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Claudette Cayrol,

Marie-Christine Lagasquie-Schiex,

Thomas Schiex

Abstract

The purpose of this paper is to outline various results regarding

the computational complexity and the algorithms of nonmonotonic

entailment in di�erent coherence-based approaches.

Starting from a (non necessarily consistent) belief base E and a

pre-order on E, we �rst remind di�erent mechanisms for selecting

preferred consistent subsets. Then we present di�erent entailment

principles in order to manage these multiple subsets.

The crossing point of each generation mechanism m and each

entailment principle p de�nes an entailment relation (E;�) j�

p;m

�

which we study from the computational complexity point of view.

The results are not very encouraging since the complexity of all these

nonmonotonic entailment relations is, in most restricted languages,

larger than the complexity of monotonic entailment.

Therefore, we decided to extend Binary Decision Diagrams tech-

niques, which are well suited to the task of solving NP-hard logic-

based problems. Both theoretical and experimental results are de-

scribed along this line in the last sections.

Topic area: Nonmonotonic reasoning, computational complex-

ity, algorithms and binary decision diagram.
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Chapter 1

Introduction

Formalizing \common sense" reasoning is one of the most important research

topics in arti�cial intelligence. When the available knowledge may be incom-

plete, uncertain or inconsistent, the classical logic is no more relevant (for ex-

ample, anything can be classically inferred from inconsistent knowledge bases).

Nonmonotonic reasoning is needed. Many researchers have proposed new logics

(called nonmonotonic logics) in order to formalize nonmonotonic reasoning, for

instance, Reiter's default logic [30]. Others proposed to keep the classical logic

in integration with numerical or symbolic structures for ordering the beliefs. In

the latter context, we focus on the so-called coherence-based approaches. These

approaches handle syntactical belief bases, as in [28]: each belief is a distinct

piece of information and only beliefs which are explicitly present in the base are

taken into account. It departs from the logical point of view where a base is

identi�ed with the set of its models. Due to the belief status of its elements,

the belief base is not assumed consistent. Moreover, we assume that the belief

base is equipped with a total pre-ordering structure (a priority relation) which,

contrarily to [16], is not related to the semantical entailment ordering. It is

equivalent to consider that the base is strati�ed in a collection of subbases of

di�erent priority levels.

In this paper, we are concerned with the deductive aspect of reasoning (cf. [4,

28, 9, 1] for works in the same framework). Following Pinkas and Loui's anal-

ysis [29], it is convenient to see coherence-based nonmonotonic entailment as

a two-steps procedure which �rst restores the coherence by generating and se-

lecting preferred belief states (generation mechanism) and then manages these

multiple states in order to conclude using classical logic (entailment principle).

For instance, the following kind of inference is considered in [1]: \E infers � i�

� is classically inferred by all the preferred consistent subsets of E".

A taxonomy of con
ict resolution principles, from credulous to skeptical ones,

can be found in [29]. The selection of preferred subsets relies upon the de�nition

of aggregation modes which enable to extend the priority ordering de�ned on
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the initial belief base into a preference relation between subsets (see [1, 9]).

In the framework described above, our purpose is to propose a comparative

study of various coherence-based entailment relations from the point of view of

the computational complexity

1

. This topic is essential for practical applications.

Indeed, as far as we know, only few papers have been devoted to computational

complexity issues for nonmonotonic reasoning. Nebel has thoroughly considered

the computational complexity of syntax-based revision procedures [28]. Eiter

and Gottlob [19, 14] have also considered the case of default logic and abductive

procedures.

The paper is organized as follows. First, we present the coherence-based en-

tailment problems under consideration. Starting from a belief base E and a

pre-ordering on E, we present three mechanisms for selecting preferred consis-

tent subsets of E, each one being a more selective re�nement of the previous

one. Then we present three entailment principles in order to manage these

multiple subsets: the skeptical principle, the argumentative principle and the

credulous principle. The crossing point of each generation mechanism m and

each entailment principle p de�nes an entailment relation (E;�) j�

p;m

�. Sec-

ondly, we give an informal and simpli�ed presentation of the main concepts of

the complexity theory. Then, we provide comparative results in the general

propositional case. Results are also provided in the three restricted cases of a

strictly ordered belief base, of a Horn base (set of conjunctions of Horn clauses)

and of a strictly ordered Horn base. Even in restricted cases such as strictly

ordered belief bases or Horn bases, the results seem to be disappointing since

the complexity in the worst case remains greater than the complexity of classical

entailment unless both restrictions apply simultaneously, an unrealistic restric-

tion. These results inclined us to look for an adapted tool for solving decision

problems above NP. In the last part of the paper, we show that Binary Decision

Diagrams [6] tools can be extended for solving some classes of coherence-based

entailment problems.

1

Other points of view such as cautiousness and validity of deduction rules have been con-

sidered in [8].
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Chapter 2

Coherence-based

nonmonotonic entailment

Throughout the paper, E denotes a non-empty �nite set of propositional for-

mulae referred to as the \belief base". E is not assumed to be consistent.

Coherence-based nonmonotonic entailment from a strati�ed belief base can be

described as a two-steps procedure which �rst restores the coherence by selecting

preferred consistent subbases, and then applies classical entailment on some of

these preferred subbases according to a so-called entailment principle.

2.1 Selecting preferred belief states

The most usual idea for handling inconsistency is to work with maximal (w.r.t.

set-inclusion) consistent subsets of E, called theses of E in the following.

De�nition 2.1.1 A subset X of E is a thesis of E i� X is consistent and there

is no consistent subset of E which strictly contains X.

Unfortunately, in the worst case, this approach is not selective enough: too

many theses must be taken into account.

Now, we assume that E is equipped with a total pre-ordering � (a priority rela-

tion). It is equivalent to consider that E is strati�ed in a collection (E

1

; : : : ; E

n

)

of belief bases, where E

1

contains the formulae of highest priority (or relevance)

and E

n

those of lowest priority. The pair (E;�) is called a prioritized (or

equivalently strati�ed) belief base. Each E

i

is called a stratum of E.

Di�erent approaches have been proposed to use the priority relation in order to

select \preferred" subsets (see [7] for a survey). For the purpose of this paper,

we concentrate on the approaches which re�ne the set-inclusion and lead to

select preferred subsets among the theses of E. Indeed, the priority relation on

E induces a preference relation on the set of subsets of E.
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Let us �rst brie
y remind the \inclusion-based" preference, which is the most

frequently encountered, despite di�erent presentations.

De�nition 2.1.2 Let E = (E

1

; : : : ; E

n

) a strati�ed belief base. Z being a subset

of E, Z

i

denotes Z \E

i

. The \inclusion-based" preference is the strict ordering

de�ned on the power set of E by: X �

Incl

Y i� there exists i such that Y

i

strictly contains X

i

and for any j < i, X

j

= Y

j

.

Note that �

Incl

-preferred theses are also called preferred sub-theories in [4],

democratic preferred theses in [9], and exactly correspond to strongly maximal-

consistent subbases in [12].

Another way of selecting preferred subsets is to use consistent subsets of maxi-

mum cardinality (see [1, 26]).

De�nition 2.1.3 A subset X of E is a cardinality-maximal-consistent subset

of E i� X is consistent and for each consistent subset Y of E, jY j � jXj (with

jY j denotes the cardinality of Y ).

Taking into account the strati�cation of E leads to the de�nition of the so-called

\lexicographic" preference (see [1, 26]):

De�nition 2.1.4 Let E = (E

1

; : : : ; E

n

) a strati�ed belief base. The \lexico-

graphic" preference is the strict ordering de�ned on the power set of E by:

X �

Lex

Y i� there exists i such that jX

i

j < jY

i

j and for any j < i, jX

j

j = jY

j

j.

It can be shown that the lexicographic preference re�nes the inclusion-based

preference: any �

Lex

-preferred consistent subset of E is an �

Incl

-preferred

thesis, but the converse is false as illustrated at the end of this section. Moreover,

the associated lexicographic pre-ordering is total.

Example Consider the following propositional variables:

Variable Meaning

r bump when reversing

b bump at the back of the car

nl I am not liable for the damage

np I won't pay the repairs for the car

x I have got a collision damage waiver

ci insurance cost will increase

Consider the strati�ed belief base with the following �ve strata:

E

1

= f! r;! xg,

E

2

= fr! bg,

E

3

= fb! nl; r; nl!g,

E

4

= fnl! np;np! nl;x! npg,

E

5

= f! nl; cig.

4



Eight theses are obtained. The inclusion-based preferred theses are:

Y

1

= f! r;! x; r! b; r; nl!;nl! np;x! np;! nl; cig,

Y

2

= f! r;! x; r! b; r; nl!;nl! np;np! nl;! nl; cig,

Y

3

= f! r;! x; r! b; b! nl;nl! np;np! nl;x! np;! nl; cig.

However, Y

3

is the only one lexicographic preferred thesis (indeed, Y

1

�

Lex

Y

3

and Y

2

�

Lex

Y

3

).

2.2 Three entailment principles

In the previous section, we have presented three mechanisms for producing

a set of consistent belief states from the initial prioritized belief base (E;�).

In the following, we call T the mechanism which produces the set of theses

of E (maximal-consistent subsets), Incl the mechanism which produces the

inclusion-based preferred theses of E and Lex the re�nement which produces

the set of preferred theses for the lexicographic ordering.

A taxonomy of numerous entailment principles has been established by Pinkas

and Loui [29] according to their cautiousness. Here, we are interested in three

of them which we now brie
y present:

We start from a set of consistent subsets of E denoted by m(E) in the following

(for instance, m is one of the generation mechanisms T, Incl, Lex). Let � be

a propositional formula.

De�nition 2.2.1 � is inferred from m(E) according to the skeptical entailment

principle i� � can be classically inferred from each element of m(E). This

entailment principle, often called strong entailment or universal entailment in

the literature, will be denoted by 8 and referred to as the Uni principle in the

following.

De�nition 2.2.2 � is inferred from m(E) according to the credulous entail-

ment principle i� � can be classically inferred from at least one element of

m(E). This entailment principle, often called weak entailment or existential

entailment in the literature, will be denoted by 9 and referred to as the Exi

principle in the following.

These two entailment principles are the most commonly activated in presence

of multiple con
icting belief states. Obviously, the Uni principle is more cau-

tious than the Exi principle, since each conclusion obtained from m(E) by Uni

inference is also obtained by Exi inference. Since the Exi principle leads to

unsafe consequence relations (i.e., pairwise contradictory conclusions may be

produced), an intermediary principle has been considered, which consists in

keeping only the weak consequences whose negation cannot be inferred (see [2]

for a discussion on the so-called argumentative inference).
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De�nition 2.2.3 � is inferred from m(E) according to the argumentative en-

tailment principle i� � is classically inferred from at least one element of m(E)

and no element of m(E) classically entails :�. This entailment principle will

be denoted by A and referred to as the Arg principle in the following.

We are now ready to give a precise de�nition of the entailment relations and the

associated problems which we will consider from the computational complexity

point of view. Each one appears at the crossing point of a belief state generation

mechanismm and an entailment principle p. Let (E;�) be the initial belief base

and � a propositional formula.

De�nition 2.2.4 The problem Uni-T (resp. Exi-T, Arg-T) is de�ned by

\verify that � is a strong (resp. weak, argumentative) consequence of E using

the theses of E". The T generation mechanism is used.

Notation: E j�

8(resp. 9;A);T

� for Uni-T (resp. Exi-T, Arg-T).

In the above notation, it is su�cient to mention E instead of (E;�) since

producing the theses makes no use of the pre-ordering on E.

De�nition 2.2.5 The problem Uni-Incl (resp. Exi-Incl, Arg-Incl) is de-

�ned by \verify that � is a strong (resp. weak, argumentative) consequence of

E using the inclusion-based preferred theses of E". The Incl generation mech-

anism is used.

Notation: (E;�) j�

8(resp. 9;A);Incl

� forUni-Incl (resp. Exi-Incl, Arg-Incl).

The inclusion-based preference is induced by the pre-ordering � (see De�ni-

tion 2.1.2 on page 4).

De�nition 2.2.6 The problem Uni-Lex (resp. Exi-Lex, Arg-Lex) is de�ned

by \verify that � is a strong (resp. weak, argumentative) consequence of E using

the lexicographic preferred theses of E". The Lex generation mechanism is used.

Notation: (E;�) j�

8(resp. 9;A);Lex

� for Uni-Lex (resp. Exi-Lex, Arg-Lex).

The lexicographic preference is induced by the pre-ordering � (see De�ni-

tion 2.1.4 on page 4).

Example Applying the above principles on the example of the previous section

produces:

(E;�) j�

8;Incl

b

(E;�) j�

9;Incl

nl

(E;�) j�

A;Incl

ci

(E;�) j�

8;Lex

np which is equivalent to (E;�) j�

9;Lex

np and which is

equivalent to (E;�) j�

A;Lex

np since there is only one lexicographic pre-

ferred subset in our example.

6



Chapter 3

Computational complexity

3.1 Background

This section is an informal and simpli�ed presentation of complexity theory.

For more precisions, see for instance [17]. The purpose of complexity theory

is to classify problems from the point of view of computational complexity, in

the worst case. The complexity may be temporal or spatial. In this paper, we

are interested only by the temporal aspect and only for decision problems (each

instance of a decision problem has either a \yes" or a \no" answer). The P

class contains the problems which are solved e�ciently (in polynomial time in

the size of its instances). These problems are called polynomial or deterministic

polynomial.

However, there are many problems for which we can neither prove that there

is a polynomial algorithm which solves them nor that there is none. Because

of this limitation, the NP class has been introduced. A problem belongs to the

NP class (non-deterministic polynomial) if, for each instance I of the problem

whose answer is \Yes" (and only for these instances!), it is possible to associate

a polynomial certi�cate C(I) which enables an algorithm A to verify that the

answer is really \Yes" in polynomial time. Intuitively, NP is the class of problems

for which it is easy to verify that a potential solution is a real solution. Therefore,

Sat (satis�ability of a set of clauses C) is in NP because it is su�cient to \guess

a truth assignmentM", this can be done with a polynomial succession of choices

(one for each variable of C), then to \verify that M is a model of C", which

is done in polynomial time. Note that NP contains P, determinism being a

particular case of non-determinism. Then, among the NP problems, the hardest

problems called NP-complete problems have been de�ned. These problems Q

are de�ned by the fact that they belong to NP and all the NP problems Q

0

can

be e�ciently transformed into Q. The polynomial transformation is denoted by

Q

0

/ Q and informally means that Q is at least as hard as Q

0

.

7



Sat is NP-complete as well as many problems in logic and in operational re-

search. No e�cient algorithm is known (at present) for the NP-complete prob-

lems. So, we have the essential conjecture of the complexity theory: NP 6= P.

Finding one single polynomial time algorithm for any NP-complete problem

would make this conjecture false.

Beside that NP class, we �nd the co-NP class corresponding to the comple-

mentary problems of the NP problems (the \yes" and \no" answers have been

exchanged). The complementary problem of an NP-complete problem is co-NP-

complete. Therefore, Unsat (unsatis�ability of a set of clauses) is a co-NP-

complete problem.

We will also use the classes of the polynomial hierarchy (called PH), each of

them containing supposedly harder and harder problems. This PH is de�ned

inductively using the notion of oracle. An oracle of complexity X may be viewed

as a subroutine which solves any problem of complexity X. Each call to an oracle

is counted as one time unit. So, there are polynomial problems using an oracle

of complexity X and non-deterministic polynomial problems using an oracle of

complexity X. They de�ne respectively the P

X

and NP

X

classes. PH is de�ned

by the set of classes f�

p

k

;�

p

k

;�

p

k

for k � 0g with:

�

p

0

= �

p

0

= �

p

0

= P

�

p

k+1

= P

�

p

k

�

p

k+1

= NP

�

p

k

�

p

k+1

= co-�

p

k+1

In each of these classes, we also have the notion of completeness (a �

p

k

-complete

problem being harder than any �

p

k

problem, 8k � 0).

The conjecture NP 6= P is generalized to the PH with the following stronger

conjectures: NP 6= co-NP and 8k;�

p

k

6= �

p

k

. Note that NP = P implies that the

PH collapses into P.

The problem stated below, called 2-Qbf et denoted by 9a8bH(a; b), is an ex-

ample of a �

p

2

-complete problem (see [22, 28]).

Instance: A propositional formulaH(a; b) where a and b denote sets

of propositional variables: a = fa

1

; : : : ; a

n

g and b = fb

1

; : : : ; b

m

g.

Question: Is there a truth assignment of the variables in a such

that H(a; b) is true for any truth assignment of the variables in b?

3.2 Complexity of general entailment relations

We consider entailment relations of the form (E;�) j�

p;m

� where E, �, p andm

have been de�ned in the previous sections, and where � is a single propositional

formula. The complexity results for the general propositional case are given in

Table 3.1 on the facing page. For lack of space, we just give sketches of proof.

The detailed proofs are given in [7, 24].

8



p m Complexity class

Uni T �

p

2

-complete

Exi T �

p

2

-complete

Arg T �

p

3

� (�

p

2

[�

p

2

) if �

p

2

6= �

p

2

Uni Incl �

p

2

-complete

Exi Incl �

p

2

-complete

Arg Incl �

p

3

� (�

p

2

[�

p

2

) if �

p

2

6= �

p

2

Uni Lex �

p

2

-complete

Exi Lex �

p

2

-complete

Arg Lex �

p

3

, �

p

2

-hard

Table 3.1: Complexities in the general propositional case

For each problem Q, the complexity proof is done in two steps:

�rst, we exhibit an algorithm which solves Q and whose complexity class

is X (class membership proof which gives an upper bound for the com-

plexity);

then, we prove that Q is X-complete by giving a polynomial transformation

from an X-complete problem to Q (or else give any other lower bound for

the complexity).

3.2.1 Proof for strong relations

The membership proofs are the following:

ForUni-T andUni-Incl, we use the results of Nebel in [28], because these

entailment relations correspond to the Sbr and Pbr revision procedures

for which Nebel has proved the �

p

2

-completeness. Therefore, Uni-T and

Uni-Incl belong to the class �

p

2

.

For Uni-Lex, we prove the membership to �

p

2

using the following idea:

if we want to check if � is classically entailed by all the lexicographic

preferred theses of E, we may insert :� alone in a new least prioritary

stratum. This de�nes a new base E

0

. Since all lexicographic preferred

theses have always the same cardinality at each stratum, � will be entailed

by all the lexicographic preferred theses of E i� any lexicographic preferred

thesis of E

0

has a zero cardinality in the last stratum. The Algorithm 3.1

on the next page sophisticates this idea by introducing � ! ` (where

` is new variable) in the most prioritary stratum and :` in a new least

prioritary stratum to avoid a possible interference with an already existing

occurrence of :� in E.

In this algorithm, we use an oracle Max-Gsat-Array de�ned by:

9



Algorithm 3.1: Uni-Lex ((E;�), �)

begin

E

0

 f�! `g [E [ f:`g

k < 0; 0; : : : ; 0 > (*k: vector of dimension n

0

=number of strata in E

0

*)

for n

s

from 1 to n

0

do

n

f

 number of formulae in the stratum E

0

n

s

End?  false

while (n

f

� 0) and (not End?) do

k[n

s

] n

f

if Max-Gsat-Array(E

0

; k) then

End?  true

else

n

f

 n

f

� 1

Verify that k[n

0

] 6= 1

end

Instance: A pre-ordered set (Y;�) of propositional formulae,

a vector k of dimension n with n=number of strata in Y .

Question: Is there a truth assignment which satis�es at least

k[i] formulae for each stratum i of Y ?

This problem is NP-complete (NP class membership is obvious, complete-

ness is proved by restriction to Sat). Therefore the previous algorithm

(and its dichotomic version too) is deterministic polynomial and uses a

non-deterministic polynomial oracle. So, Uni-Lex belongs to the class

�

p

2

.

The completeness proofs for strong relations are the following:

For Uni-T and Uni-Incl, the completeness is still proved using the Sbr

and Pbr revision procedures (see [28]).

For Uni-Lex, we prove �

p

2

-completeness using a �

p

2

-complete problem

de�ned in [15] and referred to as Alm in the following:

Instance: Let C = fC

1

; : : : ; C

m

g be a satis�able set of clauses,

let the set of propositional variables of C denoted by X =

fx

1

; : : : ; x

n

g, let a prioritization ofX denoted byO(X) = hx

1

; : : : ; x

n

i.

Question: Let V

M

be the truth assignment lexicographically

maximal with respect to O(X) satisfying C, does V

M

ful�ll

V

M

(x

n

) = true?

Consider the following polynomial transformation fromAlm to Uni-Lex:

let \a satis�able set of clauses C = fC

1

; : : : ; C

m

g, the set of propositional

variables of C denoted by X = fx

1

; : : : ; x

n

g, a prioritization of X denoted

by O(X) = hx

1

; : : : ; x

n

i" an instance of Alm, the instance of Uni-Lex

is de�ned by � = x

n

and (E;�) = fC

1

^ : : : ^ C

m

; x

1

; : : : ; x

n

g with the

10



following ordering: the formula C

1

^ : : : ^ C

m

has greater priority than

the formula x

1

which has greater priority than the formula x

2

which has

greater priority than . . . the formula x

n

. Therefore Alm / Uni-Lex and

Uni-Lex is �

p

2

-complete.

3.2.2 Proofs for weak relations

For the Exi-m problems (8m 2 fT; Incl;Lexg), the membership proofs use

the Algorithm 3.2.

Algorithm 3.2: Exi-m ((E;�), �)

begin

Guess a subset Y of (E;�)

Verify that Y is:

- a thesis (for Exi-T)

- an inclusion based preferred thesis (for Exi-Incl)

- a lexicographic preferred thesis (for Exi-Lex)

Verify that Y classically entails �

end

First of all, note that \verify that Y classically entails �" is co-NP-complete.

Then, \verify that Y is a thesis" consists only in checking the consistency of

Y and checking the inconsistency of Y [ fgg for each formula g 2 E n Y . For

inclusion-based preferred theses, the same principle applies except that the ver-

i�cation must be done stratum per stratum. Therefore, the previous algorithm

is non-deterministic polynomial and uses non-deterministic polynomial time or-

acles. Therefore, Exi-T and Exi-Incl belong to the class NP

NP

= �

p

2

. For

\verify that Y is a lexicographic preferred thesis", we have to rely on an oracle

which solves the following problem (called Max-Gsat-Strict):

Instance: A set Y of propositional formulae, an integer k � jY j.

Question: Is there a consistent subset Y

0

of Y such that jY

0

j > k?

This problem is NP-complete (NP class membership is obvious, completeness

is proved by restriction to Sat). Therefore, this algorithm is non-deterministic

polynomial and relies on non-deterministic polynomial time oracles. Therefore,

Exi-m belongs to the class NP

NP

= �

p

2

.

The completeness proofs for weak relations are the following:

For Exi-T, we consider the following polynomial transformation from 2-

Qbf to Exi-T: let \9a8bH(a; b)" be an instance of 2-Qbf, we consider

the instance of Exi-T de�ned by E = fa

1

; : : : ; a

n

;:a

1

; : : : ;:a

n

g and � =

H(a; b)

1

.

1

This result is not surprising. In [15], Eiter and Gottlob de�ne an abductive problem A:

instance: P = (V;H;M;T ) a propositional abduction problem with V a set of propositional

11



For Exi-Incl, the completeness is obvious, since Exi-T is a restriction of

Exi-Incl.

For Exi-Lex, we may use the previous proof for Exi-T since any thesis of

E, when E is of the form fa

1

; : : : ; a

n

;:a

1

; : : : ;:a

n

g is also a lexicographic

preferred thesis of E.

3.2.3 Proofs for argumentative relations

8m 2 fT; Incl;Lexg, the Arg-m problems can be solved by the Algorithm 3.3.

Algorithm 3.3: Arg-m ((E;�), �)

begin

Verify that (E;�) j6�

9;m

:�

Verify that (E;�) j�

9;m

�

end

This algorithm is deterministic polynomial and uses a �

p

2

oracle solving Exi-m.

Therefore, we conclude that 8m, Arg-m belongs to the class P

�

p

2

= �

p

3

.

We cannot prove �

p

3

-completeness for any of these problems, but we re�ne the

class membership, as in [28]. Indeed, we prove that most of theArg-m problems

are in �

p

3

� (�

p

2

[�

p

2

).

For Arg-T, we prove that there is a polynomial transformation from

Exi-T to Arg-T: let (E;�) be an instance of Exi-T. Simply consider the

function f de�ned by f(E) = E [f�! `g where ` is a new propositional

variable (` does not appear in E) and f(�) = `. Furthermore, there is

a polynomial transformation from co-Exi-T to Arg-T: let (E;�) be an

instance of co-Exi-T, simply consider the function g de�ned by g(E) =

E [ f:�g and g(�) = :�.

Therefore, both Exi-T and co-Exi-T can be polynomially transformed

to Arg-T. Since Exi-T is �

p

2

-complete and co-Exi-T is �

p

2

-complete,

assuming that Arg-T 2 (�

p

2

[�

p

2

) would lead to �

p

2

= �

p

2

.

ForArg-Incl, we still rely on the fact thatArg-T is a restriction ofArg-

Incl: Arg-T / Arg-Incl. Since Exi-T / Arg-T and co-Exi-T /

Arg-T, we obtain the same conclusion as for Arg-T.

For Arg-Lex, we prove that Exi-Lex / Arg-Lex similarly as for Arg-

T. However, we haven't found a polynomial transformation from co-Exi-

Lex (or any other �

p

2

-complete problem) to Arg-Lex. We simply con-

clude that Arg-Lex is �

p

2

-hard.

variables,H a set of hypotheses(propositionalatoms),M a set of manifestations (propositional

formulae), T a consistent theory (propositional formulae), question: is there an explanation

for P? This problemmay be transformedto Exi-T by the following transformation: E = T[H

and � = M .

12



3.3 Complexity of restricted entailment relations

In this section, we consider three possible restrictions

2

of the problems previ-

ously considered. First, we assume that the belief base is totally and strictly

ordered. In that case E is strati�ed with exactly one formula per stratum. In

the second case, we suppose that E and � are restricted to conjunctions of Horn

clauses. And in the third case, we use together the two previous restrictions.

The complexity of the problems p-T (for p in fUni, Exi, Argg) is not a�ected

by the �rst and the third restrictions since the pre-ordering on the belief base is

not taken into account by the generation mechanism T. We will show that all

the other problems become equivalent to a single problem called 1/Stratum

in the �rst restriction and 1/Stratum-Horn in the third restriction.

As for the second restriction, both Sat and the entailment problem in classical

propositional logic become polynomial.

3.3.1 Strati�ed bases with one formula per stratum

Theorem 3.3.1 Let < be a total and strict ordering on E. There is only one

inclusion based preferred thesis, which is also the only one lexicographic preferred

thesis (proof in [7]).

Corollary 3.3.1 The problems Uni-Incl (resp. Lex), Exi-Incl (resp. Lex),

Arg-Incl (resp. Lex) are equivalent to a single problem called 1/Stratum.

The complexity of the problem 1/Stratum is given in Table 3.2.

Problem Complexity class

1/Stratum �

p

2

-complete

Table 3.2: Complexities in the case \one formula per stratum"

The class membership for 1/Stratum is proved by the Algorithm 3.4 on the

next page. This algorithm (and its dichotomic version too) is deterministic

polynomial and relies on an NP-complete oracle. Therefore, 1/Stratum is

in �

p

2

. Using the same transformation as in the proof of Uni-Lex, we prove

that 1/Stratum is �

p

2

-complete, since the belief base E considered in that

transformation is a strictly ordered base.

3.3.2 Horn bases

In this section, we assume that the belief base is a �nite set of conjunctions of

propositional Horn clauses

3

and the formula � is also a conjunction of Horn

2

When E and � are CNF formulae (conjunctive normal form), the complexity results

remain unchanged.

3

When E and � are CNF formulae (conjunctive normal form), the complexity results

remain unchanged w.r.t. the general case.

13



Algorithm 3.4: 1/Stratum ((E;�), �)

begin

X  ?

n

s

 1 (current stratum)

1 if X [E

n

s

is consistent then

X  X [E

n

s

n

s

 n

s

+ 1

if n

s

= (total number of strata in E) then

verify that X classically entails �

else

go to step 1

end

clauses (see results in Table 3.3). In this case, we remind the reader that both

Sat and the entailment problem in classical propositional logic become polyno-

mial. Once again, the Uni-Lex problem is quite speci�c: its complexity seems

unchanged in case of Horn bases while most other problems shift down by one

level in PH.

p m Complexity class

Uni T co-NP-complete

Exi T NP-complete

Arg T �

p

2

� (NP [ co-NP) if NP 6= co-NP

Uni Incl co-NP-complete

Exi Incl NP-complete

Arg Incl �

p

2

� (NP [ co-NP) if NP 6= co-NP

Uni Lex �

p

2

-complete

Exi Lex �

p

2

Arg Lex �

p

2

Table 3.3: Complexities in case of Horn bases

Proof for m = T

We may still use the previously stated algorithms. Using the fact that the

complexity of the entailment problem is reduced, we conclude thatUni-T-Horn

is in co-NP, Exi-T-Horn is in NP and Arg-T-Horn is in �

p

2

.

The completeness proofs are the following:

For Uni-T-Horn, we use an idea previously proposed in [14]: Sat can

be polynomially transformed to co-Uni-T-Horn (Sat is the satis�ability

problem for any set of clauses, not only Horn clauses). Let C = fC

j

g for

j 2 f1; : : : ; qg a given set of clauses, let V (C) = fx

1

; : : : ; x

n

g the set of

propositional variables used in C, take:

14



E = fP; x

1

; : : : ; x

n

; y

1

; : : : ; y

n

;:z

1

; : : : ;:z

n

;:sg and � = :s

where y

1

; : : : ; y

n

; z

1

; : : : ; z

n

; s are new propositional variables and where P

is the formula:

(z

1

: : : z

n

! s)

q

^

j=1

C

j

[y]

n

^

i=1

((:x

i

_ :y

i

) ^ (y

i

! z

i

) ^ (x

i

! z

i

))

where C

j

[y] denotes the result of replacing every positive literal x

i

by

the negative literal :y

i

in C

j

. This transformation allows to transform

any instance of Sat (using any type of clause) into an instance of co-

Uni-T-Horn (using only Horn clauses). Therefore, co-Uni-T-Horn is

NP-complete and Uni-T-Horn is co-NP-complete.

For Exi-T-Horn, we use the previous transformation, except that � is

taken equal to s.

For Arg-T-Horn, we cannot keep the Arg-T proof, because our polyno-

mial transformations fromExi-T toArg-T and from co-Exi-T toArg-T

do not preserve Horn clauses. We have to consider a new problem (called

Exi-T-Horn-Pos):

Instance: E a Horn base, ` a positive literal.

Question: Is it true that E j�

9;T

`?

It is clear that this problem is NP-complete (see the Exi-T-Horn proof).

Therefore, we may use the polynomial transformations de�ned for Arg-T

on Exi-T-Horn-Pos and co-Exi-T-Horn-Pos. We conclude that Arg-

T-Horn is in �

p

2

� (NP [ co-NP) if NP 6= co-NP.

Proof for m = Incl

We may use the algorithms previously considered in the unrestricted case. All

the polynomial transformations we used preserve Horn clauses and we conclude

that Uni-Incl-Horn is co-NP-complete, Exi-Incl-Horn is NP-complete and

Arg-Incl-Horn is in �

p

2

� (NP [ co-NP) if NP 6= co-NP.

Proof for m = Lex:

For these problems, we used two oracles: one for Sat and one for Max-Gsat-

Strict or Max-Gsat-Array. The �rst problem becomes polynomial when

restricted to Horn clauses, but the other problems (called Max-Horn-Sat-

Strict and Max-Horn-Sat-Array) remain NP-complete. The proof of the

NP-membership is obvious, and NP-completeness is proved for Max-Horn-

Sat-Strict using the following polynomial transformation: let \C a collection

of n clauses with at most 2 literals per clause and an integer k � n" be an in-

stance ofMax-2Sat which is NP-complete [17]. Simply consider the instance of

Max-Horn-Sat-Strict de�ned by the collection C

0

of Horn clauses composed

of (and only of):
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the Horn clauses of C unchanged;

for each of the p non-Horn clauses c = (`_ `

0

) 2 C, the three Horn clauses

f`, `

0

, (:` _ :`

0

)g.

and the integer k

0

= k + p � 1. For Max-Horn-Sat-Array, we use Max-

Horn-Sat-Strict which can be polynomially transformed to Max-Horn-

Sat-Array.

So, with these results, Uni-Lex is obviously still a member of �

p

2

. For Exi-Lex

we prove the membership to �

p

2

by using the following idea: we �rst compute

the n-vector k which contains the cardinalities per stratum of a lexicographic

preferred thesis (this uses a polynomial number of calls to the oracle Max-

GSat-Array, see Algorithm 3.1 on page 10). Then, we may guess a subbase,

check that it is consistent, lexicographic preferred (using k) and that it entails

�. All these tests are polynomial and this corresponds to one call to an NP

oracle: this algorithm proves �

p

2

membership. Arg-Lex can simply be solved

by an Exi-Lex and a co-Exi-Lex call and is therefore also in �

p

2

.

Then, the completeness proofs are the following:

ForUni-Lex-Horn, we prove �

p

2

-completeness using a �

p

2

-complete prob-

lem de�ned in [15] and referred to as Acm in the following:

Instance: C = fC

1

; : : : ; C

m

g a set of clauses, X = fx

1

; : : : ; x

n

g

the variables of C, k 2 f1; : : : ;mg an integer.

Question: Let V a truth assignment cardinality-maximal ofX,

does V ful�ll V (C

k

) = true?

Consider the following polynomial transformation fromAcm to Uni-Lex-

Horn: let \C = fC

1

; : : : ; C

m

g, X = fx

1

; : : : ; x

n

g, k" an instance Acm,

the instance of Uni-Lex-Horn is de�ned by:

� = C

k

[y] ^ s and

(E;�) = fP

1

; : : : ; P

m

; x

1

; : : : ; x

n

; y

1

; : : : ; y

n

;:z

1

; : : : ;:z

n

;:sg

where y

1

; : : : ; y

n

; z

1

; : : : ; z

n

; s are new propositional variables and where

each P

j

is the formula:

(z

1

: : : z

n

! s) ^ C

j

[y]

n

^

i=1

((:x

i

_ :y

i

) ^ (y

i

! z

i

) ^ (x

i

! z

i

))

where C

j

[y] denotes the result of replacing every positive literal x

i

by the

negative literal :y

i

in C

j

, and where the ordering between formulae of E is

the following: P

1

; : : : ; P

m

have larger priority than x

1

; : : : ; x

n

; y

1

; : : : ; y

n

which have larger priority than :z

1

; : : : ;:z

n

;:s. So, we have Acm /

Uni-Lex-Horn.

For Exi-Lex-Horn and for Arg-Lex-Horn, we have neither proved

completeness nor re�ned the class membership result.
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3.3.3 Strictly ordered Horn bases

We may use the Theorem 3.3.1 on page 13. So, in the case of a strictly ordered

Horn base, the problems Uni-Incl (resp. Lex), Exi-Incl (resp. Lex), Arg-

Incl (resp. Lex) are equivalent to a single problem called 1/Stratum-Horn.

The complexity of the problem 1/Stratum-Horn is given in Table 3.4.

Problem Complexity class

1/Stratum-Horn P

Table 3.4: Complexities in the case \Strictly ordered Horn bases"

We use the algorithm previously de�ned for 1/Stratum, which used an oracle

for Sat. In the case of a Horn base, this oracle becomes polynomial. Therefore,

1/Stratum-Horn is in P.

3.4 Conclusion on complexity

The previous results are very discouraging in the sense that the few polynomial

classes are incredibly restrictive and of poor practical interest while most other

problems are located between �

p

2

and �

p

3

. One appealing relation is the Uni-

Lex relation, which is \only"�

p

2

-complete in the general case, but its complexity

is mostly una�ected by the restrictions we considered.

Therefore, rather than focusing on unrealistic polynomial classes, we have cho-

sen to directly tackle problems in the PH using adapted algorithms. Local

search algorithms have recently shown promising results on large hard random

instances of sat, but all these algorithms focus on the search of a polynomial

length certi�cate and seem therefore useless for tackling problems which are

above NP, for which no polynomial length certi�cate exists (unless P=NP).

In the next section, we brie
y show how Binary Decision Diagrams (which

are routinely used in the �eld of digital-system design and testing, for solving

problems above NP) may be applied to decide some of the previous problems in

the general case.
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Chapter 4

Binary decision diagrams

for nonmonotonic logics

4.1 Introduction to Binary Decision Diagrams

This section rapidly introduces the main principles of Binary Decision Diagrams

(or BDD). Detailed presentations of BDD can be found in [5, 6]. Given a formula

� on a set of variables V , a BDD [25, 6] represents the formula � using a labeled

directed acyclic graph (DAG). The graph has one source and two sink vertices

labeled 0 and 1 representing the boolean constants 0 and 1 respectively. Each

non-sink vertex is labeled with a boolean variable v 2 V and has two out-edges

labeled then and else. The then child corresponds to the case where v = 1

and the else child to the case where v = 0 and a path from the source to a

sink therefore de�nes a truth assignment. The idea, which extends the coding

principle of decision trees, is that paths from the source to sink 1 (resp. 0)

represent truth assignments that satisfy � (resp. violate �).

Given an ordering on the set of the variables V that occur in �, an ordered BDD

is a BDD such that all paths from the source to a sink visit the variables in an

ascending ordering.

Finally, a reduced ordered BDD (or ROBDD for short) may be de�ned as a

compressed decision tree for the formula. The decision tree may be transformed

into the ROBDD by iteratively applying two reduction rules until quiescence:

redundant vertices, such that the two out-edges point to the same vertex,

are simply bypassed and deleted;

pairs of vertices that denote the same function i.e., with the same label

and the same then and else children (if any), are merged.

Each rule application lowers the number of vertices by one.
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Figure 4.1: From left to right: the truth table of the formula �, the associated

decision tree and the reduced ordered BDD. A dotted edge corresponds to an

assignment to 0, a solid edge to 1

This reduction process is illustrated in Figure 4.1 (from [6]). One can see, for

example, that the three leftmost vertices labeled x

3

in the decision tree are

identical and have been merged in a single vertex in the ROBDD. Similarly, the

rightmost vertex labeled with x

3

has disappeared because its two children were

identical.

Under a given variable ordering, the �nal ROBDD R

�

obtained is unique and

canonical in the sense that two equivalent formulae de�ne two identical ROB-

DDs. For example, an unsatis�able formula will always reduce to the sink 0

while a tautology will always reduce to the sink 1. There is no restriction on

the formulae represented (CNF or not).

The ROBDD representation satis�es a property which is essential for the re-

mainder of this paper:

Property 4.1.1 Let R

�

be the ROBDD that represents the formula � under a

given ordering. Then:

any path P from the source of the ROBDD to the sink 1 de�nes a partial

truth assignment !

P

such that all the complete truth assignments that

contain !

P

satisfy �;

for any complete truth assignment ! that satis�es � there exists one and

only one path P from the source of the ROBDD to the sink 1 such that

!

P

is included in !.

In our example of Figure 4.1, there are only two paths from the source to sink

1: x

1

= 0; x

2

= 1; x

3

= 1 and x

1

= 0; x

3

= 1. The �rst path directly de�nes

one model of � while the second implicitly de�nes two models, depending on x

2

assignment.

The main advantage of ROBDDs w.r.t. decision trees is the compression which is

achieved by the two previous reduction rules. Actually, the size of the ROBDD of

a formula is not necessarily exponential in the number of the variables (whereas
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the number of vertices in a decision tree is always equal to 2

jV j+1

� 1). In

practice, the actual size of a ROBDD largely depends on the ordering of the

variables used and though the theoretical worst case space complexity remains

exponential, \there has been ample empirical evidence that many functions

encountered in real applications can be represented e�ciently as ROBDDs"

(see [5, 6]).

Most operations on ROBDDs rely on a single essential operator: the so-called

if-then-else or ite operator. This operator applies to a boolean variable x and

to two ROBDDs R

f

and R

g

representing the formulae f and g respectively.

ite(x;R

f

; R

g

) returns the ROBDD representing the formula (x^f)_(:x^g) in

constant time [3]. The implementation of ite garantees that no duplicate vertex

(same label and children) will ever be created and therefore that a ROBDD will

e�ectively be built.

In practice, instead of reducing a huge decision tree, this ite operation is used

repeatedly to build ROBDDs incrementally: given the ROBDD representations

R

�

and R

 

of the two formulae � and  , the ROBDD representation for the

formula (�hopi ), where hopi is any binary boolean operator, can be computed

in time O(S

�

� S

 

), where S

f

denotes the number of vertices in the BDD R

f

representing f . This again emphasizes the importance of the size of a ROBDD

and therefore of the problem of �nding \good" variable orderings.

4.2 Tackling the Uni-Lex problem

In the following, we show how ROBDDs may be used to solve the Uni-Lex

decision problem. Consider a strati�ed belief base E = f�

i

g

i

and V the set of

variables appearing in the formulae �

i

. Since E is supposedly inconsistent, the

ROBDD which represents E will simply reduce to the sink 0, which is not very

interesting.

To bypass the inconsistency, we introduce one new \assumption" variable `

�

i

per formula in E and we consider a new belief base where each formula �

i

from E is replaced by the formula `

�

i

! �

i

. This process, which is used in

the ATMS of De Kleer (see [23]) and which has also been suggested to solve

\Dynamic Constraint Satisfaction Problems" in [11, 20, 21], yields a belief base

which is obviously consistent.

Let A be the set of all the assumption variables introduced and E

A

= f`

�

i

!

�

i

j �

i

2 Eg. For a given truth assignment ! on (V [ A), we note !

V

(resp.

!

A

) the restriction of ! to V (resp. A). Any truth assignment !

A

of A de�nes

one subbase of E, namely the subbase which contains all the formulae �

i

of E

such that !

A

(`

�

i

) = 1. This subbase will be noted Base(!

A

).

Obviously, a truth assignment ! of (V [A) is a model of E

A

i� !

V

is a model

of the subbase Base(!

A

) and therefore each model of E

A

corresponds to a

consistent subbase of E plus one of its model, and vice-versa.

Therefore, to identify �

Lex

-preferred subbases among all the consistent sub-
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bases, it will be su�cient to identify \preferred" models of E

A

. To enable us

to later use shortest path algorithms in the BDD, we �rst build a weighting

function that encodes the lex preference.

De�nition 4.2.1 We associate a weight (a positive integer) to each formula �

i

in E. The weight w(B) of a subbase B of E is de�ned as the sum of the weights

of all the formulae in E nB.

To encode the Lex preference, the weight associated to a formula �

i

will be

related to the stratum in which �

i

appears in E (see a related transformation

in [13]):

for the least prioritary stratum n, this weight w(n) is equal to 1;

for other strata, it is inductively de�ned by:

w(i) = 1 +

X

i<j�n

[w(j) � jE

j

j] = w(i + 1)� (jE

i+1

j+ 1)

which guarantees that the weight of a formula in stratum i is strictly larger

than the sum of all the weights of all the formulae which appear in less

prioritary strata. This inductive de�nition reduces to:

w(i) =

i

Y

j=n�1

h

1 + jE

j+1

j

i

Theorem 4.2.1 A subbase B is �

Lex

-preferred to a subbase C i� the weight

of B is lower than the weight of C.

Proof: We �rst suppose that B is �

Lex

-preferred to C. Let

�

B be

the complement of B in E and B

j

= B \ E

j

. The weight of B

is de�ned as

P

n

j=1

j

�

B

j

j � w(j). Since B is �

Lex

-preferred to C, by

de�nition there exists a stratum i such that jB

i

j > jC

i

j and therefore

j

�

B

i

j < j

�

C

i

j. Furthermore, for all j < i, jB

i

j = jC

i

j and therefore

j

�

B

i

j = j

�

C

i

j. Finally, we know that 8k > i; j

�

B

k

j � j

�

C

k

j � �jE

k

j. The

di�erence w(C)� w(B) between the weight of C and the weight of

B is then equal to:

w(C)� w(B) =

n

X

j=1

([j

�

C

j

j � j

�

B

j

j]� w(j))

=

n

X

j=i

([j

�

C

j

j � j

�

B

j

j]� w(j))

� w(i) �

n

X

j=i+1

(jE

j

j � w(j))
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If we introduce the de�nition ofw(j) =

Q

j

k=n�1

[1+jE

k+1

j] for j > 1,

we get:

w(C)�w(B) �

i

Y

k=n�1

[1 + jE

k+1

j]�

jE

i+1

j �

i+1

Y

k=n�1

[1 + jE

k+1

j]�

.

.

.

jE

n�1

j �

n�1

Y

k=n�1

[1 + jE

k+1

j]� jE

n

j � 1

� 1

And therefore, the weight C is strictly larger than the weight of B.

The converse follows from the fact that�

Lex

-preference and weight

ordering are total: if B is not �

Lex

-preferred to C, C is �

Lex

-

preferred to B and therefore the weight of C is lower then the weight

of B or equivalently, the weight of B is not lower than the weight of

C. 2

We now consider the ROBDD R

E

A

that represents the conjunction of the for-

mulae in E

A

. For each vertex which is labeled by an assumption `

�

i

, we weight

the else edge of the vertex with the weight associated to the formula �

i

. As

usual, the length of a path is de�ned as the sum of all the weights of the edges

in the path (non weighted edges count for nothing in that sum).

Lemma 4.2.1 Each model !

V

of a minimum weight consistent subbase B de-

�nes a model of E

A

which is represented in the ROBDD R

E

A

by a path P from

the source to the sink 1 whose length is lower than the minimum weight of a

consistent subbase.

Proof: Consider any model !

V

of a minimum weight consistent

subbase B. Let ! be the model of E

A

de�ned by !

V

and this base

and P the path representing ! in the ROBDD. The partial truth

assignment !

P

de�ned by the path P being included in !, the set

of assumption variables which are assigned to 0 in the path P is

included in the set of assumptions which are assigned to 0 in the

truth assignment !. Therefore, the length of the path is necessarily

lower than the weight of the base B. 2

Lemma 4.2.2 Any model !

V

de�ned by a model ! represented by a shortest

path P from the source to the sink 1 is a model of a consistent subbase of weight

equal to the length of the path.
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Proof: Consider a shortest path P from the source to sink 1 repre-

senting a partial assignment !

P

. All the models ! that contain !

P

are models of E

A

which de�ne a consistent subbase Base(!

A

) and

one of its model !

V

. Consider any such !

V

, and an assignment !

0

A

of A such that !

0

A

(`

�

i

) = 0 i� !

P

(`

�

i

) = 0. Then, by construction,

the truth assignment !

0

of V [A de�ned by !

V

and !

0

A

is a model

of E

A

since it is represented by the path P (since it contains !

P

)

and therefore !

V

is the model of a subbase Base(!

0

A

) whose weight

is equal to the length of the shortest path. 2

We can now prove the �nal theorem of the section:

Theorem 4.2.2 A formula � is Uni-Lex entailed by a strati�ed base E i� all

the models !

V

represented in a shortest path of the ROBDD representing E

satisfy �.

Proof:(E;�) j�

8;Lex

� means that all�

Lex

-preferred subbases of E

classically entail �, or equivalently that each model of each �

Lex

-

preferred consistent subbase satis�es �. By Theorem 4.2.1 on page 22,

�

Lex

-preferred consistent subbases are also minimumweight consis-

tent subbases and therefore it su�ces to show that the set of all the

models !

V

represented in shortest paths of the ROBDD is equal to

the set of all the models of minimum weight consistent subbases.

According to Lemma 4.2.2 on the preceding page, the length of a

shortest path (and therefore of any path) cannot be strictly lower

than the weight of a minimum weight base. Since, according to

Lemma 4.2.1 on the page before, the length of a path representing

a model of a minimumweight subbase is lower than this weight, we

can conclude that the length of a shortest path is equal to the weight

of a minimum weight base.

Then, Lemma 4.2.1 on the preceding page simply says that all the

models of a minimumweight consistent subbase are represented in a

shortest path, while Lemma4.2.2 on the page before says that all the

models of E represented in shortest path are models of a minimum

weight base. This concludes the proof. 2

Note that this approach is related to [21], which relates shortest paths in a

ROBDD to least cost assignments of constraint satisfaction problems. As in-

dicated in [21], the linear time algorithm de�ned by Bellman (see [10], section

25.4) can then be applied to a ROBDD in order to compute the length of the

shortest path from each vertex in the ROBDD to the sink 1.

We have enhanced this algorithm in order to simultaneously build a new ROBDD

R

0

E

A

that contains only the shortest paths from the source to 1 (all non shortest

paths are simply redirected to sink 0). The ROBDD obtained is called the \fat-

free" version of the initial ROBDD. The modi�ed algorithm remains linear and
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consists in applying a single procedure called Remove-Fat to each vertex of the

ROBDD, from the sinks to the source, using a topological ordering

1

. The proce-

dure applied is described in Algorithm 4.1. Beyond all the usual data-structures

used in ROBDDs and the ite function which is the core of all ROBDD packages

(see [3]), we use two simple data-structures:

we associate an integer variable Length(v) to each vertex v in the ROBDD;

this variable represents the length of the shortest path from the vertex v

to the sink 1; initially, the Length associated to the sink 0 and 1 are set to

+1 and 0 respectively;

then, we also associate a pointer variable Fat-Free(v) to each vertex v; this

variable points to the \fat-free" version of the ROBDD rooted at vertex

v; initially, the Fat-Free variables of sink 0 and 1 point to sink 0 and 1

respectively.

Algorithm 4.1: Remove-Fat(R)

; When a ROBDD is used as an argument instead of a vertex,

; one should understand that the root of the ROBDD is the actual argument.

begin

t Length(then child of R)

e Length(else child of R)

if the root of R is labeled by an assumption variable ` then

r weight associated to `

else

r 0

e (e+ r)

Length(R)  min(t; e)

if t > Length(R) then

n

t

 sink vertex 0

else

n

t

 Fat-Free(then child of R)

if e > Length(R) then

n

e

 sink vertex 0

else

n

e

 Fat-Free(else child of R)

Fat-Free(R) ite (the label of the root of R, n

t

, n

e

)

end

1

In practice, the algorithm implemented uses a depth-�rst post-ordering search algorithm,

intermediate results being cached at each node in Length and Fat-Free to keep a linear time

complexity.
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The ROBDD R

0

E

A

seems useful to solve all Lex based problems. In the speci�c

case of Uni-Lex, our Theorem 4.2.2 on page 24 shows that we can reduce

the problem of Uni-Lex entailment of a formula � to a problem of classical

entailment of � by this ROBDD.

Actually, we can still improve things by noting that all the informations on

assumption variables conserved in R

0

E

A

are now useless. We therefore build

from R

0

E

A

, a third ROBDD, noted R

00

E

A

, which is simply obtained by existential

quanti�cation of all assumption variables: the paths from the source to sink 1

in R

00

E

A

represent all truth assignments !

V

on V such that there exists a truth

assignment !

A

of the assumptions that can extend !

V

to a model represented in

R

0

E

A

i.e., all the models of�

Lex

-preferred subbases. Therefore, (E;�) j�

8;Lex

�

i� the ROBDD R

00

E

A

classically entails �.

4.3 \Good" variable orderings

Given any ordering on V , [21] shows that inserting all the assumption variables

after V gives a space complexity for R

E

A

which is guaranteed to be lower than

[2

n

�(m+1)�1] non terminal vertices. This yields a worst case space complexity

in O(2

jV j

� jAj), a much better result than the obvious O(2

jV j+jAj

).

We propose instead, given any initial ordering on V , to insert the variable

`

�

i

2 A just after all the variables that appear in �

i

. This ordering is used in

our simple example, at the end of the section. Let n

`

be the number of non-

assumption variables before assumption ` in the resulting ordering, we prove

the following result:

Theorem 4.3.1 The number of non terminal vertices of the BDD R

E

A

using

this ordering is less than:

h

(2

n

� 1) +

X

`2A

2

n

`

i

The proof is given in the appendix. This new bound is always lower than the

bound given in [21]. The important thing is that this theoretical improvement

is accompanied by large improvements in the actual size of the ROBDD R

E

A

in practice (see Section 5 on page 29).

The use of this ordering and the ROBDDs R

E

A

, R

0

E

A

and R

00

E

A

are illustrated

on a simple version of the penguin problem de�ned by the belief base E with 2

strata and 4 formulae:

�

1

= p; �

2

= p! b; �

3

= p! :f; �

4

= b! f

�

1

and �

2

are in the most prioritary stratum. The initial ordering on V is de�ned

by p � b � f . The four assumption variables `

�

1

to `

�

4

are inserted using our

ordering process, yielding the �nal ordering p � `

�

1

� b � `

�

2

� f � `

�

3

� `

�

4

.
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Applying our weighting process, we get w(2) = 1 and w(1) = 3. The Figure 4.2

on the next page successively presents the ROBDD R

E

A

, with bold numbers

indicating weight on dashed else edges and italic number indicating the length of

the shortest path from each vertex to sink 1. The ROBDD R

0

E

A

, obtained from

the previous BDD by applying the Algorithm 4.1 on page 25, which redirects

all non shortest path edges to the sink 0. Finally, the ROBDD R

00

E

A

is obtained

after existential quanti�cation on the `

�

i

variables. When our variable ordering

or [21]'s ordering is used, an assumption is always ordered after all the variables

of the associated formula. In this case we can prove (see proof of Theorem 4.3.1

on the preceding page in the appendix):

Property 4.3.1 The then children of all the assumption vertices in R

0

E

A

are

the terminal vertex 0.

This property makes the existential quanti�cation operation very easy: the

ROBDD algorithms usually perform existential quanti�cation on a variable `

by replacing any vertex labeled by ` by a ROBDD representing the disjunction

of the two formulae represented by the else and then out-edges of the vertex.

Here, since the then child is always the sink 0, it is su�cient to replace the

vertex by its else child

2

. This can be performed during the application of the

modi�ed Bellman's Algorithm 4.1 on page 25, without destroying its linear time

complexity.

R

0

E

A

shows that the belief base has two �

Lex

-preferred subbases that respec-

tively reject �

3

and �

4

. R

00

E

A

implicitly represents the two models of these two

subbases. Using the Uni principle, we can entail p and b but not f : Uni-Lex

is still quite cautious (note that another strati�cation where �

4

is made less

prioritary than �

3

enables the entailment of :f , since the only �

Lex

-preferred

subbase remaining rejects the less speci�c formula �

4

).

2

This is done using the ite operator to avoid a possible duplicationof vertices with identical

label and children.
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Figure 4.2: The ROBDD R

E

A

, R

0

E

A

and R

00

E

A

on the penguin problem
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Chapter 5

Experiments

We have extended the ROBDD package distributed by Bryant and Brace [3] with

the ability of weighting the else edge of assumption labeled vertices and with

the previously described algorithm that simultaneously computes shortest paths,

redirects non shortest paths to terminal vertex 0 and quanti�es existentially on

assumptions. This allows us to build the ROBDD R

00

E

A

which can then be

used for checking Uni-Lex entailment of any formula. All the tests presented

here have been performed on a SparcServer 1000, using a 50Mhz processor,

a machine slower than a standard SparcStation 10.

5.1 Comparing the variable orderings

We have �rst applied our algorithm to three simple strati�ed belief bases: a

complete version of the previous (in)famous penguin problem and two formal-

izations of a small real common-sense reasoning problem that respectively in-

volve 31 and 77 formulae, distributed in respectively 7 and 9 strata (the test

problems and the code can be asked by e-mail at lagasq@irit.fr). The aim of the

test was mainly to compare the practical e�ciency of [21]'s ordering and our

new ordering. Table 5.1 on the next page successively gives:

1. the size, in number of non-terminal vertices, of the BDD R

E

A

using [21]'s

ordering and our ordering; in both cases, the same initial ordering on V

was used;

2. the CPU time needed to compute R

E

A

for each ordering;

3. the size, in number of non-terminal vertices, of the BDD R

00

E

A

; since the

assumptions do not appear anymore in the BDD, the size is identical for

the two orderings;

4. the CPU time needed to compute R

00

E

A

for each ordering.
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Test Sizes CPU (R

E

) Size CPU (R

00

E

)

[21]'s ordering our ordering [21]'s ord. our ord. R

00

E

[21]'s ord. our ord.

Peng. 12 10 � 0 � 0 4 � 0 � 0

31 f. 252 932 62 028 1'07" 4.7" 17 12.8" 3.1"

77 f. 748 461 83 040 4'25" 17.3" 17 38" 4.2"

Table 5.1: Comparing the orderings

A �rst conclusion is that the ordering we propose yields much smaller ROBDDs.

Better results could possibly be obtained by optimizing the initial ordering on

V in order to minimize the term

P

`2A

(2

n

`

) which appears in our lower bound

on the BDD size.

For the problems considered, the size of the BDD R

E

A

is very reasonable and

yields a �nal BDD R

00

E

A

which is here very small (only one �

Lex

-preferred

subbase for the last 2 tests). Obviously, larger problems could be tackled but

the �eld of nonmonotonic reasoning lacks benchmarks. We therefore decided to

use random 3-sat problems as the basis of the next experiments.

5.2 Tests using random 3-sat formulae

The tests have been performed on sets of random 3-clauses (involving three liter-

als), generated using the procedure described in [27]. Two parameters are used:

the number n of variables and the number l of 3-clauses. Each 3-clause is built

by randomly choosing three variables among the n ones et by randomly changing

the sign of each variable with probability 0:5. This model has been intensively

studied in the litterature and it is known that a so-called phase transition oc-

curs at a ratio of

l

n

= 4:25: instances generated using a lower (resp. higher)

ratio will be consistent (inconsistent) with high probability. Instances generated

using the above ratio of 4:25 are also known to de�ne di�cult instances for the

sat problem.

The aim of the tests is to see how ROBDDs can cope with problems of various

sizes, to compare the sizes of the ROBDDs R

E

A

and R

00

E

A

, to evaluate the impact

of the ratio

l

n

on the e�ciency of the approach and to check that the \knowledge

compilation" is e�cient i.e., that once R

00

E

A

is built, we get an e�cient procedure

for checking Uni-Lex entailment.

A test consists in generating a random base using a given value of n and l.

The base is then pre-ordered by splitting it into 5 strata, simply by randomly

assigning each formula to one stratum. Then the ROBDD R

E

A

is built using

our ordering, starting from an initial random ordering on V . Then the ROBDD

R

00

E

A

is computed. Finally an extra random 3-clause is generated and we check

if it is entailed by R

00

E

A

.

These tests have been performed with three di�erent numbers of variables (5,

30



0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8

C
P

U
-t

im
e 

(s
ec

on
ds

)

ratio

5 variables
10 variables
20 variables

Figure 5.1: Total cpu-time needed for building R

E

A

, R

00

E

A

and verifying the

entailment

10 and 20) with a ratio

l

n

going from 2 to 8 by 0:2 step

1

. For each value of n

and l, �fty di�erent bases have been generated and the numbers reported are

the average of the results on each of these �fty bases.

The Figure 5.1 shows the total cpu-time needed to build R

E

A

, compute R

00

E

A

and to check for the entailment of one random 3-clause. The horizontal axis

indicates the ratio used, the vertical axis gives the cpu-time in seconds using a

logarithmic scale.

First, we notice that there is apparently no \phase transition" here: the cpu-

time seems to increase steadily as the ratio increases. One thing that is not

visible on the �gure is the very low variance of the measures: the amount of

time needed is highly predictable and stable. Then, one can see that problems

with more than 150 clauses are entirely solved in less than 15

0

. This amount

of time is better decomposed, in the case of bases with 20 variables, in the

Figure 5.2 on the next page.

Here, we can see that almost all the cpu-time is spent building the �rst ROBDD

R

E

A

. Then some extra time is spent computing R

00

E

A

. But once this ROBDD is

built, checking the entailment actually takes a negligible time, around

1

1000

th of

second, even on the largest instances. This shows clearly that the approach can

1

We remind the reader that all bases generatedwith a ratio larger than 4:25 are inconsistent

with high probability.
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be considered as a \knowledge compilation" approach: some large preprocessing

�nally yields a very e�cient entailment procedure (see [31] for works on the

\knowledge compilation" approaches).

Moreover, if the belief base is modi�ed, the \recompilation" is partly incremen-

tal, if the ROBDD R

E

A

has been saved (see [18] for works on this notion of

incremental \recompilation"): if a new formula � needs to be inserted in the

base, it is su�cient to introduce a new assumption `

�

, to compute the conjunc-

tion of R

E

A

and `

�

! � and to apply the procedure Remove-fat once again.

To delete a formula �, one can simply compute the conjunction of R

E

A

with

the formula :`

�

and then apply the procedure Remove-fat once again.

The e�ciency of the �nal entailment check is the result of the small size of the

ROBDD R

00

E

A

compared to the size of R

E

A

. The sizes, in number of vertices, of

the two ROBDDs R

E

A

and R

00

E

A

are given in the Figure 5.3 on the facing page.

It appears that if the compilation becomes more and more di�cult as the ratio

increases, this is because the size of the �rst ROBDD R

E

A

increases too, but the

size of the ROBDD R

00

E

A

reduces as the ratio increases, making entailment more

and more e�cient. This can be explained by the fact that the �

Lex

ordering is

extremely selective: for most bases with a ratio above 6, not only does the�

Lex

preference select one single preferred subbase, but this subbase has usually only

one model. This explains the size of the ROBDD R

00

E

A

on highly inconsistent

bases: the ROBDD contains only one model and uses therefore 20 vertices (the

number of variables).

One could think, from these results, that the �

Lex

preference is actually too

selective to have any practical signi�cance for highly inconsistent bases. But it

is di�cult to conclude from bases entirely composed of 3-sat formulae.
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Chapter 6

Conclusion

We have studied the computational complexity of various syntax-based entail-

ment relations which can be de�ned as: (E;�) j�

p;m

�. E denotes a set of

beliefs, � a priority relation on E, � a propositional formula, and p, m enable

to combine the classical entailment and the selection of preferred consistent sub-

sets. A similar study has been done for other entailment relations in [7] (when

� is the Best-out ordering [12], or when the preferred subsets are Extensions of

default logic [30, 19]).

The results reported in this paper show that most of the nonmonotonic entail-

ment problems have very likely exponential time complexity with respect to the

problem size. Although the complexities observed are limited by the third level

of the PH, they are prohibitive and applications may likely wait for an answer

for hours, days or centuries!

We have considered three restrictions (strictly ordered belief bases, Horn bases,

strictly ordered Horn bases), but only the last of them has lead to a polynomial

problem, and it is a very restrictive case.

A more complete analysis permits to distinguish the Uni-Lex entailment, whose

complexity is never beyond the second level of the polynomial hierarchy (�

p

2

, NP,

co-NP). Note that the computational complexity is not related to cautiousness:

though Arg-m is more cautious than Exi-m and less cautious than Uni-m,

Arg-m is more complex than Exi-m and Uni-m (see [8] for a study on this

point of view).

Considering the strength of the restrictions needed to reach polynomial com-

plexity, we decided to try to tackle one speci�c entailment relation using an

algorithmic tool which is dedicated to the resolution of propositional logic based

NP-hard problems: Binary Decision Diagrams.

On the speci�c Uni-Lex relation considered, our BDD-based approach o�ers

some interesting features:

e�ciency via knowledge compilation: after a �rst expensive computation,
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the binary decision diagram R

00

E

A

can be used to e�ciently check the en-

tailment of any formula;

a \good" variable ordering for BDD, with both better theoretical guaran-

tees and better practical results than [21]'s ordering;

incremental recompilation: the recompilation can be incremental as long

as the �rst BDD R

E

A

is kept; even if this BDD may be huge, it may

simply be saved to disk.

Nevertheless, this work can be extended in several directions:

Our results on the \good" variable ordering raise many interesting ques-

tions. For a given ordering on the set V , is our ordering on V [A optimal?

Since our theoretical bound depends on the initial ordering on the vari-

ables in V , is it worth considering the optimization of this ordering in

order to minimize the bound? Is this optimization problem computation-

ally tractable? Finally, does this optimization lead to better practical

results?

Obviously, the BDD approach can be extended to other preference rela-

tions than the lexicographic ordering. Naturally, this is immediate for

cardinality based preferences, a special case of the lexicographic ordering,

but one could also consider the Best-Out ordering, related to possibilistic

logic (see [12]), and for which speci�c optimization should apply.

Finally, one should try to use the BDD R

0

E

A

, which represents all preferred

consistent subbases and their models, in order to tackle consequence re-

lations based on other entailment principles than the Uni principle. This

is especially interesting because of the higher complexity of the problems

de�ned by the Exi or Arg principles.
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Appendix A

Proofs

In order to give a proof of the Theorem 4.3.1 on page 26, we state a more precise

form of this theorem:

Theorem A.0.1 Let E = f�

i

g

i

be a belief base, and V the set of variables of

E (jV j = n). We associate to each formula �

i

of E a new variable `

�

i

. Let A

be the set of these new variables, called assumption variables (jAj = jEj = m).

We de�ne E

A

= f`

�

i

! �

i

; i = 1 : : :mg. Given an order � on V , we consider

an order �

0

on V [A such that:

it extends the order � (8v; v

0

2 V; (v �

0

v

0

), (v � v

0

));

an assumption `

�

is ordered after all the variable of � (8v 2 V that appears

in �, v �

0

`

�

);

and before any variable located after all the variables of � (8w 2 V s.t.

8v 2 V that appears in �, v � w, then `

�

�

0

w).

For each assumption variable `, n

`

denotes the number of variables v 2 V s.t.

v �

0

`. In the corresponding reduced ordered BDD of the base E

A

, the number

of non terminal vertices is less than

(2

n

� 1) +

X

`2A

(2

n

`

)

Proof: Let us �rst note that an order such as �

0

always exists and

is simply obtained by inserting each assumption just after all the

variables of the associated formula. The proof uses the fact that

a reduced ordered BDD is de�ned as the closure by two reduction

rules of the ordered binary decision tree (cf. Figure 4.1 on page 20).

Each rule application decreases the number of vertices of the BDD

by one and the reduced BDD is obtained by application of these two

rules until quiescence.
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We will show that a limited application of these rules on the ordered

binary decision tree of E

A

permits to obtain an ordered and partially

reduced BDD whose size is less than (2

n

�1)+

P

`2A

(2

n

`

). The size

of the completely reduced BDD being necessarily less than the size

of the partially reduced BDD, the proof will follow.

We consider the ordered binary decision tree of the base E

A

. Let

`

�

i

2 A, the assumption variable associated to the formula �

i

. Let

s

`

�

i

one of the vertices corresponding to this assumption variable in

the decision tree. By de�nition, `

�

i

is greater than all the variables

of �

i

according to �

0

. So, we have two cases:

The assignment of the variables of �

i

satis�es �

i

: in this case,

the formula `

�

i

! �

i

is satis�ed for all the values of `

�

i

. As `

�

i

does not appear in other formulae of E

A

, the two subtrees (left

and right) of s

`

�

i

are the same and we may remove the vertex

s

`

�

i

(and one of the subtrees) by application of the reduction

rules.

The assignment of the variables of �

i

does not satisfy �

i

: in this

case, if `

�

i

is supposed to be true, the formula `

�

i

! �

i

is not

satis�ed, whatever the values of the variables which \follow"

`

�

i

in the order. So, all the sink vertices of the subtree of

s

`

�

i

, corresponding to the assignment at true of `

�

i

, are the

sink vertex 0. Therefore, by several applications of the two

reduction rules, we may replace this subtree by the sink vertex

0.

The proof follows by induction. If m = 0, then the number of non

terminal vertices is obviously less than (2

n

� 1). The induction

hypothesis will be that Theorem A.0.1 on the page before applies

on a BDD representing a set of formulae f`

�

! �g, with an order

corresponding to the de�nition, and in which there are strictly less

than m assumption variables.

Consider the binary decision tree associated to the base E

A

, with

2

n+m

� 1 non terminal vertices. Let � be the lowest assumption

variable according to �

0

. Using the previous remarks, the applica-

tion of the two reduction rules implies on each vertex s

�

either the

removal of the vertex, or the fact that one of its children becomes the

sink vertex 0. Therefore, the number of non terminal vertices in the

partially reduced BDD obtained by this procedure is decomposed

into:

(2

n

�

�1) vertices for the n

�

variables which are not assumption

variables and which are lower then � according to �

0

;
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a maximum of 2

n

�

vertices corresponding to the assumption

variable �;

2

n

�

subtrees whose roots correspond to the variable which is

the successor of � in �

0

.

These 2

n

�

subtrees are ordered binary decision trees. Let ! the

partial assignment de�ned by the path between the root of the tree

and the root of one of these subtrees. Whatever subtree among the

2

n

�

subtrees whose root corresponds to a successor of � in �

0

, it

represents the binary decision tree of the formula E

A

!

obtained by

the substitution of the variables assigned by ! in E

A

by their truth

values in !. Because of the order �

0

, E

A

!

contains formulae 0 or 1

and formulae of the form `

�

! �. The formulae 1 don't a�ect the

truth value of E

A

!

, because they are always satis�ed. So:

either E

A

!

contains a formula 0 and its truth value is always

equal to 0: the binary decision subtree of E

A

!

is reduced to the

sink vertex 0 by the use of reduction rules;

or E

A

!

doesn't contain any formula 0 and furthermore satis-

�es all the conditions of the induction hypothesis: there are

m � 1 assumption variables and the condition on the order is

satis�ed (an assumption variable is located \after" the vari-

ables of the associated formula in the order); therefore, we may

reduce the subtree to an ordered and partially reduced BDD

whose number of non terminal vertices is less than (2

n�n

�

�

1) +

P

`2A�f�g

(2

n

`

�n

�

).

In all the cases, we may reduce each subtree to an ordered partially

reduced BDD whose number of non terminal vertices is less than

(2

n�n

�

� 1) +

X

`2A�f�g

(2

n

`

�n

�

)

The set of reductions permits to obtain an ordered and partially

reduced BDD whose number of non terminal vertices is less than:

S =

variables �

0

�

z }| {

[2

n

�

� 1] +

�

z }| {

[2

n

�

]+

subtrees rooted �

0

�

z }| {

[2

n

�

:((2

n�n

�

� 1) +

X

`2A�f�g

(2

n

`

�n

�

))]

= [2

n

�

� 1] + [2

n

�

] + [2

n

� 2

n

�

+

X

`2A�f�g

(2

n

`

)]

= 2

n

�

� 1 + 2

n

+

X

`2A�f�g

(2

n

`

)
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= (2

n

� 1) +

X

`2A

(2

n

`

)

2
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