .by any 
number of unpaired nucleotides come together. SS represents an unpaired region. 
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4.2 Data necessary for folding RNA molecules 
When a set of homologous sequences (homologous sequences have common 
ancestry and function) is available , one can search for compensatory base 
changes which maintain base-paired helices with the help of an available 
alignment. When only one sequence is available or when RNAs are not con
served among a sufficiently diverse set of organisms, theoretical models of 
predictions have to be associated with experiments. The related knowledge is 
based on a set of constraints, the thermodynamic model and the available 
experimental data on the molecule. 

4.2.1 The constraints 
Models of prediction generally include the following restrictions on the fold
ing of an RNA into a secondary structure: 

(a) Pair restriction forbids all the non-canonical pairings allowing only A-'-U 
(two hydrogen bonds), G-C (three hydrogen bonds), and G-U (two 
hydrogen bonds) pairs. 

(b) Uniqueness restriction allows at most one pairing for each base. 

(c) Pseudoknot restriction forbids pseudoknots. Two base pairs numbered (i, 
j) and (k, p) form a pseudoknot if i < k < j <pork< i <p < j. Pseudo
knots (Figure 4) result from Watson-Crick base pairing involving a stretch 
of bases in a loop between paired strands and a distal single-stranded 
region (which could belong itself to a hairpin loop or a bulge). Thus a 
pseudoknot is akin to a special case of 3D base pairing rather .than a struc
tural 2D element. Because efficient programs are essentially based on the 
ability to decompose a structure into substructures, which is not possible if 
pseudoknots exist, pseudoknots are usually taken care of in a second step. 

(d) Stereochemical restriction requires that at least three ribonucleotides 
separate two paired strands of ribonucleotides because the chemical link~ 
ages cannot stretch beyond a certain distance. 

(e) Lengthrestriction affects the length of a helix (the number of base pairs) 
and allows only helices with a length greater than a given value (usually 
two). 

These restrictions .lead to the determination of what is commonly called a 
valid secondary structure although the restrictions are not always well
founded. Iii bulges, non-Watson-Crick pairing, such as lJ~U, A~A,and A-G 
pairs, are often observed(e ;g. 5S tRNA) (2). Also, the existence of unusually 
stabletettaloqps (54),like -GNRA- or -UNCG- , with a non-Watson-'-Crick 
pair 'between G i:indA ( ot U and G) shows that hairpin loops can be made 
with ·only two unpaired bases (55). Finally, pseudokiiots are also extremely 

.frequent in structured RNAs (e.g . . group I introns).(56) as in control regions 
of mRNAs and lead to ambiguities in the 2D definition (57). 
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5' 3' 

3' 

k P j j k P k j P 

~ ~ ~ 
Inclusion Exclusion Pseudoknot 

(a) (b) (c) 

Figure 4. The three possible relationships between two double-stranded helical regions: 
in (a) and (bl two standard helices and in (c) a pseudoknot. In (al, the paired strands '(i,J1 
are included between the paired strands (k,p) giving a long hairpin interrupted by an 
internal loop. In (b), the paired strands (i,J1 aJ]d the paired strands (k,p) form two adja
cent hairpins. In (c) the paired elements alternate along the sequence (i < k < j < p), 
leading to a pseudoknot structure (see ref. 56 for a detailed description of the 30 struc
tures of pseudoknots and of their functions). · 

4.2.2 The thermodynamic model 
The thermodynamic stability of structural elements has been studied to 
evaluate their probability of formation. These values, computed from experi
ments on short sequences of nucleotides, give an estimation of the stabilizing 
free energy of base stacking as well as the destabilizing free energy of single 
strands. Based on such a set of parameters, several thermodynamic models 
exist. From the simplified values of Tinoco (58) to Ninio's sophisticated 
model (59), dedicated to the 5S rRNAs and tRNAs, the most tised model 
nowadays is that of Turner (60). However, it has not been possible to obtain 
experimental values for each elementary motif, which makes the thermody
namic model rough and uncomplete. For example, until recently, all the 
loops were -considered as destabilizing elements -whereas some tetraloops 
have -recently been shown to be very stable (54). Most of the _2D folclirtg pro
grams now take into account the complete model of Turner as _ well as the 
parameters associated with the tetraloops ( 61, 62). 

Moreover , the thermodynamic model assumes the Tinoco-Uhlenbeck 
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postulate which states that the free energy of the whole structure is the sum 
of the free energies of its secondary structural elements. The assumption that 
the energy of a position in the folded structure is affected only by its nearest 
neighbours is certainly not correct but the additivity assumption works well 
and is essential to all prediction algorithms. 

4.2.3 Available experimental data 
Various enzymes and chemicals are available for probing the solution struc
ture of RNA thus giving detailed data at the nucleotide _ level. Thus, a real 
map of the single- or double-stranded regions in the molecule can be estab
lished. The mechanisms of action of the probes, the limitations of the tech
nique, . and the methods for detection of cuts or modifications are described 
elsewhere (2, 3). With these data, a number of potential structural elements 
can be eliminated from consideration in the calculation of folding. 

When several mutually exclusive secondary structures exist, site-directed 
mutagenesis can be used to test for compensatory base changes in the poten
tial helices. Because experiments are time consuming and because precise 
probing of each nucleotide is difficult, theoretical models of prediction try to 
incorporate, whenever possible, available data on the studied molecule. The 
incorporation of this information in 2D folding programs is actually the only 
way to produce a correct structure. · 

4 .. 3 Methods of prediction 
4.3.1 Sequence comparisons 
Comparative analysis of nucleic acid sequences has been widely used for the 
detection and evaluation of similarities and evolutionary relationships. With 
RNA molecules, sequence alignments and RNA 2D prediction are -intimately 
related. Comparative analysis is based on the biological paradigm that 
_macromolecules are the product ,of ·their historical evolution _and that func
tionally homologous sequences will · adopt. similar structures. The sequences 
are first aligned and then searched for compensatory base pair changes. If, 
during evolution, a base has been modified in a strand .of a potential helix 
(mutation), then this modification must have been compensated on the com
plementary strand in order to maintain the structure. The presence of several 
compensatory changes ( two or more) in a potential helix allows one to assert 
the existence of the helix in the structure. Several secondary structure models 
have been generated by using comparative . analysis: tRNA (63), 5S RNA 
(64}, 16S RNA (65), 23S RNA(66), RNase P RNA ( 4), group I and group II 
self-&plicing introns (67, 68). The method requires that the molecules com
pared must be sufficiently different to provide enough instances of sequence 
variations with which to test pairing possibilities but that the molecules 
do not differ so much tbat homologous regions cannot be aligned with 
confidence. 
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i. Alignment 
· The · objective is to juxtapose related sequences so that homologous residues 
in ·each sequence occupy the same column in the alignment (Figure 5). Since 
the 1970 program of Needleman and Wunsch (69), programs to align more 
than two sequences have been · put forth using different strategies including 
reduction of the problem to three sequences (70), application to closely 
related sequences (71), the help of a predetermined evolutionary tree (72), 
the search for common subsequences (73), or the selection of the best 

N o f.L_l_ ~P7,2 P7.2 ' 

7 3 !.i!l_C_UUCG------
IA2 !.i.A_C_GUAGGGUCAAGCGACUCGA 

IA3 

7 4 ILC.c.Cl!.GAU[7JAGGGAGUAG_G.Gl!£AAGCGACCC 
GA 

,75 ~UUG---
~UAGGGUCAAGU~GA 

7 6 UCGAAAC[Sl]GUAGAGUA.c.c.J.!!!.A.[lSJUAGGGG 
A 

77 !.!!Kllil.--GAAA.GA.G.A.A_AG-AGGUG[ 9]ffiil!I_AA 

7 8 AA UC---GAAA-GAUGA G-Afillllll.[12JAAGCU A A 

7 9 !J.G!ll 44]GAAACGG_CAGG-A UAA C[38]G!ll!A!l.AA 

[~9ju 0 u· [101 
.. l. ✓ t°Au GG 0A 0., 

80 UAUAA4[69JUUUAUAGG-A!!A!ill[16]A.G!J.A!!.AA - · AArf,!/ \;;uGA · 
AA 

Figure·,s. Part of the alignment of group I intro11s corresponding . to . the struc;tural el
ements P7 .1 and P7 .2 of two subgroups IA2 and IA3. (Extracted from the appendix of ref. 
48.) The paired sequences ·are underlined. The numbers corr.espond to the sequence 
numbering of ref. 48. 
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pairwise alignments to gradually align sequences by using an order of 
incorporation of sequences into the final aligmnent (PileUp {51), CLUSTAL 
(74), and MultAlin (75)). Other programs dedicated to the alignment of RNA 
sequences allow the user to manipulate interactively the proposed aligmnent 
(DCSE (76), ALIGNOS (77)). They offer functions dedicated to secondary 
structures as well as an interactive environment for manipulating the align
ment. 

Other recent and ,interesting programs automatically reconsider the align
ment by taking into account new sequences and pre-existing knowledge of 
the secondary structure (78, 79). Indeed , with the growing number of 
sequences, specific RNA databases are created and new sequences have to be 
quickly added to structured databases of homologous RNA molecules. In 
such databases, it is very desirable that sequences be aligned in accordance 
with the conserved secondary structural features. Because, in an aligmnent, 
optimal structural elements can be misaligned, the programRNA!ign makes 
it possible to align a group of aligned sequences with a new sequence, using 
positions of high sequence conservation and common secondary structures 
the group as a guide for determining the secondary structure of the new 
sequence. Thus, RNAlign does not suppose that the related sequences are 
correctly aligned but instead reconsiders the aligmnent. RNA!ign was used to 
build a structured database of RNA from the large ribosomalsuhunit. The 
other method of multiple aligmneni. (79), Which differs from all those 
described above, uses stochastic context-free grammars (80) to build a statis
tical model during, rather than after, the process of aligmnent and folding. 
Such an approach was applied to the multiple alignment of tRNA. 

ii. Comparative analysis 
Given an .ordered sequence alignment, comparative analysis can begin. Most 
computerized approaches to comparative analysis are based on the_ number 
of varying positions in base pairs of Watson~Crick helices (81...,83). Han and 
Kim (83) propose a very simplealgorithm that builds a covariafion matrix 
where one can visualize, by different characters and for each possible pair of 
positions, a complementary base change (for each . sequence, the base in · 
column i can form aWatson-Crick pair with the base in column j), an exact 
match '(no variation in both columns i and j), a -wobble pair (in most 
sequences the base in column i can form a G-U pair with a base in column j), 
an inexact pair { a base i does not form a pair with a base in columnj for each 
sequence and the number of pairs is greater than a threshold v;i.lue) or a 
mismatch · (a base i does not form · a pair with a base in column j for each 
st:quence and tµe number of pair-s is lower than a threshqld v,alue), Jn tllis 
matrix, possible helices (diagonals -of · characters) are _cpmbined in . order to 
compute valid coinmon secondary structures. . . 

However, all these progrl:lms re,ly on an available alignment which may not 
be unique, especially when the sequences are highly divergent-in primary struc" 
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ture. Moreover, in an alignment optimal for classical scores, the preserved sec
ondary structural elements can be misaligned. Therefore comparative analysis 
programs such as those presented above have to be used with caution. 

4.3.2 Energy minimization 
The usual criterion for computing the RNA secondary structure of a single 
sequence is to minimize · the free energy of the folded molecule. Several 
types of algorithms , among which are Fold (84) and CRUSOE (85) have been 
used to find the optimal secondary structure. These methods have been 
described extensively (60, 84,86) and will not be described here. Instead, we 
will describe the main principles of each one and, whenever they exist, the 
extensions that have been realized in order to compute more appropriate 
secondary structures. 

i. Dynamic programming approaches 
The most commonly used algorithm is based on dynamic programming, first 
used by Nussinov and Jacobson (87). The main advantage of this type of 
algorithm is speed and thus the ability to fold large molecules . However, they 
compute only one optimal structure. These algorithms work by first comput
ing optimal structures for fragments of five nucleotides then extending the 
fragments one nucleotide at a time in both directions undl the fragment 
becomes the whole sequence. 

Instead of computing the minimum free energy structure , the partition 
function of all possible structures . and the pairing probability for every 
possible pair can be calculated, using a dynamic . programming algorithm 
described by McCaskill (88). This program, which is available in the Vienna 
package (62), allows one to process base pair probabilities through a 
postscript dotplot where each base pairing probability is represented by a 
square of corresponding value in the upper part of the matrix. The lower part 
of the ·matrix contains the minimum free energy structure according to 
Zuker's method. In these programs, the temperature at which the base pair
ings are computed can be varied , as can the choice of the set of energy 
parametersrelatedto the various elementary sfructura:l elements. 

ii. Combinatorial approaches 
The second type of algorithm usually called a 1combinatorial' , approach, 
works in two steps. It first generates all the possible helices that can be 
formed froni the -sequence and then combines them into valid structures (85, 
89; 90). This approach, however, is generally limited to molecuies with less 
than 200 bases because of the exponential number of possible combinations. 

4.3.3 Extensions of dynamic programming approaches . 
These algorithms are ultimately limited by our partial -understanding of the 
parameters necessary for the calculation of the free energy. Accordingly , 
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optimally folded structures may not represent the actual base pairing rela
tionships found in the RNA molecule, either because several folded struc
tures with very similar free energies are possible, or because other cellular 
elements stabilize active RNA structures that otherwise would be thermody
namically less stable. A partial solution is to extend folding programs to allow 
for the calculation of a range of possible structures that take into accoun't a 
given set of biochemical data. 

Suboptimal folding is the process of determining a set of possible folded 
structures that have very similar free energy minima but different foldings. 
Combinatorial approaches can easily compute a set of suboptimal structures. 
For the case of dynamic programming, several approaches have been devel
oped. The most popular of these is that of Zuker (91), but there are others 
(92, 93). In the extension developed by Zuker (91), which is an adaptation of 
the optimal folding method, the result of the suboptimal folding is a series of 
structures that have similar free energy minima. It is based on the observa
tion that a fold containing a pair (b;, bj) divides the structure into two parts: a 
folding of the included fragment b; to bi and a folding of the excluded frag
ment from bi to b;. The two quantities V(i,j) and V(j,i) are computed, V(i,j) 
representing the minimum folding energy of the included fragment and V(j,i) 
representing the minimum folding energy of the excluded fragment. In order 
to compute suboptimal secondary structures, the strategy consists in identify
ing all bases pairs for which V(i,j) + V(j,i) is close to Erriin, the energy of an 
optimal folding of the sequence from 1 to N. In this extension, a P-optimal 
base pair is defined so as to be contained in at least one_ folding . within P 
percent of the minimum free energy. Optimal and suboptimal foldings can be 
generated either automatically or by selecting a base pair. In the first case, 
optimal and suboptimal foldings are sorted by energy. In the second case, 
optimal or suboptimal foldings contain the chosen base pair. 

In the original package (94), analysis of suboptimal structures is aided by 
_ two ways of visualizing the RNA .fold: the energy dotplot and a plot of the 
number of possible different base -pairs versus nucleotide position in the 
sequence (P"num graphs). The program -is able to consider various con
straints on the folding such as locations of single-stranded sites, double
stranded sites or known helices. It is also possible to force regions to pair 
together, one region to pair anywhere, one region to be single-stranded or 
two regions not to pair together. The energy parameters used are those of 
Turner (60) with additional values for tetraloops. 

4.3.4 Interactive computer assisted approaches 
Approaches which provide an environment in which the experimentalist can 
participate in the computational folding of the· RNA molecule are ·called 
'interactive' approaches. The strength of interactive approaches lies in their 
ability to testdifferent structural constraints without modification of the-fold
ing program. Structures can thus be continuously modified according to new 
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biochemical information and the user is free to compare biochemical con
straints according fo intuition. This type of approach (95) is supported by a 
computer program which allows: 

• the examination of as many of the possible substructures as desired 

• the use of filtering to incorporate information on pairing length, pairing 
and stacking energies, experimental data, user assumptions 

• the incorponition of related sequences 

• user selection and evaluation. 

A dotplot matrix, in which the sequence is compared to its reverse comple
ment, allows the visualization of potential helices for selection by the user. A 
secondary structure is not calculated .with . this approach. Instead, helices are 
chosen, then analysed with respect to two criteria such as the energy of the 
helix ~nd chemical/enzymatic data. Cedergren et al. (96) have incorporated 
the same approach into an RNA folding editor. The program, called 
RNASE, consists of two main units: a helix editor and a structure editor. The 
user may select desired helices in the secondary or tertiary structure among a 
list .of computed helices. These .helices are verified for overlap before being 
combined into a secondary structure. . 
· The interactive -approach we have developed (91) incorporates restrictions 

from the length of helices and the available d,;1ta before the ~tep selection 
ai:J.d is abie to take into account all the usual constraints. In this way, only 
the possible pairings can be chosen during the selection step. Moreov:er, the 
formalism used and the associated algorithms allow one to consider other 
types of constraints as well as secondary structures with pseudoknots, by 
adding or removing appropriate constraints. In the selection step, selected 
elements are not helices but individual pairs of bases. Moreover, energetic 
criteria ·encoding the free energy ofthe molecule is not necessarily taken into 
account in the search procedure. However, such a criterion <;an be considered 
through a selection probability matrix of pairing · like that proposed by 
McCaskill (88) in which the selected pairs become the most probable pairs in 
accordance with the thermodynamic criteria. 

4.3.5 Sequential folding 
This type ofmethod relies on the simulation of the folding process -:{9~102). 
ln these methods, the folding is considered to be a stepwise process where 
intermediate ·structures evolve into the native one by subsequent addjtion of 
preferred stems. Generally, the programs start to fold the sequence by adding 
the most stable sterns assuming that ·these are kinetically favoured and act as 
p.ticleation centres for local RNA folding : In one method (98), a competition 
:between helices is performed by using random structure generation : The 
cmisideration of folding during synthesis is performed by calculating several 
cycles of folding . determination for each incomplete RNA sequence and 
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increasing the sequence after each cycle. In these programs, pseudoknots are 
allowed to be nucleation centres. 

4.4 Limits 
4.4.1 Complexity of algorithms 
The time complexity of optimal folding methods increases at least approxi
mately with the cube of the length of the sequence, even with a simplification 
hypothesis, which constitutes a potential limitation. One way to calculate the 
folded structure of a large RNA is to fold consecutive subregions of the 
molecule (61), keeping in mind that dynamic programming methods tend to 
favour pairing of the 5'- and 3' -extremities. 

4.4.2 Significance of folded structures 
Without experimental · data, assessment of the significance of a folded struc
ture is very difficult. Several strategies have been used. For example, alterna
tive foldings can be calculated for a sequence by first using suboptimal 
folding methods or by varying parameters. Results are then compared and 
those foldings in which motifs appear systematically may be considered as 
significant. It is also possible to refold the molecule in successively overlap
ping pieces, to compare the motifs that arise,and to keep as significant only 
those that are reproducible (99). A third method is fo fold several random 
sequences that have the same base composition and compare the folding 
energies (100). 

Moreover, computed minimal energy structures may not be biologically 
relevant. The problem does not lie merely in the uncompleteness ofthe ther
modynamic parameter sets, the naivety of simple additive models or the fact 
that input thermodynamic values were derived under conditions that may not 
truly mimic in . vivo situations. The ultimate difficulty is rather that many 
natural RNAs are likely to require helpers (proteins or other RNAs) which 
control their folding into biologically active forms. 

5. RNA tertiary structure construction 
Construction of the tertiary structure of an RNA molecule always starts from 
a given secondary structure. Insights about tertiary contacts can be gained 
through chemical modifications {which give the relative importance of spe
cific atomic posit\ons) or probing (some protections cannot be explained by 
the 2D structure), by cross-linking experiments (which directly indicate the 
partners, assuming a single conformer in solution) and, most efficiently, by 
careful sequence comparisons ( 48). The approaches dhcide them8-elves. into 
those which rely on mathematical objectivity and automation to those which 
exploit partial and potentially biased human decisions. In the first category is 
included · the distance geometry method .(103) alth01,1gh there are problems 
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choosing the correct chiralities and for avoiding knots in the structures . 
Another method, YAMMP (104), exploits a pseudoatom approach with 
either one pseudoatom per helix or one pseudoatom per nucleotide. The use 
of spherical pseudoatoms , however, leads to a loss in the asymmetry of the 
RNA fragments and, most importantly, all fine interactions which control 
RNA folding are not modelled. A third approach is based on a constraint sat
isfaction algorithm. The program, MC-SYM (47, 105) searches conforma
tional space such that, for a given set of input constraints (secondary pairings, 
tertiary pairs, distances), all possible models are produced. With this method
ology, Major et al. (106) managed, for a tRNA sequence, to generate 26 solu
tions which displayed the broad features of canonical tRNA structure. Our 
own approach involves an extensive use of known structures . The framework 
of those structures is held in a database which is used by the program FRAG
MENT for inserting the appropriate sequence (106, 107). The fragments pro
duced are then assembled manually on a graphics screen using any modelling 
software (FRODO, INSIGHT, PRO-EXPLORE) . The resulting structure 
is then refined by restrained least-squares minimization programs 
(NUCLIN INUCLSQ) (108). Molecular · mechanics or molecular dynamics 
could also be employed at this stage. The manipulations on the screen imply 
some human judgements which depend on the knowledge of 3D structure 
and the personal bias of the modeller. However, the human mind can quickly 
exclude sets of solutions and take into account experimental data. The sol
vent accessibilities of the final model c3:n be easily computed (e .g. ACCESS) 
(109) to validate the structure against experimental reactivities of specific 
positions to chemical reagents. 

6. Conclusio:;ns 
Table 1 is a compilation of the programs discussed in the present chapter 
together with the address of the contacting author or distributor : The pro
grams ·are classified according to the main topics of the chapter. Unfortu 
nately, the programs are often dedicated to some specific machine or system 
and it is not always convenient to go back and forth between the requested or 
produced input/output files. At the present time, there is no comprehensive 
package able to deal with the various aspects of nucleic acid modelling. The 
development of such packages is in dire need. 
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Table 1. Ove•rview of the programs discussed in the chapter w ith the addre ss of author or distributor 
Program Key words Source/reference 
Alignments and comparative analysis 

ALIGNOS Alignment editor 
DCSE Alignment editor 
RNAlign Reconsideration of alignment-databa ses 
Klinger and Brutlag Comparative analysis 
Han and Kim Comparative analysis 
COVARIATION Comparative analysis 

2D folding programs 
CRUSOE 
RNASE 
McCaskill 
Abrahams 
MFOLD 

2D and 3D drawing programs 
Drawna 
Rnasearch 
Squiggle 
Loop Viewer 

(Sub)optimal-combinatorial 
Editor , interactive, computer assisted 
Partition function 
Sequential folding . 
(Sub)optimal-dynamic programming 

Automatic 3D ribbon drawings 
Automatic drawing without overlapping 
Automatic drawing 
Automatic drawing 

Molecular mechanics and molecul ar dyrianiics packages 
AMBER Free energy calculations , structure refinement s, ... 
CHARMm Free energy calculat ions , structure refinements, ... 
GROMOS Free energy calculations , Structure refinement 
Xplor Molecular dynamics and structure refinement 
Quanta/Charmm Interactive graphics based on CHARMm 
Insight/Discover Interactive graphics and molecular mechanics 
Macromodel _ _ _ _ Interactive graphics and molecular mechanics 
PROS/MULATEPRbEXPLORE Interactive graphics based on GROMOS 

FRODO 

TURBOFRODO 

JUMNA 

YAMMP 
MC-SYM 
Nuclin / Nuclsq 

Interactive graphics , construction and 
manipulations of 3D structur es 
lnteractiv.:i graphics, construction and 
manipulation of 3D structures 
Junction minimizations of nucle ic adds 
(and nucleic acid-,ligand ·comple xes) 
MM on iarg·e nucleic acids 
Conformational search program 
Least squares structure refinement 

(77) 
(76) 
(78) fcorp et @toul ouse.inra.fr 
(82) 
(83) 
(110) FTP site : iubi o .bio. indiana. edu 

(85) mgouy @ev omol . univ-lyonl. fr 
(96) Montr eal University, Canada 
(62) FTP site : ftp.itc.univie.ac.at 
(99) 
(61) • 

(40)westhof@ibmc.u-strasbg.fr 
(53) gaspin @toulouse.inra.fr, 
a 

Indiana University , Bloomington, USA 
Don.Gilb ert @IUBi o.B i o.Indiana.E du 
FTP site : 129. 79 . 2 2 4. 2 5 

(18, 19)amber @cgl.ucsf.edu 
(20) 
(36) 
(10) Yale Unive rsity, New Haven, CT, USA 
Polygen Corporation, Waltham, MA, USA 
BIOSYM Technologies, San Diego, CA, USA 
(111) Columbia University, New York 
Oxford Moiecular, The Magdalen Centre, 
Oxford OX4 4GA, UK 

(112) 
Biographies , Marseill e, France 
turbo @lccmb.cnrs-m r s.fr 
(39) IBPC, 13 rue Pierre et Marie Curie, Paris, France 

(104) 
(105)major@tremblant.nlm.nih.go v 
(108) westhof@ibmc. u-strasbg. fr 

• Geneti cs Computer Group, Inc., University Research ·Park, 575 Science Drive, Suit e B, Madison , Wisconsin 53711- He lp @GCG.c om ( 51). 
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