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Constraint programmingPatrick Esquirol, Pierre LopezLaboratoire d'Analyse et d'Architecture des Syst�emes du cnrs7, avenue du Colonel Roche31077 Toulouse Cedex (France)e-mail: fesquirol,lopezg@laas.frH�el�ene FargierUniversit�e Paul Sabatier (IRIT)118, route de Narbonne31062 Toulouse Cedex (France)e-mail: fargier@irit.frThomas SchiexInstitut National de la Recherche AgronomiqueChemin de Borde Rouge, BP 2731326 Castanet-Tolosan Cedex (France)e-mail: tschiex@toulouse.inra.frAbstractThere has been a lot of interest lately from people solving constrained optimizationproblems for Constraint Programming (CP). Constraint programming cannot be describedas a technique by itself but perhaps better as a class of computer languages tailored tothe expression and resolution of problems which are non-deterministic in nature, with afast program development and e�cient runtime performances.Constraint programming derives from logic programming, operational research andarti�cial intelligence. Logic programming o�ers the general non-deterministic host lan-guage which accommodates dedicated constraint solvers from OR and AI such as linearprogramming or constraint satisfaction techniques.In this paper, we �rst review how pure logic programming languages evolved into Con-straint Logic Programming (CLP) languages, bringing to light the interface between logicprogramming and constraint solvers. Some extra attention is given to a speci�c class ofconstraint solving techniques which have been developed in the Constraint SatisfactionProblem framework and which are currently used in most CLP languages to solve con-strained problems in �nite domains. We �nally conclude by an overview of some existingCP languages, with some examples taken from scheduling.Keywords: Constraint Logic Programming, Constraint Satisfaction, Scheduling.



1 IntroductionA large number of problems which are considered by operational research and which havealso been tackled by arti�cial intelligence techniques, such as job-shop scheduling, resourceallocation problems or digital circuit validation are combinatorial problems in nature. Moreformally, such problems are often NP-hard [GJ79] and it seems unlikely that algorithms with areasonable worst-case complexity exist to solve them.A traditional approach to solve such problems is to design a speci�c computer programthat uses enumerative techniques such as Branch and Bound or, loosing some guarantees, localsearch techniques (Taboo search, simulated annealing). This may lead to the utmost e�ciencybut usually necessitates a lot of work, which may rapidly become useless if the model evolvesin an unexpected direction and whose reuse is highly improbable.Another possible approach is to cast the problem in a general framework such as integerlinear programming and to use a dedicated solver to solve the linear model which has beendesigned. Usually, the rewriting tends to enlarge the problem size, to distort (to some extent)the original problem, to ignore nice properties such as possible heuristics or symmetries. . . Inthe worst cases, the �nal e�ciency may be poor and solutions almost meaningless.Ideally, one would like a general framework for stating large classes of combinatorial prob-lems, with a language which is general enough to limit distortion and open enough to make itpossible to use the speci�c knowledge about the problem, in order to enhance e�ciency.We now try to show the assets of constraint programming languages as general tools forrepresenting and solving various classes of constrained problems, with illustrations in job-shopscheduling. These assets are inherited from logic programming but also from the underlyingconstraint solvers. In this paper, we will more speci�cally focus on AI techniques for solvingconstraint satisfaction problems on �nite domains [Tsa93], even if other solvers, such as Simplexfor sets of linear inequations are often used in CP languages.2 From Logic Programming to Constraint ProgrammingLogic programming languages are general programming languages based on mathematical logic,and more speci�cally �rst order logic. The language Prolog, with its numerous dialects, is themain representative of the logic programming languages community. The original idea of Prologis to let the user specify the properties he wants to satisfy using a subset of the �rst-order logiclanguage and to use a general logical inference mechanism, the resolution principle [Rob65], toprove either that these properties cannot be met or to exhibit solutions.2.1 Logic programming2.1.1 Description and good properties of Prolog programmingLogic Programming will be presented here through its most representative implementation, theProlog language. This language is a restriction of the �rst-order logic language to Horn clauses.It acts as a theorem prover, and applies a general inference mechanism based on the resolutionprinciple. To get started with Prolog and the use of logic for problem solving, we recommendthe reading of [CM81, CKvC83, Kow79, ACM92, AS93].Prolog manipulates objects, called terms, that form the so-called \Herbrand universe".A term may be a constant such as \1", a variable such as \X", an atom such as \a", or acompound term such as functional terms (\f(X,1)") and lists. A Prolog program can be



viewed as a sequence of declarative statements, the clauses, each of them stating how a givenrelation between some terms (the head of the clause) may be derived logically from a conjunctiveset of relations (the tail of the clause), de�ned somewhere else in the program. n-ary relations(possibly n = 0) are all built from a predicate symbol and a set of terms, the arguments of therelations.In the sequel, the chosen syntax to write the clauses will be the Edinburgh syntax. The headis separated from the tail by \:-"; if not empty, the tail consists of a set of terms separated by\,"; and the clause ends with \.". The character \%" introduces a comment.% A comment: next line is an example of a clausehead :- term1, term2.Moreover a variable is denoted by an upper case letter (A-Z); a list is represented by [H|T]where H is the head of the list (i.e., the �rst element), T its tail (the other elements). Programsare clustered into packets of clauses, each packet grouping clauses which head refers to the samerelation predicate. In each packet, one clause represents one alternative to prove the relation.In the following example (a path-�nding problem), a �rst packet of 6 clauses describes the setof pairs of nodes that satisfy the arc-relation of some graph. These clauses have an empty tail(no conditions) since the graph is given. A second packet of clauses states the path relation,recursively de�ned from the arc-relation; a path exists between node X and node Y, either if thenodes are connected directly by an arc (�rst clause) or if a path exists between an intermediatenode Z and node Y, such that node X is connected to node Z by an arc-relation (second clause).% Directed non-reflexive graph% described by its arcsarc(1,2).arc(1,3).arc(2,4).arc(3,4).arc(4,5).arc(4,6).% Recursive definition of the path% relation between any 2 nodespath(X,Y,[X,Y]) :- arc(X,Y).path(X,Y,[X|L]) :- arc(X,Z), path(Z,Y,L).
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Prolog programs are launched by writing queries about one or more relations that mustsimultaneously be proved. The standard strategy of Prolog is based on an embedded chrono-logical backtrack search algorithm, that enables to collect all the possible solutions for a givenquery.If some variables appear in a query, Prolog attempts to give them values, or at least returnsa minimal set of variables substitutions (equalities constraints), that satis�es the query. Valuesreturned in the answer form one solution to the problem stated by the query. The query:\?-path(1,Y,L)." ask for all the paths L and their extremity Y, such that path L startsfrom node 1. When the query has no variables, answer is `Yes' if the query is proved to betrue, as for instance for the query \?-path(1,4,[1,2,4])." that checks the path <1,2,4>between nodes 1 and 4, or `No' when the query is not satis�able, as for instance for the query\?-path(X,X,L).", which proves that no circuit can be found in this graph.Let us note that the same program can also answer to queries like \?-path(X,5,L)."which returns all the paths terminating on node 5, or like \?-path(X,Y,L)." which returns



all the paths of the graph. This program is a reversible one, since arguments of the pathrelation are not forced to have a �xed input or output role, as opposed to classical programs inprocedural or functional programming. The relational semantics of logic programming gives itsdeclarativeness and its genericity. The embedded backtrack search algorithm and the high-levelfacilities for lists processing play also a major role in the conciseness of Prolog programs.2.1.2 Limitations of logic programming for numerical problem solvingPure logic programming needs and only allows the statement of relations between terms, with-out any assumption on numerical properties. When tackling numerical problems or reasoningin domains more structured than the domain of syntactic terms (Herbrand universe), the con-straint solving algorithm on terms (the so-called uni�cation algorithm) appears to be too weakfor numerical computations, in particular when the search space developed by the standardbacktracking can be pruned by an active interpretation of the numerical constraints, as showsthe next example.Suppose one wants to determine the pairs (X,Y) which satisfy the property X < Y, numbersX and Y belonging to a given enumerated subset of integers.% Definition of a given subset of integersis_number(1).is_number(2).is_number(3).% Definition of the ordered-pair relationordered_pair(X,Y) :- is_number(X), is_number(Y), X < Y.Numerical operations and checks (such as X < Y) are extra-logical relations and have beenadded under the form of prede�ned predicates just to make Prolog able to produce ele-mentary numerical computations. The search tree developed in order to answer the query\?-ordered-pair(X,Y)." which lists all the ordered pairs of numbers amongst f1,2,3g is �g-ured below.
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Figure 1: Search treeThis program �rst generates values for numbers X and Y and then checks the orderingrelation. This approach (generate-and-test) is very ine�cient considering the failing branchesof the search tree. For example, X=3 is tried even if it is obvious that no value can be associatedwith Y because X has its maximum value and the order is a strict one. For symmetrical reasons,



failures due to Y=1 are unnecessarily explored. Preferably, one could �rst restrict the domains ofX and Y before enumerating their possible values. This necessitates that domains be associatedto variables and that the relation X < Y be actively used to restrict the domains before valueshave been proposed for X and Y (constrain-and-generate), rather than simply passively checkingit once the variables it involves are assigned.2.1.3 ConclusionLogic programming and its well-known implementation through the Prolog language o�ers sev-eral attractive properties for problem solving (declarativity, genericity, conciseness, exhaustivesearch). Facing problems where constraints must actively be exploited to improve e�ciency,the uni�cation constraint alone appears too weak. It has to be enlarged by other inferencemechanisms based on more structured domains of interpretation, such as �nite domain vari-ables, integers, rationals, booleans, for which e�cient constraint solving strategies can be im-plemented. The next section lists some of the domains of variables for which constraints canactively be interpreted in order to improve the standard strategy of Prolog.2.2 Constraint Logic Programming2.2.1 General principleConstraint Logic programming (CLP) is an attempt to overcome the limitations of Logic Pro-gramming by enhancing it with constraint solving mechanisms.The �rst objective was to replace an explicit coding of semantic properties between objectssubmitted to constraints by an implicit description with primitive constraints. This led todistinguish usual predicates and constraint predicates, usual variables and typed variables. Forexample, besides the original predicate \is(X,Expr)" that binds a variable to the evaluationof a closed arithmetic expression, new equality constraints have been introduced, which stateequations in typed domains. This work was concerned with the integration of new computationdomains and their associated constraint solvers. In the remainder of this paper we will denoteby Clp(X ) a CLP system acting on some constraint domain X .The second objective was to replace the depth-�rst search strategy of Prolog and its resultinggenerate-and-test behavior. Constraint propagation has been investigated in the Arti�cialIntelligence community since late 70's [Mon74, Mac77, Ste80]. Techniques like local valuepropagation, data-driven computation, forward checking and look ahead have been developed.Some of these techniques have been integrated as new inference rules in CLP systems.It is often admitted that the embryonic attempts to introduce constraints in Prolog aredue to Alain Colmerauer with its design of Prolog II [Col82b], able to solve equations in thedomain of in�nite trees [Col82a]. Prolog II also initiated the use of the \dif(X,Y)" primitivewith a co-routining mechanism that postpones the disequality check until both argumentsbecome instantiated and produces a backjumping to the clause containing the dif in case offailure.The core idea of CLP was to replace the computational heart of a logic programming system,namely the uni�cation algorithm, by a constraint handling mechanism in a constraint domain.2.3 The CLP schemeA good abstract of the theoretical foundations of CLP languages can be found in [Coh90].For a deeper analysis, the survey of Ja�ar & Maher [JM94] is worth reading. For the sake of



simplicity and understandability we propose to describe what a CLP scheme may be with amodel very close to the one of the abstract Prolog III machine. This model supposes thatconstraints and predicates are syntactically separated in a clause, as opposed to the operationalmodel given in [JM94]. Thus, a clause of a logic program will consist of a triplet hh; B; Ci whereh is the head, B a sequence of predicates (possibly empty) and C a set of constraints (possiblyempty). A program clause hh; B; Ci means that h can be rewritten as B under the constraintsC. Suppose that the state of the abstract machine at a given time is hG; Ri, where:� G is the (ordered) set of goals which remain to be executed;� R forms the current constraint store.Initially, goals and constraints are those of the query: S0 = hQg; Qri. One �nal state Sf isde�ned by an empty set of goals: Sf = h?; Rfi. The �nal constraint store Rf may be nonempty. In that case, the �nal answer may di�er from a CLP system to another, depending onthe constraint domains and some properties presented below.The computation can be represented by a tree, similar to the search tree developed bya pure logic program: nodes are labeled by states, edges are labeled by rules (primitive orprogram-de�ned), and leaves are of two types: fail or answer. Fails occur when no rule can beapplied to a state with a non empty set of goals. Suppose g is the next goal to be executed (theleft-most term of G) in the current state hG; Ri. If a program clause hh; B; Ci can be appliedto g, the following state is hG 0; C 0i where:� G 0 = Gnfgg S B� R 0 = solve(R S fg = hg S C).The equation fg = hg means that g and h have the same predicate symbol and satisfythe uni�cation constraints between their respective arguments. When considering numericaldomains, uni�cation means equation, as for example in the uni�cation of g = foo(X; 3) andh = foo(Y; Y+ 3): the result is X = Y = 0 in a CLP system on numerical domains whereas itfails in pure Prolog (as 3 cannot be made syntactically equivalent to Y+3). The solve functionperforms a satis�ability check, that, if failed, entails a backtrack and the selection of anotherclause of the program. This satis�ability check may be complete or not, depending on theconstraint domains. In the following, we list some important properties of the CLP systemsrelating to the constraint domains they propose.2.3.1 PropertiesThe major CLP systems o�er, in a common Prolog environment, several constraint domainsand their attached set of primitives. Programmers are generally interested in the expressivenessof the constraint domains and in the e�ciency of the solvers. It is thus important to evaluatethe various systems and their computation domains through relevant properties such as:� Satisfaction-completeness, solution-compactness of the constraint domain.� Incrementality of the constraint satisfaction algorithm.� Existence of canonical representations of the constraints set.� Simpli�cation ability for the constraint-handling system.



A theory on a given domain is satisfaction-complete if it is always provable that everyconstraint is either satis�able or not. It is the case for example for reals with the set f=; 6=; >;�; <;�g of constraints and the set f+;�g of functions. But it is not the case for integerswith f=g constraint and f+;�g functions (the satis�ability of Diophantine equations beingundecidable). CLP systems answer `Maybe', or `N constraints delayed' when this propertyis not �lled, whereas when it is, the answer is `Yes' or `No'.A theory on a constraint domain is solution-compact when any value of the domain can berepresented by a (possibly in�nite) set of constraints. True for the domain of real numbers withf=; 6=; >;�; <;�g constraints and f+;�g functions, this property is lost for real numbers withonly f=g constraint and the same functions.Furthermore, the set of constraints that is handled at each node is obtained by adding someconstraints to a constraint set which was previously proved satis�able1. Thus, the e�ciency ofthe overall language would bene�t from some \incrementality" in the constraint solver: oncea set R of constraints has been shown satis�able, the proof of satis�ability of R [ R 0 should,whenever possible, be made more e�cient than a proof from scratch, by using some resultsfrom the previous satis�ability proof of R.In practice, solvers often give a \solved form" of the initial set of constraints whose satis�-ability is \obvious" and which is equivalent to the original set. The \solved form" given by thesolvers can usually be directly used instead of the original constraint set when a constraint isadded, thus automatically giving some \incrementality". The \solved form" may even be usedfor projection if it is an explicit representation of the solution space.Simpli�cation is sometimes called a semantic garbage collection. For example the two con-straints X � 1 and X � 2 can be rewritten as only one: X � 2. Another obvious type ofsimpli�cation is to rewrite the subset of constraints on a given variable as soon as this variablereceives a single value. Finally redundancies may also be eliminated, but this feature raisesthe more general problem of �nding a minimal representative set of constraints, for which onecannot assert that a unique optimal strategy always exists.To that aim, the existence of canonical forms of sets of constraints may help. A canonicalform can be used as a \solved form" which facilitates both the satis�ability tests and simpli�-cations, for example because constraints are ordered according to their arity, and/or variablesare lexicographically ordered.Finally, for satisfaction-complete systems, queries can receive non ground answers (i.e., eachvariable of the query does not receive a single value): the answer is a projection of the systemof constraints on these variables. The understandability of the answer obviously depends onsimpli�cation and canonical representation facilities.2.4 Constraint ProgrammingAlthough constraint programming derives from logic programming and the major CLP systemshave been designed as compatible extensions of Prolog (which remains the kernel), some otherimportant systems have been developed independently. As they keep the non-deterministiccomputation principle, and their solvers are based on the same constraints domains, theydeserve to be also mentioned in this paper (see Section 4.4). Constraint programming is thegeneral framework that covers researches and applications of such constraint-based languagesand systems.1Or not yet disproved to be satis�able in case of satisfaction-incomplete theories.



3 Constraint SolversAs we have seen, CLP needs several services from the underlying constraint solvers: a satis�a-bility test to avoid useless exploration of space and the ability to project the solution space ofthe current constraint set on a subset of the variables involved (to be able to answer the userquery using only the variables that appeared in the query).We now consider several domains, with their available constraints solvers to see how thesedemands are actually met or relaxed.3.1 Equalities in �nite and rational treesThe domain of �nite trees (FT) is the original domain of pure logic programming languages:Prolog terms that appear in Prolog predicates, such as f(X) or f(g(X); 1; Z), are simply thesyntactic expression of labeled trees2. We present this domain for historic reasons, even if it maylook somewhat arti�cial to the operation research community. The problem of satis�ability ofa set of equalities between terms with variables is known as the uni�ability problem. A solutionis given by an uni�er : a set of variable/term substitutions which, when applied to all the terms,make them identical. The problem is easy, solvable in linear time [PW78]. Furthermore, thealgorithms build a most general solution to the constraint set (called a most general uni�er ormgu) which can be used as a \solved form": it may easily be projected on a variable subsetand also used as the basis for the next satis�ability test when new constraints are added.In the domain of FT, the terms f(X) and f(g(1; X)) are not uni�able: no single FT cansimultaneously match both terms. However, uni�cation algorithms naturally build the substi-tution X=g(1; X) as a possible solution whereas substitutions of the form X=t, where t is a termthat contains the variable X cannot de�ne a solution since they implicitly represent in�nitetrees. Therefore, a speci�c test, called the occur-check should be inserted in the algorithm toavoid in�nite cycles in the solution as above. This test yields a best-case complexity which isalways equal to the worst-case complexity and was therefore omitted, for e�ciency reasons, inmost old Prolog dialects.Nowadays, in order to sanely avoid the occur-check, Prolog languages prefer to solve theuni�ability problem in the domain of rational trees (RT), which may be in�nite, but whichhave a �nite representation (the �nite representation of an in�nite tree contains cycles). InRT, f(X) and f(g(1; X)) are uni�ed by X = g(1; X), which implicitly gives the in�nite treef(g(1; g(1; g(1; : : :)))) as the solution. Almost linear algorithms are available. The languageProlog II of Marseille [Col82b] has been the �rst Prolog which chose to solve the uni�abilityproblem in the domain of RT.3.2 Linear (in)equations in R or QVarious CLP languages enable the user to express linear equalities and inequalities in thedomain of R (approximated using 
oating point numbers) or Q , using in�nite precision rationalnumbers.For linear equations, the usual technique of Gaussian elimination may be used, with aquadratic worst-case time complexity. When inequalities are introduced, polynomial time al-gorithms are still available [Kha79, Kar84], but since these algorithms are either less e�cientpractically or di�cultly made incremental, all existing languages have, to our knowledge, de-cided to rely on variations of the Simplex algorithm, despite its exponential time worst case2f(X) represents all trees with a root labelled f and a single son, which may be any tree.



complexity. The main variations consist in extending the Simplex to deal with negative num-bers and strict inequalities [LM92]. As it is well known in the integer linear programmingcommunity, the Simplex can be extended to e�ciently cope with a growing set of constraintsand some incrementality is possible. The projection of a polyhedral set on a variable subsetcan be performed using a simple algorithm from Fourier, which has been tuned for redundancyelimination in [Imb93, JMSY93].Even if satis�ability alone is actually needed in the CLP framework, the possible optimiza-tion performed by the Simplex is usually made available at the user level through a speci�cpredicate.3.3 Finite domainsThe introduction of �nite domains (FD) into CLP languages is certainly connected with theimportant growth of the �eld of \Constraint Satisfaction Problems" (CSP) in the arti�cialintelligence community [Tsa93, AS93]. The CSP framework is devoted to the problem ofsatisfying a set of constraints, without any limitation on the constraint types, in any FD.De�nition 1 A CSP = (X;D;C) is de�ned by:� a set X = fx1; : : : ; xng of n variables;� a set D = fd1; : : : ; dng of domains. Domain di contains the set of values that may beconsidered for variable xi. We note d the size of the largest domain;� a set of constraints C = fc1; : : : ; ceg of e constraints. Each constraint ci is de�ned by:{ the set of variables X(ci) � X involved in constraint ci;{ a relation R(ci) on the variables of X(ci), i.e., a subset of the Cartesian product ofthe domains of the variables of X(ci). This relation de�nes the tuples of values whichmay simultaneously be assigned to the variables involved in the constraint.Example: Consider a CSP with 3 variables (X = fx1; x2; x3g), all variables hav-ing the same domain fwhite; blackg. Three constraints, c1, c2, and c3 involve re-spectively fx1; x2g, fx2; x3g and fx1; x3g and are de�ned by the same relation R =f(white; black); (black;white)g.An assignment of values to a subset Y � X of the variables is said to be consistent (or locallyconsistent) i� all the constraints ci 2 C such that X(ci) � Y are satis�ed by the assignment, i.e.,only authorized combinations of values, as speci�ed in the relations are used in the assignment.In our example, the assignment fx1  white; x3  black g is locally consistent while fx1  black ; x3  black g is not.A solution of a CSP is simply a consistent assignment of the whole set X of variables. Asatis�able CSP (a CSP with at least one solution) is also said to be consistent3. Our exampleCSP has no solution, the CSP is inconsistent.In the \pure" CSP framework, the domains di are supposed to be �nite domains and,when their size remains reasonable, the relation associated to each constraint can e�ectivelybe described by the set of tuples of values that correspond to authorized combinations. The3One should not confuse the property of consistency of an assignment, which is decidable in polynomial time,and the property of consistency of a CSP, which de�nes an NP-complete decision problem.



interesting point is that any type of constraint, either linear or not, can be expressed. Numbersand symbols may also be simply mixed together. A lot of CSP techniques may be extendedto the case of relations expressed in intention (linear or non linear constraints over N forexample) [Dav87]. Some of these techniques have also been extended to the case of in�nitedomains (subsets of R usually) and are available in some CLP languages [SH91, Hyv92, Lho93].In the following, we only consider FD.An usual restriction in the \pure" CSP �eld is also to restrict oneself to binary constraints,involving only two variables. In that case, two graphs, called respectively the constraint graphand the consistency graph of the CSP, may be de�ned:� The constraint graph has one vertex for each variable and one edge for each constraint.For non binary CSP, a similar hyper-graph can be de�ned. This graph only describes theproblem structure.� The consistency graph has one vertex for each value of each variable and one edge foreach compatible pair that appear in a constraint. This graph is n-partite since no edgecan appear between two values of a given variable. It completely de�nes the problem.
x1
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x3Figure 2: The constraint and consistency graphs of a CSPThese two representations are used in Fig. 2 to describe our example CSP. In the FD case,an important di�erence with the previous domains of trees and linear programming in R isthat the satis�ability problem becomes NP-complete. This is shown simply by the followingobservation:4:Example: the graph k-colorability problem can simply be expressed as a CSP.If you consider a graph (V; E), one variable xv is associated to each vertex v, allthe domains are identical and contain k values. Finally, one di�erence constraintbetween xv and xw is associated to each edge (v;w) 2 E. Note that our example issimply the graph 2-colorability problem on a fully connected graph of 3 vertices(a 3-clique).The most naive technique that may be used to solve the satis�ability problem is the back-track algorithm: given an initial consistent assignment Ak of size k, it tries to assign a newvariable xk+1. If no value in dk+1 yields a consistent assignment, a backtrack occurs on theprevious variable assigned. The algorithm starts with an empty (and therefore consistent)assignment and has a worst-case complexity in O(edn).Since this algorithm is highly ine�cient, it would be unreasonable to use it to prove satis�a-bility in the frame of a CLP language (one satis�ability test being performed after each step ofthe computation). Furthermore, it seems di�cult to give this algorithm some incrementality.Therefore, all existing implementations have chosen to weaken the \satis�ability" property byusing the polynomial worst-case time local consistency properties de�ned in [Mon74, Mac77].4This result shows that the satis�ability problem in the binary CSP restriction is still NP-complete and thisrestriction is made, in theory, \without loss of generality".



3.3.1 Local consistencyThe notion of \local consistency enforcing" de�nes a whole family of techniques which, inpractice, transform an initial CSP in a (hopefully) simpler problem, with the same solution set.This process is also known as a \�ltering" process, or as a \constraint propagation" mechanism5.To each type of �ltering process is associated a so-called \local consistency" property thatis actually enforced by the �ltering. The main class of local consistencies has been de�nedin [Fre78] and is called k-consistency.De�nition 2 A CSP (X;D;C) is said to be k-consistent i� any consistent assignment of (k-1)variables can be extended to a consistent assignment of k variables on any unassigned variable.A CSP (X;D;C) is said to be strongly k-consistent i� it is j-consistent for all j = 1; : : : ; k.It is quite easy to prove that a CSP of n variables which is strongly n-consistent is satis�-able (and furthermore, any consistent assignment can be extended to a solution). However, asatis�able CSP is not necessarily n-consistent6.A polynomial time algorithm (in O(nk:dk)) that enforces strong k-consistency has beenproposed in [Coo89]. The CSP built is called the k-consistent closure of the CSP. Since theCSP obtained is equivalent to the original CSP, we get the following property:Property 1 If a CSP has an empty k-consistent closure (a domain is empty), then it is un-satis�able. The converse is naturally false.Therefore, strong k-consistency enforcing o�ers a polynomial time relaxation of satis�abil-ity. The approach followed by most CLP languages is to only enforce some local consistencyproperty instead of satis�ability. Backtracking occurs when an empty closure is obtained,since this actually proves unsatis�ability. Usually, only strong 2-consistency, also called arc-consistency [Ull66, Wal72, Mon74] in the framework of binary CSP, is enforced.De�nition 3 A binary CSP is said to be arc-consistent i� none of its domains is empty (this is1-consistency) and every assignment of one variable can be extended to a consistent assignmentof size 2 on any unassigned variable.Example: Our example problem of Fig. 2 is unsatis�able, but it has an nonempty arc-consistent closure, and is indeed already arc-consistent (enforcing arc-consistency on this problem is completely useless).Basically, arc-consistency enforcing works as follows: if a value of a given domain di doesnot appear in any of the authorized combinations of one of the constraints that involve xi,then this value cannot belong to a solution and can simply be deleted. A single pass on allvariables and constraints is usually not su�cient and the process is performed iteratively untilquiescence.5This process can be related to cutting plane generation in integer linear programming considering thecombined results of [Hoo88] and [dK89].6It can be the case that some consistent assignment of n - 1 variables can not be consistently extended tothe nth variable. Satis�bility simply implies that some consistent assignment of k- 1 variables do extend to aconsistent assignment of all variables.



Example: The CSP whose consistency graph is illustrated in Fig. 3, simply obtainedby removing the edge (white; black) between x1 and x2, is a good example of nonconsistent CSP which is also non arc-consistent and whose arc-consistent closure isempty. On a �rst pass, the values numbered 1 will be deleted because they are notconnected to any value on an adjacent variable, then the values numbered 2 will bedeleted, for the same reason (thanks to the previous deletion). . . until quiescence:here, all the values are deleted. Actually, one could stop on step 2, when the domainof x3 becomes empty, since it su�ces to prove inconsistency.
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Figure 3: A CSP with an empty arc-consistent closureThis simple arc-consistency enforcing algorithm has undergone several optimizations, fromAC-1 (described in [Mon74, Mac77]) to AC-7 (described in [BFR95]). With AC-4, we getoptimal time complexity in O(ed2) and AC-6 gives further e�ciency and a space complexityin O(ed). However, most CLP languages rely on modi�ed versions of AC-5 [vHDT92], becauseit is easily tuned to handle speci�c classes of constraints more e�ciently.Actually, no CLP language, to our knowledge, does enforce local consistency at a level higherthan strong 2-consistency. Pragmatically, a stronger level would mean earlier unsatis�abilitydetection, and therefore less nodes explored in the Prolog search tree, but it would also meanmore work at each node. Experimentally, arc-consistency appears to be a reasonable tradeo�.A last interesting property of all the local consistency enforcing algorithms is their naturalincrementality with respect to the addition of constraints in the problem. Indeed, the CSPobtained after arc-consistency enforcing, if non empty, has smaller domains than the initialCSP and is nevertheless equivalent to the original CSP: it may simply be used instead of theoriginal CSP.3.3.2 From local consistency to satisfactionSince CLP languages only enforce arc-consistency, the information available at each node of theProlog tree is not a \solved form" of the CSP which could be projected on the query variables,but simply reduced domains with no guarantee of satis�ability7.Since satisfaction is a practically important problem, an additional mechanism must be usedto solve the satisfaction problem. The idea, which originates in the CSP �eld, is to use a hybridof backtrack tree search and arc-consistency enforcing [Nad89, vH89].The algorithm, known as \Really Full Look Ahead"8, is simply a backtrack tree searchwhere the assignment consistency test is replaced by arc-consistency enforcing. Given an initial7The strong n-consistent closure of a CSP would give a \solved form", but at the cost of an exponentialamount of memory in the worst case.8Some CLP languages actually use a weaker level of local consistency enforcing than full arc-consistency,de�ning algorithms known as \Forward-checking" or \Partial Look-Ahead". See [Nad89, vH89].



arc-consistent CSP with variables x1; : : : ; xk assigned, it tries to assign a new variable xk+1. Ifno value in dk+1 yields a CSP with a non-empty arc-consistent closure, a backtrack occurs onthe previous variable assigned and domains should be restored to the state they had before thisassignment. The algorithm starts with an empty (and therefore consistent) assignment.The algorithm always explores less nodes than the simple backtrack algorithm sketchedin Section 3.3 since a locally inconsistent variable assignment of a subset of X will induce anempty arc-consistent closure. In practice, the algorithm is often several order of magnitudemore e�cient than the backtrack algorithm. It bene�ts from two main types of heuristics:� variable ordering heuristics decide dynamically, during search, which will be the nextvariable xk that will be assigned. The general principle underlying all these heuristics isthe so-called �rst-fail principle: choose a variable which is highly constrained so that if afailure must occur, it is rapidly detected. A good choice is to favor variables with a smallactual domain and with a high degree in the constraint graph.� value ordering heuristics decide dynamically which value should be assigned successivelyto the variable xk that has been chosen. Even if some \general purpose" value orderingheuristics have been proposed (see [MJPL90]), the best results are usually obtained withheuristics that take into account the precise problem class at hand.See [Tsa93], chapter 6 for further information on variable and value ordering heuristics.In CLP languages, the actual tree search is done using the underlying non-determinismof the Prolog language. A speci�c predicate, usually called indomain(X), enumerates andsuccessively assigns each of the values of the domain of the CSP variable X to this variable.Since this mechanism is programmed in Prolog, it can actually be completely modi�ed andtuned to exploit heuristics and speci�c properties of the problem at hand.Example: the following Chip code9 solves the graph 2-colorability instanceof Fig. 2 using the �nite domain solver. The predicate 2-color de�nes the three do-main variables and the three constraints, while the labeling predicate is in chargeof the enumeration process. The prede�ned predicate delete(X,L,R,first fail)chooses a CSP variable X in the list L with a smallest domain and leaves the re-maining variables in R.2-color(X1,X2,X3) :-% Domain declarationX1 :: 1..2,X2 :: 1..2,X3 :: 1..2,% Three 6= constraintsX1 #n= X2,X2 #n= X3,X3 #n= X1,% Look for a solutionlabeling([X1,X2,X3]).
labeling([]).labeling([X|Y]) :-% Choice of a variabledelete(Var,[X|Y],Rest,first_fail),% Choice of a valueindomain(Var),labeling(Rest).

9See the beginning of Section 5 for more speci�c syntax explanations.



If the query 2-color(A,B,C) is given to the CLP language, the tree search willbe very small, since as soon as any of the three variables is assigned, and whateverits value, an empty arc-consistent closure is obtained and backtrack occurs. TheCSP being unsatis�able, the answer will simply be `No'.Beyond satisfaction, optimization is also possible through speci�c predicates using vari-ants of the Branch and Bound algorithm, often related to the \Depth First Iterative Deepen-ing" [Kor85].3.3.3 Integrating CSP in CLPAs we said, in \pure" CSP, constraints are often supposed to be expressed by the set of au-thorized tuples. If this language is extremely powerful, since it allows the expression of anyconstraint on a �nite domain, it is also very cumbersome. Therefore, all CLP languages havelimited the set of constraints that the user may express to a speci�c language which usuallycontains basic arithmetic constraints, often linear (in)equations with unlimited arity.The traditional arc-consistency enforcing algorithms of general CSP can be �nely tuned tobetter take into account the nature of these constraints. Most languages, to our knowledge,essentially perform a so-called \bound propagation", related to interval calculus, which can beeasily extended to real (
oating point) domains [Dav87, vH89, Lho93].Example: for a linear equality Pai:xi = 0, all variables xi having a �nite integerdomain, and considering, for the sake of simplicity, that all the ai are positive, itis possible to update the domain of xj as follows. Sincexj �Xi6=j -min(ai:xi)=ajthen all the values in the domain of xj which are larger than the right member canbe removed, without losing any solution. By symmetry, an analogous lower-boundmay be built.As in traditional arc-consistency enforcing, if the domain of xj is modi�ed, thenthe domains of all the variables connected to xj through a constraint should also beupdated (and so on, iteratively, until quiescence).For some classes of constraints, such simple bound propagations may su�ce to enforce arc-consistency [vHDT92].However, the restriction to some arithmetic language is often too strong to easily expresssome natural and useful constraints, especially constraints on symbolic domains. Therefore,these constraints are usually introduced in the constraint language using speci�c predicateswhich are naturally called \symbolic constraints". An example of such a constraint is the\element(I,L,X)" constraint which involves an integer or a domain integer variable I, any�nite domain variable X and a list of values L. The constraint is satis�ed i� the Ith elementof the list L is equal to the value of X. Such constraints are usually handled using ad-hocpropagation mechanisms, which may or not, enforce arc-consistency. The important issue hereis to get the right tradeo� between the power of the local consistency enforcing (in terms ofnumber of values deleted) and the actual e�ciency of the algorithm.Since one cannot hope to extensively introduce all \useful" constraint types in a �xed lan-guage, some of the expressive power of the CSP framework is lost. For example, the disjunctiveconstraints that naturally appear in job-shop scheduling (see Section 5) cannot be naturallyexpressed as linear inequalities whereas they can be expressed as a single CSP constraint, whichcould naturally be propagated using any arc-consistency algorithm.



3.4 Other domainsThe three previous domains are certainly the most frequent ones in CLP languages. We rapidlyreview here solvers from other domains that have been implemented in a CLP language:� boolean algebra: this domain, which only contains the 2 truth values (true and false) is aspecial case of �nite domain and the previous techniques can be used [CD93], with all theirlimitations. The usual constraint language is the language of mathematical propositionallogic and includes conjunction, disjunction, implication, equivalence. . . The satis�abilityproblem is the general sat problem [GJ79], which is again NP-complete.A large number of techniques have been proposed to solve the satis�ability problem.Enumerative techniques such as Davis and Putnam's procedure [DP60], which are closelyrelated to CSP tree search algorithms, are not easily made incremental. Prolog III usesa variant of SL-resolution described in [BB88]. This algorithm requires that formulas betranslated to clausal form (a conjunction of disjuncts), which may be quite costly. It isnaturally incremental and yields a \simpli�ed" form of the constraint set. Binary DecisionDiagrams [Bry92] o�er an e�cient, incremental representation of boolean formulas. Oneof the boolean solvers of Chip uses a variable elimination algorithm along with theseBDDs. A BDD explicitly represents all the solutions of the constraint set. Despitee�cient compression methods, it may occupy an exponential amount of memory in theworst-case.An important di�erence with �nite domains solvers is that most CLP languages try too�er the user a \legible" representation of the current boolean constraint set (whereasonly restricted domains or a solution are available for �nite domains). This may de�ne avery di�cult problem.� non linear equations in R: several approaches exist. In a �rst approach, the expressionof non linear constraints is possible, but these constraints are simply \frozen" (ignored)until they become eventually linear, when enough variables get assigned (by the user orbecause their value can be entailed from the constraints). These constraints are thencommunicated to the linear programming solver. The approach is quite simple and al-lows the use of polynomials or transcendental functions. If some non-linear constraintsremain non linear (and frozen) when a solution is obtained, then the answer given by theCLP language ignore the frozen constraints and may be meaningless10. For example, aconstraint such as \X=pow(Y,Z)" stating that X = YZ, will be delayed until either (1) Z isknown to be equal to 0 (and X=1) or 1 (and X=Y) or (2) Y is known to be equal to 1 (andX=1) or (3) two variables among X, Y, Z have a known value and the remaining one canbe evaluated.Another approach consists in trying to solve the non-linear equations using dedicatedalgorithms. Cal [ASS+88] uses a speci�c solver11 to solve polynomial equations in C (arelaxation of the original problem in R) to eventually prove its inconsistency.A last approach, which is not limited to polynomial equations, is to use extensions of the�nite domains local consistency properties to 
oating point domains (see [Dav87, SH91,Hyv92, Lho93]).Several other domains, including strings, sets, features trees. . . have received attention fromthe CLP community (see [Coh90, JM94]).10Clp(R) answers `Maybe' when some constraints are still frozen and a solution is found.11Here, Buchberger's Gr�obner bases algorithm is used, with a worst-case doubly exponential complex-ity [Buc85].



4 Some existing toolsIn this section, we rapidly present the main features of some well-known CLP language im-plementations. Most of these languages are actually commercial products whose underlyingmechanisms is not precisely documented: the constraint solvers are black boxes and the preciseoperational semantics of some constraints may be unspeci�ed. A lot of other CLP languagesexist and we invite the reader to fetch [JM94, FAQ95] to better perceive the variety of availableimplementations (often for free).As in classical logic programming, a constraint logic program is a collection of clauses,possibly involving some constraints.% Example in Prolog III (non standard syntax)c1(X,Y,Z) -> c2(R), {Z = 2X+Y, X>=2, Y>3} ;c2(X) -> {X > 4} ;% Example in Chip V4 (Edinburgh syntax)c1(X,Y,Z) :- c2(R), Z #= 2X+Y, X #>= 2, Y #> 3.c2(X) :- X #> 4.To activate a program, one has to express a query, i.e., a sequence of goals and constraints;if no goals are speci�ed, the query is simply to solve the constraint system. The system thenbehaves like a classical prolog, but each time a clause is used, the associated constraints areadded to the current constraint set. Constraints solvers are then used to check the consistencyof the current state. Backtrack occurs when either a goal cannot be proved or the current setof constraints becomes inconsistent. If the goals can be proved, the current substitutions of thevariables are a solution, provided that they satisfy the set of constraint. Hence the \answer" isgiven under the form of a set of variable bindings and constraints. Completeness of the solvingprocess depends on the domain of computation used.4.1 CLP(R)The language Clp(R) [HJM+92] is an implementation of the general CLP(X ) scheme de�nedby J. Ja�ar and J-L. Lassez in [JL87]. The �rst release was available around 1986 and thecurrent release 1.2 is available for free from IBM for academic and research purposes only12.Clp(R) is perhaps the best system to start with if you want to discover what \pure"constraint logic programming is13. The only domain tackled, beyond the usual tree domain, is,as the name says, real numbers, approximated using 
oating point numbers. This keeps thesystem small, homogeneous and with a simple syntax.The underlying solver is a Simplex-derived solver, with a speci�c Gaussian elimination mod-ule for linear equalities. Because of the 
oating point implementation, the strict inequalities,which are available as in Prolog III, do not have the precise semantics that can be obtainedusing in�nite precision rational numbers.The system contains a mechanism for delaying non-linear constraints until enough othernumerical constraints make them linear. As we said in Section 3.4, if a solution is found whena non-linear constraint is still delayed, Clp(R) simply answers `Maybe'. Anyway, a large set of12For more information, contact Joxan Ja�ar via e-mail (joxan@watson.ibm.com).13However,Clp(R) does not include a �nite domain solver, one of the main novelty of constraint programming.People interested in �nite domains may try to get clp(FD), another free system [CD93] available via anonymousFTP at ftp.inria.fr:/INRIA/Projects/ChLoE/LOGIC PROGRAMMING/clp fd.



primitives is available to express non-linear constraints (e.g., Z = X � Y, Y = log(X)) and thelanguage has been essentially used to deal with partially non linear problems.The system contains facilities for \meta-programming" with constraints and allows to ex-plicitly manipulate terms and arithmetical constraints, a coded form being available to theuser. These facilities are not available in any of the other languages considered here.The initial implementation was interpreted. The actual release uses a byte-code compilerfor a better e�ciency of the underlying Prolog. It is entirely written in the C language andruns on most existing Unix workstations and includes MS-DOS support. Clp(R) has beenused to solve various real problems, analysis and synthesis of analog circuits [HMS92], stockoption analysis [HL88] or problems from computational biology such as DNA sequencing byrestriction site mapping [Yap93].4.2 Prolog IIIA. Colmerauer and his team �rst de�ned the model of a Prolog with constraints around 1984,as an extension of the Prolog II model. The commercial version of Prolog III has beeno�cially announced in 1990.Compared with other tools (e.g., Chip), Prolog III is very homogeneous, providing, inparticular, a nice uniform syntax. A Prolog III program, like a Prolog one, consists ofa collection of clauses, which can possibly contain constraints. Constraints are syntacticallydistinguished from classical Prolog predicates using braces.Prolog III supports three domains of computation:� rational numbers: like Chip, Prolog III uses exact precision rational number arith-metics. The numerical module handles linear inequations (where every variable is sup-posed to be positive). It is essentially an incremental Simplex-like solver, which checksthat the accumulated numerical constraints can be satis�ed (as soon as the resolutionprocess triggers a new constrained clause, the solver is fed with the attached constraints:it ensures a complete resolution of the constraint system). Of course, it is also possibleto specify some (linear) criteria to be optimized. Note that in addition to traditionalSimplex techniques, much attention has been paid to strict inequalities.Prolog III also allows the speci�cation of non-linear constraints. They are in factdelayed until the binding of some variables makes them linear. If it is not the case, thesolving process may give an inconsistent set of constraints as answer, without detectingthe inconsistency.Prolog III does not naturally handle discrete domains. Nevertheless, it is possible toexpress some linear constraints over integers: linear arithmetics constraints over integersare �rst solved in Q . Enumeration predicates must be used in order to �nd an integersolution.� booleans: the boolean module is based on clausal forms. The underlying algorithmsare incremental versions of the SL-resolution algorithms. They are able to check theconsistency of a set of boolean constraints; moreover, they simplify the constraint systeminto a set of constraints involving a minimal set of variables.� �nite lists (or �nite strings): for �nite strings, there exists a single function to concate-nate two strings, denoted by \." and the only constraint is the equality constraint.Prolog III delays the evaluation of any string constraint until the length of the string isknown. Technically, the string solver is based on a restricted string uni�cation algorithm.



Prolog III is developed and distributed by PrologIA (France). It is an interpreter withpossible connections to the C language. It is available on Unix workstations, PC and MacIn-tosh. While the other constraint-based tools focus on big industrial accounts, Prolog III was�rst successfully distributed to the academic and research �elds. Let us nevertheless cite twoapplications: the �rst one is an expert system analyzing failures in motors (used by Daimler-Benz and Bosch, Germany). The second one (for Delacroix, France), optimizes the cutting ofwood panels.4.3 CHIP V4Like Prolog III, Chip V4 is a Prolog-based constraint tool. It is a direct heir of the ECRCresearch prototype Chip, but di�ers from the prototype in many aspects (notice that the ECRCcontinues to develop its own system, Eclipse, which, unlike Chip V4, is an open system). Ina Chip program, constraints are not syntactically distinguished from the other predicates.Chip provides a large number of pre-de�ned constraint predicates, on di�erent domains ofcomputation:� integers / �nite domains: the most important feature of the Chip system is the intro-duction of arithmetic constraints over �nite domains. In addition, a rich set of symbolicconstraints is provided (for instance, the \alldifferent(Variable List)" predicate,which speci�es that all the variables in the list must have di�erent values; let us also citethe cumulative constraint, dedicated to scheduling applications, see Section 5).Classical constraint propagation methods (e.g., arc-consistency enforcing) originatingfrom the CSP �eld are used to handle �nite domain constraints. Since they are of courseincomplete, choice predicates are also provided which allow the generation of values forthe �nite domain variables.Moreover, minimization is done using Branch & Bound: the prede�ned predicate\min max(Goal,C)" �nds a solution which minimizes the maximal value in a list of costterms C. In practice, this is done by �nding a �rst solution, evaluating C and then re-starting the search with a new constraint requiring C to be lower than this value. Never-theless, as discussed in [vH89], optimization problems resolution is still to be enhanced.� rationals: linear rational constraints are handled by an extended Simplex algorithm as-sociated with some Gaussian elimination. Only linear arithmetic constraints are allowedin Chip V4. The rational constraint solver is then obviously complete. Note that opti-mization predicates over rational linear constraints are also provided.� booleans: boolean constraints are solved by a variable elimination based boolean uni-�cation algorithm, which is totally deterministic but still complete. Nevertheless, sinceconstraint solving in boolean algebra is NP-complete,Chipmay encounter problems whichcannot be solved in a reasonable time (this is of course a general problem, which mayalso occur in other languages).Finally, Chip gives the user the possibility to de�ne its own constraints and control theirexecution, via the use of demons: these have the e�ect of re-evaluating a speci�ed goal eachtime a given triggering event (such as a change in a variable domain) occurs. This mech-anism implements local consistency algorithms for user-de�ned constraints. The declarative\if-then-else" construct also allows a (limited) way of communicating information betweenheterogeneous constraints.



Chip V4 is developed and distributed by Cosytec (France). The product also o�ersgraphic capabilities, connections to databases and connections to C language. It runs un-der Unix (Sun, IBM, HP, Dec) and Dos (PC). Many applications have been developed, forinstance, the planning application \Plane" [BCF95] provides 5-year schedules for Dassault-Aviation (France) and the multi-user scheduling tool developed for Monsanto (Belgium).4.4 ILOG Solver/ScheduleIlog-Solver is often described [JM94] as a C++ library that implements CSP algorithms on�nite and 
oating point domains rather than as a CLP language. Presumably, this is due tothe fact that Solver does not use the usual Horn clauses language and does not include asolver on rational or �nite trees.Anyway, this description is somewhat unfair, since Solver includes an extension of C++that enables the expression of non-determinism, traditionally o�ered by Horn clauses in otherlanguages. The domain of �nite/rational trees is not included simply because it does not seemuseful for the combinatorial problems addressed by Solver.Solver provides several classes of variables, each implemented as a C++-class. Theseclasses de�ne the domains handled by the language:� integer variables, whose domain is either an interval or an enumeration of integers. Thesevariables can be involved in linear or non linear arithmetic constraints. Non linear con-straints are propagated. According to the authors [Pug94], the handling is similar to thepropagation mechanism described in [vH89].� 
oating point variables, whose domain is an interval. These variables can be involved inlinear and nonlinear arithmetic constraints, or monotonic operators such as \log". Theunderlying solver consists of a limited form of arc-consistency enforcing which, accordingto the authors, owes much to [Lho93].� boolean variables (domain ftrue; falseg). These are also handled using constraint propa-gation.� set variables, whose domain is a set of sets. Initially, the domain of such a variablecontains all the subsets of a given initial set of objects. The constraints that may beexpressed state that some elements must be in the set, that other should be excluded, orcan limit the range of the cardinality of the set.All these constraints, are handled using a uniform underlying constraint propagation mecha-nism, related to arc-consistency enforcing. Some additional \symbolic constraints" are pro-vided and the user has the ability to de�ne ad-hoc propagation mechanisms for user de�nedconstraints.Finally, the library tries to o�er \object oriented" features: members of user-de�ned classesmay be \CSP" variables and the user may de�ne \constraints of classes", which are inheritedby instances.Solver is developed and distributed by Ilog (France). The product, distributed as a C++library, is fully compatible with all other Ilog C++ software components, including connectionto databases, graphical interfaces, rule-based programming. . . It runs under several Unix-basedsystems and under Windows (PC). Solver has been used to tackle several real combinatorialproblems, from locomotive scheduling used by the sncf [Pug92] to personnel management inthe French army [PPMD94].



Rational treesFinite treesStringsFinite domainsBooleansRationalsFloating pointsIntegers SetsClp(R) - + � - - - + � -Prolog III + - + - + + � � -Chip - + � + + + � + -Solver - - - + + - + + ++: constraints are handled on this domain�: authorized variable type, no constraints-: non-existent variable typeTable 1: Domains addressed in each languageIlog-Schedule [Pap94] is a C++ library of scheduling object classes that automates theuse of Solver for representing �nite capacity scheduling problems. It o�ers tuned constraintpropagation mechanisms for the usual constraint types that occurs in scheduling. Typicalclasses include activities and various resources types (renewable or not, unary or �nite ca-pacity. . . ). See Section 5 for a �rst approach of job-shop-scheduling problems using a CLPlanguage.4.5 SummaryTable 1 gives an overview of which domains are addressed by which CLP languages. The lan-guage Chip appears to be the more general CLP language. This judgment should be somewhattempered. Indeed, all the languages which handle �nite domains can also handle booleans andintegers, with the ability of handling non convex domains such as f1; 2; 3; 7; 8; 9g. Prolog IIImay also handle integers (rationals with a denominator equal to one), but it cannot handle nonconvex domains. Since the Simplex only proves satis�ability in Q , an expensive enumeratingprocess, as for �nite domains, must be used.Note also that one single problem may often be formalized using di�erent models: a schedul-ing date may be modeled as integer, rational or 
oating point numbers.More importantly, if several constraint solvers exist in the same language, it is often im-possible to use the solvers simultaneously on \mixed" problems, where more than one type ofvariable occurs in the same constraint, because it is usually impossible to relate a variable fromone domain to a variable from another domain. For instance, the relation between a rationaland its integer part cannot be expressed as a constraint in Chip. Along the same idea, itis usually not possible to associate a boolean variable to the fact that a given constraint issatis�ed, e.g., ` = (x < y).Thanks to its underlying uniform constraint propagation mechanism, Solver is quite ad-vanced in this direction and can handle some \mixed" constraints. For example, a constraintof equality exists between 
oating point and integer variables.



5 Application to Job-Shop SchedulingA scheduling problem arises when a set of interdependent tasks is to be organized in time. Sucha situation appears for example in project planning, service activities, manufacturing shops,computer systems or examination timetabling. The problem is to locate a set of tasks in time,each task needing one or several resources during its execution. The constraints to satisfy maybe various: technological (sequencing, routing), resource (limited capacity), temporal location(release dates, deadlines), . . . Most optimization problems in the scheduling �eld are NP-hard [GJ79]. To �nd solutions to these combinatorial problems, operational research developedexact procedures like Branch & Bound, in order to �nd lower and upper bounds of the optimalsolution, or designed heuristics with some re�nements speci�c to the problem at hand forpruning the search space [ML93].Scheduling problems have been widely studied in the literature [Bak74, Gra81, GOT93,Pin95]. Amongst many di�erent typologies, a basic classi�cation may be based on the resourceenvironment: single machine, parallel machines, 
ow-shop, job-shop, open-shop or resource-constrained problems.In this section, an illustration of the application of CLP to scheduling problems is giventhrough the job-shop scheduling problem, as in [Wal94]. The following examples of modelingare written in the same language for the sake of unity. The Chip language was chosen and morespeci�cally its CSP-based solver over �nite domains. A domain variable (the Chip equivalentof a CSP variable) is de�ned via \:: a..b" where \::" is the domain de�nition operator and\a..b" a domain of consecutive set of integers. Furthermore, constraints on �nite domains arepreceded by the special character \#" to distinguish them from other arithmetical constrainttypes in Chip.5.1 Problem StatementIn the job-shop problem a set of n jobs has to be processed using a set of m machines. Eachjob consists of a set of ordered tasks forming a routing; each task runs on a separate machine.At any time a machine can process only one task. Preemption i.e., interruption of a startedtask before completion, is not allowed. The objective is often to �nd a schedule that minimizesthe makespan, i.e., the total duration.This section aims at giving information about how to simply model such problem, derivingbene�t from assets of CLP. Facing the important number of constraints for large job-shopscheduling problems, an approach using CLP does not have to solve the constraints involvedbut to propagate them by local consistency techniques, in order to reduce the search space asdrastically as possible.5.2 Precedence constraintsThe jobs are considered one after the other. For each job a list of tasks is given in the orderof the routing. Thus task i (with start time Ti and duration Di) from the list must precedetask i + 1. To satisfy this precedence constraint, one must post a relative location constraintbetween tasks i and i+ 1: Ti+Di � Ti+1:To each task of a job is also associated a start domain variable, posting in this way an absolutelocation constraint (Max corresponds to a given horizon).



job([T1|T],[D1|D],Max) :-T1 :: 0..Max, % Declaration of the first variablerouting([T1|T],[D1|D],Max).routing([Tm],[Dm],Max) :-Tm + Dm #<= Max. % Constraint on the latest variablerouting([T1,T2|T],[D1,D2|D],Max) :-T2 :: 0..Max, % Declaration of other variablesT1 + D1 #<= T2, % Precedence constraintrouting([T2|T],[D2|D],Max).5.3 Disjunctive constraintsAs it is not possible to process simultaneously two tasks on the same machine, one needsto generate disjunctive constraints between competing tasks. In a general way, a disjunctiveconstraint (or competition) between a pair (i; j) of tasks states that i precedes j or j precedesi. It yields: (Ti+Di � Tj) or (Tj+Dj � Ti):Di�erent ways for modeling this kind of constraint are presented below.1. Choice pointsThe most natural way to model an alternative is made through the introduction of choicepoints [DSv90, vH89]:competition(Ti,Di,Tj,Dj) :- Ti + Di #<= Tj. % i precedes jcompetition(Ti,Di,Tj,Dj) :- Tj + Dj #<= Ti. % j precedes iThis implementation is clearly nondeterministic due to its transcription into a disjunctionof constraints (one packet of two clauses). Hence this way of modeling a disjunctiveconstraint is highly ine�cient: indeed, for n competing tasks, it develops a search spacein O(2n).2. Conditional propagationThe conditional propagation of Chip allows the programmer to avoid the aforementionedchoice points. It uses a demon mechanism to limit the nondeterministic behavior of pre-vious implementation by postponing the choices until enough information can be deducedfrom the constraints. As soon as the if condition is true for all possible values for thevariables, the then branch is selected14. Thus the principle of the disjunctive constraintimplementation is the following: if the minimal �nish time of a task j is larger than themaximal start time of another task i, i must be scheduled before j.competition(Ti,Di,Tj,Dj) :-if Tj + Dj #> Ti then Ti + Di #<= Tj,if Ti + Di #> Tj then Tj + Dj #<= Ti.Although more e�cient than the previous implementation, this method keeps the incon-venience to have to wake the demon for pruning the search tree.14Using \if-then-else", the else branch is executed when the condition is always false.



3. Cardinality operatorUsing the same principle of conditional propagation, van Hentenryck & Deville [vHD93]introduce the cardinality operator to impose the minimum and maximum number of con-straints to be satis�ed among a set of constraints. This operator is a mathematicalabstraction which implements the principle \Infer simple constraints from di�cult ones",at the operational level. Thus with such an operator exactly equal to 1, the disjunctiveconstraint may be written as follows:competition(Ti,Tj,Di,Dj) :-cardinality(1,1,[Ti+Di #<= Tj, Tj+Dj #<= Ti]).Note that in the case of two disjunctive constraints C1 and C2, the cardinality operatormay be expressed thanks to the conditional propagation [Cos93]:or(C1,C2) :-if C1 then true else C2,if C2 then true else C1.The authors show that non-primitive constraints built with the cardinality operator givecomparable (or even better) results to builtin constraints, but really improving the 
exi-bility of utilization and expressiveness of cardinality constraints (in order for example tomodel more general problems than the disjunctive one).4. The cumulative primitiveThe previous implementations concern the so-called bound propagation also known as\2B-consistency" [Lho93], that is to say these rules adjust the extreme bounds of thedomain variables (head and tail of a task). However, the disjunctive constraints couldalso attempt to achieve arc-consistency, without posting any choice point or waiting fora demon to be awaken.This is the goal of the cumulative constraint of Chip which aims at solving resource-constrained scheduling problems; it can also be used for disjunctive problems such as thejob-shop problem where the amounts of resources (intensities or capacity) are all equalto 1. competition(Ti,Di,Tj,Dj) :-cumulative([Ti,Tj],[Di,Dj],[1,1],1).In [AB92], the designers of the cumulative primitive present some results in placement,project management and job-shop scheduling problems. In the latter case and for thefamous 10 � 10 benchmark [FT63], it seems that a simple programming using the cu-mulative primitive and a labeling procedure based on �rst-fail principle, allow them toobtain the optimal solution of cost 930 in 25 0 on a Sun4 workstation (12Mb) while a �rstsolution is found with a cost of 1088 in 1 00.In the examination timetabling framework [BDP95], this kind of implementation did notrealize su�cient pruning to get acceptable results. The authors improved the e�ciencyby using another builtin predicate (\distance"15) whose utilization has been possibledue to the presence of symmetries in the problem constraints.While using the cumulative primitive without generating any solution, one can notice thatthe impact of the constraint propagation may vary with the order in which constraints15The predicate \distance" imposes an absolute distance between two domain variables.



are posted. Hence this builtin predicate, running as a black-box, uses ad-hoc propagationand does not seem to achieve arc-consistency.5. Arc-consistencyThe disadvantage raised previously led us to build our own primitive for arc-consistencyenforcing. It satis�es proposition 1 (Ti and Ti stand for the earliest and the latest starttimes of i, respectively):Proposition 1 (see Fig. 4) If Tj +Dj +Di > Tj then Ti 2 [Ti; Tj -Di] [ [Tj +Dj; Ti].Proof. Two sequences are possible between i and j: i before j or j before i. If i before j,Ti+Di � Tj. If j before i, Ti � Tj+Dj. It yields: Ti 2 [Ti; Tj-Di][ [Tj+Dj; Ti]. Thusif both intervals are disjoint Ti =2 ]Tj -Di; Tj +Dj[ with Tj -Di < Tj +Dj. 2
j

iFigure 4: Inconsistent values for start time of iProposition 1 leads to the removal of inconsistent dates of Ti, i.e., in ]Tj-Di; Tj+Dj[. Theimplementation uses the \notin" predicate which allows the removal of values inside adomain, and the conditional propagation where the same domain variable is used in eachhand of the inequality: in the lines commented by % check proposition 1, in the lefthand the maximum possible value of the variable is examined whereas it is the minimumone in the right hand.revise(Ti,Di,Tj,Dj) :-D is Di + Dj,if Tj #< Tj + D % check proposition 1then remove_values(Ti,Di,Tj,Dj), % remove values in Tiif Ti #< Ti + D % check proposition 1then remove_values(Tj,Dj,Ti,Di). % remove values in Tjremove_values(Ti,Di,Tj,Dj) :-domain_info(Tj,Tjmin,Tjmax),Min is Tjmax - Di + 1,Max is Tjmin + Dj - 1,notin(Ti,Min,Max).Note that the builtin information predicate \domain info" returns statically the smallestand the largest values in the domain of the variable. It is then interesting to handle demon-propagation into the \remove values" predicate (not detailed here), so as to obtain acomplete dynamic behavior.5.4 Edge �ndingThe previous disjunctive constraint (whatever its implementation) can deduce strong conclu-sions for the global sequencing. In practice, time windows can be very large related to processingtimes, and this rule may be useless and prune no value. It could then be more promising tostudy the extreme positions of a single task i relatively to a group S of other ones (i =2 S).



This technique whose principle is explained through the two following propositions, arises fromconstraint-based analysis [BBD+89, ERV76, ERV80], immediate selections [CP94] and has alsobeen studied in [Nui94]; It is called edge �nding in [AC91].Proposition 2 (see Fig. 5) If maxs2S(Ts+Ds)-Ti <Ps2SDs+Di then S is non-posteriorto i, i.e., i cannot be scheduled before all activities of S.Proof. Suppose i precedes all activities of S and let z 2 S be the task scheduled last. Thus(Tz+Dz) � (Ti+Di+Ps2SDs) > (maxs2S(Ts+Ds)) � (Tz+Dz) which leads to the contradictionTz > Tz. 2
i
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Figure 5: Non-posterior setIf S is non-posterior to i then at least one task of S must precede i. Thus it can be deduceda lower bound of the start time of i; it is updated to the smallest earliest �nish time amongthe tasks of S (the minimum and maximum prede�ned predicates are used).non_posterior_set(Ti,Di,S) :-set_duration(S,DS), % Sum of durations of SD is Di + DS,set_ends(S,Ends), % List of end variables of Sminimum(Min_end,Ends),maximum(Max_end,Ends),if Max_end #< Ti + Dthen Ti #>= Min_end.Proposition 3 (see Fig. 6) If maxs2S(Ts + Ds) -mins2S Ts < Ps2SDs +Di then i is non-inserable into S.Proof. Similar to previous one. 2
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iFigure 6: Non-inserable task



If i is non-inserable into S then i must be scheduled either before or after S. Moreover, ifS has previously been proved to be non-posterior to i then i is necessarily scheduled after alltasks in S. Thus the start time of i can be adjusted to the earliest �nish time of whole set S,value much stronger than with the sole non-posterior condition.non_inserable_task(Ti,Di,S) :-set_duration(S,DS), D is Di + DS, set_ends(S,Ends),set_starts(S,Starts), % List of start variables of Sminimum(Min_start,Starts),maximum(Max_end,Ends),if Max_end #< Min_start + Dthen Ti #>= Min_start + DS. % Iff S non-posterior to iAn analogous reasoning symmetrically establishes upper bound on the start time of a taskfrom a non-anterior set condition. With non-inserability condition, one can derive that i pre-cedes all tasks in S and then re�ne this upper bound.6 ConclusionThe constraint programming framework is mostly known because of noticeable achievement insolving large combinatorial problems [Yap93, BCF95, Pug92, PPMD94]. These results havebeen obtained both because of the e�ciency of the underlying solvers and the extra generalityo�ered by the host non-deterministic Prolog language.From the end of the eighties to now, the CLP scheme has integrated an increasing amountof solvers and domains. There are now CLP languages that use intricate solvers or which areconnected to general systems such as Mathematica16. An important shortcoming of mostexisting systems is the absence of relations between domains: it is not yet possible to think ofhybrid models where constraints are propagated between several domains, even with incompletesatisfaction mechanisms. For instance, a boolean variable cannot be usually associated tothe truth of one inequality between integer variables, achieving by that implicit propagationsbetween boolean and �nite domain solvers.Such hybrid models would however be promising to model both numerical (time) and sym-bolic (sequencing) constraints of scheduling problems, and to derive inferences from a computa-tion domain to another one. On the contrary, certain languages propose \global" primitives forthe solving of some speci�c problems (e.g., combinatorial problems and more precisely schedul-ing). Surprisingly, although their underlying mechanisms are not complete, they are often kepttop secret and there is no other way for the user than using these primitives as black boxes.Economical accounts favors more and more the competition between constraint program-ming tools. It has the advantage to give rise to the application of methods developed byacademics but also to bring some new theoretical problems to light. Unfortunately, it alsoleads to the \closing" of the systems, and plays a great part in missing the primary objectivesof CLP, i.e., formalizing and integrating general mechanisms of constraint propagation.For these reasons, nowadays, the only way to experiment hybrid solvers or to design user-de�ned propagation mechanisms is either to build your own system from scratch or from con-straint programming libraries such as Ilog-Solver (which has perhaps the largest set ofevent-handling primitives), or to implement it as meta-level CLP interpretor [Boc93].16See [FAQ95] for an exhaustive lists of existing CLP implementations.



On the contrary, the authors think that today there still exist good reasons to maintainLogic Programming as a basic natural framework for constraint programming, in particular theneed of high-level languages for a concise and declarative representation of problems, and therapid prototyping of constraint-oriented applications.These kinds of facilities require a well-founded generalization of the semantical de�nitionof constraints in CLP languages17 whereas the trend of improving e�ciency has led to developseparately then simply juxtapose each of the constraint domains, their solvers and primitives.References[AB92] A. Aggoun and N. Beldiceanu. Extending chip in order to solve complex schedulingand placement problems. In Actes des Journ�ees Francophones de ProgrammationLogique (JFPL'92), pages 51{66, Lille, France, 1992.[AC91] D. Applegate and W. Cook. A computational study of the job-shop schedulingproblem. ORSA Journal on Computing, 3(2):149{156, 1991.[ACM92] Special section on logic programming. Communications of ACM, 1992. 33(7).[AS93] Jean-Marc Alliot and Thomas Schiex. Intelligence Arti�cielle et InformatiqueTh�eorique (in French). Cepadues, Toulouse, France, 2nd edition, 1993. ISBN :2-85-428-324-4.[ASS+88] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint logic pro-gramming language CAL. In Proceedings of the International Conference on FifthGeneration Computer Systems (FGCS-88), ICOT, Tokyo, pages 263{276, Decem-ber 1988.[Bak74] K.R. Baker. Introduction to sequencing and scheduling. John Wiley & Sons, New-York, 1974.[BB88] J-M. Boi and F. Benhamou. Boolean Constraints in Prolog III. PhD thesis, Grouped'Intelligence Arti�cielle, Universit�e d'Aix-Marseille, Luminy, November 1988.[BBD+89] G. Bel, E. Bensana, D. Dubois, J. Erschler, and P. Esquirol. A knowledge-basedapproach to industrial job-shop scheduling. In A. Kusiak, editor, Knowledge-basedsystems in manufacturing, pages 207{246. Taylor & Francis, 1989.[BCF95] J. Bellone, A. Chamard, and A. Fishler. Constraint logic programming decisionsupport systems for planning and scheduling aircraft manufacturing at dassaultaviation. In Third International Conference on the Practical Application of Prolog(PAP'95), pages 63{67, Paris, France, 1995.[BDP95] P. Boizumault, Y. Delon, and L. P�eridy. Constraint logic programming for exami-nation timetabling. Journal of Logic Programming, 1995. To appear.[BFR95] C. Bessi�ere, E.C. Freuder, and J.C. R�egin. Using inference to reduce arc-consistencycomputation. In Proc. of the 14th IJCAI, Montreal, Canada, August 1995.[Boc93] A. Bockmayr. Logic programming with pseudo-boolean constraints. In F. Ben-hamou & A. Colmerauer, editor, Constraint Logic Programming: Selected research,Logic Programming Series, pages 327{350. MIT Press, 1993.17Maybe with the brand-new version of PrologIA, PrologIV [BT95]?



[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-grams. ACM Computing Surveys, 24(3):293{318, September 1992.[BT95] F. Benhamou and Toura��vane. Prolog IV : langage et algorithmes. In Actes desJourn�ees Francophones de Programmation en Logique (JFPL'95), pages 51{64, Di-jon, France, 1995.[Buc85] B. Buchberger. Gr�obner bases: An algorithmic method in polynomial ideal theory.In N. K. Bose, editor, Multidimensional Systems Theory, pages 184{232. ReidelPublishing Co., 1985.[CD93] P. Codognet and D. Diaz. Boolean constraints solving using clp(fd). In Interna-tional Logic Programming Symposium, pages 529{539, 1993.[CKvC83] A. Colmerauer, H. Kanoui, and M. van Caneghem. Prolog, bases th�eoriques etd�eveloppements actuels. Techniques et Sciences Informatiques, 4(2):271{311, 1983.(in French).[CM81] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer Verlag, 3rdedition, 1981.[Coh90] J. Cohen. Constraint logic programming languages. Communications of the ACM,33(7):52{68, July 1990.[Col82a] A. Colmerauer. Prolog and in�nite trees. In New York Academic Press, editor,Logic Programming, pages 231{251. K.L. Clark and S.A. Tarnlund, 1982.[Col82b] A. Colmerauer. PROLOG II reference manual and theoretical model. Technicalreport, Groupe Intelligence Arti�cielle, Universit�e Aix-Marseille II, October 1982.[Coo89] M.C. Cooper. An optimal k-consistency algorithm. Arti�cial Intelligence, 41:89{95,1989.[Cos93] Cosytec. Chip Reference Manual, June 1993. COSY/REF/001.[CP94] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem.European Journal of Operational Research, 78:146{161, 1994.[Dav87] E. Davis. Constraint propagation with interval labels. Arti�cial Intelligence,32(3):281{331, July 1987.[dK89] J. de Kleer. A comparison of ATMS and CSP techniques. In Proc. of the 11thIJCAI, pages 290{296, Detroit, MI, August 1989.[DP60] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journalof the ACM, 7(3):210{215, 1960.[DSv90] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving Large CombinatorialProblems in Logic Programming. Journal of Logic Programming, 8(1-2):74{94,January-March 1990.[ERV76] J. Erschler, F. Roubellat, and J-P. Vernhes. Finding some essential characteristics ofthe feasible solutions for a scheduling problem. Operations Research, 24(4):774{783,1976.



[ERV80] J. Erschler, F. Roubellat, and J-P. Vernhes. Characterizing the set of feasiblesequences for n jobs to be carried out on a single machine. European Journal ofOperational Research, 4(3):189{194, 1980.[FAQ95] FAQ of the comp.constraints newsgroup. Available at URL http://web.cs.-city.ac.uk/archive/constraint/, 1995.[Fre78] E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,21:958{966, November 1978.[FT63] H. Fisher and G.L. Thompson. Probabilistic learning combinations of local job-shopscheduling rules. In J.F. Muth & G.L. Thompson, editor, Industrial Scheduling,pages 225{251. Prentice Hall, Englewood Cli�s, NJ, 1963.[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theoryof NP-completeness. W.H. Freeman and Company, New York, 1979.[GOT93] GOThA. Les probl�emes d'ordonnancement. RAIRO-RO, 27(1):77{150, 1993. (inFrench).[Gra81] S.C. Graves. A review of production scheduling. Operations Research, 29:646{675,1981.[HJM+92] N.C. Heintze, J. Ja�ar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R)Programmer's Manual. IBM T.J. Watson Research Center, PO Box 704, YorktownHeights, NY 10598, September 1992. (Version 1.2).[HL88] T. Huynh and C. Lassez. A CLP(R) options trading analysis system. In Robert A.Kowalski and Kenneth A. Bowen, editors, JICSLP'88: Proceedings 5th Interna-tional Conference and Symposium on Logic Programming, pages 59{69, Seattle,Washington, U.S.A., 1988. MIT Press.[HMS92] N. Heintze, S. Michaylov, and P. Stuckey. CLP(R) and some electrical engineeringproblems. Journal of Automated Reasoning, 9:231{260, October 1992.[Hoo88] J.N. Hooker. A quantitative approach to logical inference. Decision Support Sys-tems, 1(4):45{69, 1988.[Hyv92] E. Hyv�onen. Constraint reasoning based on interval arithmetic: the tolerance prop-agation approach. Arti�cial Intelligence, 58:71{112, December 1992.[Imb93] J-L. Imbert. Fourier's elimination: Which to choose? In First Workshop on Princi-ples and Practice of Constraint Programming, pages 119{131, Newport, April 1993.[JL87] J. Ja�ar and J-L. Lassez. Constraint logic programming. In POPL'87: Proceedings14th ACM Symposium on Principles of Programming Languages, pages 111{119,Munich, January 1987. ACM.[JM94] J. Ja�ar and M.J. Maher. Constraint logic programming: a survey. The Journal ofLogic Programming, 19(20):503{581, 1994.[JMSY93] J. Ja�ar, M.J. Maher, P.J. Stuckey, and R. Yap. Projecting clp(<) constraints.New Generation Computing, 11:449{469, 1993.[Kar84] N. Karmarkar. A new polynomial time algorithm for linear programming. Combi-natorica, 4:373{395, 1984.



[Kha79] L.G. Khachian. A polynomial algorithm in linear programming. Soviet Math. Dokl.,20(1):191{194, 1979.[Kor85] R.E. Korf. Depth �rst iterative deepening : An optimal admissible tree search.Arti�cial Intelligence, 27:97{109, 1985.[Kow79] R.A. Kowalski. Logic for Problem Solving. North Holland, 1979.[Lho93] O. Lhomme. Consistency techniques for numeric CSPs. In Proc. of the 13th IJCAI,pages 232{238, Chamb�ery, France, August 1993.[LM92] J-L. Lassez and K. McAlloon. A canonical form for generalized constraints. J.Symbolic Computation, 13:1{24, 1992.[Mac77] A.K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence, 8:99{118, 1977.[MJPL90] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving large-scale constraintsatisfaction and scheduling problems using a heuristic repair method. In Proc. ofAAAI-90, pages 17{24, Boston, MA, 1990.[ML93] B.L. McCarthy and J. Liu. Addressing the gap in scheduling research: A review ofoptimization and heuristic methods in production scheduling. International Journalof Production Research, 31(1):59{79, 1993.[Mon74] U. Montanari. Network of constraints: Fundamental properties and applications topicture processing. Inf. Sci., 7:95{132, 1974.[Nad89] B.A. Nadel. Constraint satisfaction algorithms. Comput. Intell., 5(4):188{224,November 1989.[Nui94] W.P.M. Nuijten. Time and resource constrained scheduling. PhD thesis, EindhovenUniversity of Technology, 1994.[Pap94] C. Le Pape. Implementation of resource constraints in ilog-schedule: A libraryfor the development of constraint-based scheduling systems. Intelligent SystemsEngineering, 3:55{66, 1994.[Pin95] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice-Hall, EnglewoodCli�s, NJ, 1995.[PPMD94] C. Le Pape, J-F. Puget, C. Moreau, and P. Darneau. PMFP: The use of constraint-based programming for predictive personnel management. In Proc. of the 11stECAI, Amsterdam, The Netherlands, 1994.[Pug92] J-F. Puget. Object oriented constraint programming for transportation problems.In Proc. of ASTAIR'92, 1992.[Pug94] J-F. Puget. A C++ implementation of CLP. Technical Report 94-01, Ilog, 1994.[PW78] M.S. Paterson and M.N. Wegman. Linear uni�cation. JCSS, 16:158{167, 1978.[Rob65] J. Alan Robinson. A machine-oriented logic based on the resolution principle.Journal of the ACM, 12:23{44, 1965.



[SH91] G. Sidebottom and W.S. Havens. Hierarchical arc consistency applied to numericprocessing in constraint logic programming. Technical report, Center for SystemsScience, Simon Fraser University, Burnaby, Canada, 1991.[Ste80] G.L. Steele. The de�nition and implementation of a computer programming lan-guage based on constraints. Technical report, Dept. of Electrical Engineering andComputer Science, M.I.T., August 1980.[Tsa93] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press Ltd., Lon-don, 1993.[Ull66] J.R. Ullman. Associating parts of patterns. Inform. Contr., 9:583{601, 1966.[vH89] P. van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Program-ming Series. MIT Press, Cambridge, MA, 1989.[vHD93] P. van Hentenryck and Y. Deville. The cardinality operator: A new logical connec-tive for constraint logic programming. In F. Benhamou & A. Colmerauer, editor,Constraint Logic Programming: Selected research, Logic Programming Series, pages383{403. MIT Press, 1993.[vHDT92] P. van Hentenryck, Y. Deville, and C. Teng. A generic arc-consistency algorithmand its specializations. Arti�cial Intelligence, 57:291{321, 1992.[Wal72] D. L. Waltz. Generating semantic descriptions from drawings of scenes with shad-ows. Technical Report AI271, M.I.T., Cambridge MA, 1972.[Wal94] M. Wallace. Applying constraints for scheduling. In B. Mayoh, E. Tyugu, andJ. Penjaam, editors, Constraint Programming: Proceedings 1993 NATO ASI Parnu,Estonia, NATO Advanced Science Institute Series, pages 161{180. Springer-Verlag,1994.[Yap93] R.H.C. Yap. A constraint logic programming framework for constructing DNArestriction maps. Arti�cial Intelligence in Medicine, 5:447{464, 1993.


