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Oocyte Maturation
in Vertebrates

BERNARD JALABERT, ALEXIS FOSTIER,
BERNARD BRETON, AND CLAUDINE WEIL

Institar National de la Recherche Agronoimigue
Laboratoire de Physiologie des Poissons
Rennes, France

I. INTRODUCTION

During vertebrate oogenesis, meiosis is arrested at late prophase of the first
division (i.e., duplication of the diploid number of chromosomes of the
species). The duration of this arrest varies widely according to.the species,
between a few days in some fishes 10 several years in mammals. Qocytes at
that stage (dictiate or germinal vesicle stage) possess a huge nucleus, the
germinal vesicle (GV), containing decondensed chromosomes. Meanwhile,;
oocyte volume increases considerably in many species due to the accumu-
lation of cellular organelles and metabolic reserves essential for fertilization
and embryonic development.

The terms ‘‘oocyte maturation® or ‘‘meiotic maturation’’ indicate the
resumption of the meiotic process at the end of this growth period, which
gives rise to the female gamete competent for fertilization and embryonic
development. In most vertebrates, maturation is first triggered before ovula-
tion by endocrine signals under hypothalamo—hypophysial control and lasts
until another arrest occurs (generally at second division metaphase). Al-
though temporally linked, maturation and ovulation are two different
processes, each regulated in specific ways (Schuetz, 1986; Hayashi er al.,
1987). Fusion with the fertilizing sperm triggers completion of the maturation
process.

The progression of oocyte maturation is generally €stimated with the help
of readily observable morphological criteria, resulting mainly from nuclear
changes (germinal vesicle breakdown, or GVBD), first polar body emission,
or the presence of a metaphase spindle. However, the usefulness of such
criteria should not conceal the fact that the concept of maturation includes a
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NONMAMMALIAN

VERTEBRATES MAMMALS

GONADQOTROPINS

follicle ¥ oocyte

Fig. I. Schema of the gonadotropic control of intrufollicular vocyte maturation in verte-
bratt_:s. QOnadolmpins would act mainly by stimuluting the production of stimulating factors
(OMSF) in nonmammalian vertebrales, whereas they would principilly suppress the action of
inhibiting factors (OMLF) in mammuls.

series of complex morphological and biochemical changes at the levels. of
membrane and cytoplasm (and yolk in lower vertebrates), as well as nucleus,
and involves the acquisition of the competence for further development (see
review by Masui and Clarke, 1979). ' '

Oogenesis is a long, complex process of cell differentiation that leads to the
production of ovulated oocytes. They must be produced at the nght time
according to the ecophysiological requirements of each species. Adjustments
between the specific endogénous rhythms of differentiation and the appro-
priate environmental cues are performed by the central nervous and endo-
crine systems. Oocyte maturation and ovulation appear as the last phase of
oogenesis, which can be initiated to some extent by environmental factors. It
is well known that cocyte maturation in vertebrates is under the control of the
hypothalamo-hypophysial system acting through the whole follicle by means
of gonadotropins. Depending on the species, gonadotropins may stimulate
the production of oocyte maturation-stimulating factors (OMSF), biock the
production of oocyte maturation-inhibiting factors (OMIF), or both (Fig. 1).
There has been so far a general agreement that pituitary gonadotropins induce
oocyle maturation through the stimulation of follicular production of steroid
hormones acting directly on the oocyte in amphibians and fishes (reviewed by
Masui and Clarke, 1979) and through inhibition of the follicular production of
OMIF in mammals (reviewed by Tsalriri, 1985; Thibault es al., 1987}. Argu-
ments will be presented here to show thai such a dichotomy should be
considered as excessively simplistic. For example, an activity attributed to a
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“‘meiosis-inducing substance,” because it is able to induce meiosis in fetal
mouse testis in vitro, was also detected in preovulatory human and bovine
follicular fluid afier the luteinizing hormone (1.H) surge (Westergaard ef al.,
1984, 1985). This substance, probably lipidic or of steroidliké nature, was
therefore hypothesized to be also an important inducing factor for the
resumptiion of female meiosis. Furthermore, pituitary gonadotropins could
generate within mammalian cumulus cells a positive signal able to stimulute
GVBD in the continuous presence of inhibitory factors (Downs et af., 1988).
Moreover, we will discuss experimental evidence showing that the follicle
produces various kinds of mediators not only acting at the oocyte level but
also regujating hypothalamo-hypophysial activity and even its own activity.
From a general point of view, gocyte maturation s a critical step of oo-
genesis, which must be thoroughly regulated at different levels: the vocyte
itself, the somatic ovarian tissues, and the hypothalamo—hypophysial sys-
tem. Oocyte maturation and ovulation normally result from a harmonious
cooperation between these ditferent levels. due to the interplay of various
kinds of regulators.

The aim of this chapter is to present a comparative assessment of our
present knowledge of the cellular and endocrine mechanisms that cooperate
to control oocyte maturation in various vertebrate clusses. We have essen-
tially limited ourselves to Osteichtyes (mainly teleosts); amphibians, birds,
and mammals in which the available data are consistent enough to perm:t the
elaboration of tentative partial models exhibiting complementary features.

H. OVARIAN CONTROL OF
OOCYTE MATURATION

The numerous siudies on ovarian and folliculir structure in veriebrates will
not be reviewed in detail, and the data presented will rely on morphological
evidence reviewed elsewhere (Harrison and Weir, 1977: Dodd, 1977, 1986;
Thibault and Levasseur, 1979; Guraya, 1986). Only general features will be
grven, in particular those in which the methods used are of interest.

In all vertebrates, each oocyte is enclosed in the ovary within a single
anatomical structure, the follicle, which behaves to some extent as an inde-
pendent physiological unit. There are, however, important differences in the
follicufar structure of mammalian and nonmammalian vertebrates (Fig. 2).

In nonmammalian vertebrates, the preovulatory cocyte is generally a huge
cell (from less than 1 mm to several centimeters in diameter, depending on the
species), with a large amount of yolk and a large GV, more often peripherally
located. It is surrounded successively by an extracellular envelope, the zona
radiata (future egg chorion), and by several coats of somatic cells that differ’
structurally and functionally: the granulosa, the internal theca, and finally the:
external theca in contact with the ovariaa stroma. Depending on the group of
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NONMAMMALIAN
VERTEBRATES

Fig.2. Comparative schema of the morphological structure of ovarian follicle in mammalian
and nomammalian vertebrates. :

species, each coat of cells may be mono- or multitayered. Though apparently
separated physically one from the other by the zona radiata, both the oocyte
and the granulosa cell surfaces possess dense microvilli, which intermingle
through the numerous radial pores in th¢ zona radiata. In fish, a special
granulosa cell located at the animal pole, the **micropylar cell,”” inserts a
large cytoplasmic process through the zona radiata into the oocyte cortex. At
ovulation, the cast of this cell becomes the micropyle, entrance of the fertiliz-
ing sperm (Yasuzumi e al., 1983). The theca nterna, separated from the
granulosa layer by an extracellular basal lamina, is richly vascularized,
whereas the theca externa includes a dense network of collagen fibers.

The mammalian oocyte is relatively small (diameter between 60 and
120 ;um) and devoid of true yolk, but the preovalatory follicle may reach 0.5 to
2.5 cm in diameter. The other main. difference with nonmammalian verte-
brates lies in the organization of somatic cells between the oocyte and the
basal lamiina on the internal side of the theca interna, including the presence
of an antrum (a large cavity filled with follicular fluid). Typical granulosa cells
form several layers covering the internal side of the basal lamina. The oocyte
is surrounded by particular granulosa cells, the cumulus cells, thus forming a
morphological unity named “*cumulus cophorus’’ or *‘eocyle—cumulus com-
plex’ (OCC), which projects more or less into the antral cavity through a
bridge of cumulus cells. The OCC is situated either al the side of the follicle
and close to the granulosa layer in species with Jarge follicles (cattle, pri-
mates), or it keeps to the follicular center, connected to the granulosa layer by
cumulus cell bridges (rodents: Thibault and Levasseur, 1979). The extracetlu-
lar envelope of mammalian oocytes, the pellucid envelope, is thinner than the
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zona radiata of lower vertebrates. At ovulation, some cumulis cells remain
fixed to the pellucid, inciuded within a late glycoproteic secretion, thus
forming the **corona radiata,”” surrounding the secondary cocyte.

In order to understand how each follicular compartment can participate in
the control of vocyte maturation, various kinds of experimental approaches
have been performed in vivo and in vitro. The interpretation of data from in
vitro experiments is very much dependent on the precise nature of the follicu-
lar compartmenis involved (see example in Fig. 3). Unfortunately, this is not
always clearly specified or an inadequate terminology may be used, leading to
somewhat ambiguous or even contradictory reports. Therefore we list below
the usual terminology relating to experimental situations most commonly
used for studying oocyte maturation:

100 -
90 -
m -
g 70
60 -
=
Q50
m -y
20 -
10 -
0 ""'_~ T ¥ T T LAk - 19— T T . -I ¥ T
0.004 0.01 0.025 0.06 0.16 0.4 1 2.5
steroid concentration (FM)
denuded whole
oocyles follicles
4—pregnene—17u,208diol-3one .......... eessasans —» -
4—pragnene—17«,208,211riol—30n8 ....cccovvirrcmmme@mnaen —coo@onm-

Fig. 3. Example showing that different results may be obtained in vitro, depending on the
presence of follicular compariments. Groups of either whole follicles or of denuded ovcytes from
the rairbow trout Salmeo gairdneri were cultured in various concentrations of the salmonid
maturation-inducing steroid {M13), {4-pregnene-17a.20gdivk-30ne, or 17@.208-OH-P) or of u
denivative exhibiting a small structural difference, 4-pregnene-17a¢.208,21triol-3one. The effec-
tiveness of both compounds on GVBD promotion appéared identical when ovcytes were cul- -
tured within their follicle, whereas the greater clfectiveness of the specific MIS, 17a.208-0OH-1*,
was only found on denuded cocytes. Moreover, an inhibitory effect of high concentrations could
be observed, for both steroids. only on denuded vocytes. Dénuded ootytes were prepured by
enzymatical denudation according to Finet et al. (1988); other technical conditions were similar
10 those described by Jalabert and Fostier (1984u.b).
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1. Whole perfused ovaries: mainly in small mammals (rodents) and birds

2. Cultured ovarian fragments (including some ovarian stroma with
groups of follicles of different size): matnly in fish and amphibians

3. Whole follicles (more or less devoid of surrounding ovarian stroma): ail
vertebrates -

4. Cumulus cophorus or vocyte—cumulus complex (OCC): This unit, spe-
cific to mammals, may be contaminated by cells from the mural granulosa in
most species except in the rabbit, where the cumulus is topographically
distinct from the granulosa cell iayer (Thibault ez «f., 1987).

5. Qocytes surrounded only by a granulosa cell luyer (usually obtained by
manual dissection): commonly used in amphibians and sometimes in fish

6. Denuded oocytes (cleared of any follicular cells by either mechanical or
enzyme treatment): ease of preparation depends on the species

7. Naked oocytes (devoid of pellucid membrane or zona radiata): can be
prepared for special purposes (e.g., cell fusion experiments, studies on mem-
brane receptors)

[n mammals, the follicular architecture is characterized by direct cell
contacts through gap junctions, allowing some metabolic exchange (between
granulosa and cumulus cells and between cumulus cells and the oocyte) and
by an extracellular matrix containing various glycosaminoglycans, which
may also be present in the follicular fluid of the aniral cavity (see Sato and
Koide, 1987a, for review). Therefore, depending on the nature of putative
OMIFs, their inhibitory action may either be exerted through the follicular
flud and/or the intercellular space or require direct ceflular contacts between
the granulosa and the cumulus cells and/or between the cumulus cells and the
oocyte. The maturing gonadotropin stimulus induces a rapid evolution of the
follicular architecture, or cumulus expansion, mainly due to the disruption of
cumulus-to-cumulus cell gap junctions (Gilula ef ¢f., 1978; Wert and Larsen,
1989) and to the secretion of glycosaminoglycans (mucification) by the cumu-
lus cells (Dekel er al., 1979). These changes are believed to play a role, which
may depend on the species, in regulating the permeability of the oocyte—
cumulus complex to OMIFs (Tsafriri, 1985; Sato and Koide, 1987a; Wert and
Larsen, 1989).

A. Role of “Oocyte Maturation-Stimulating
Factors”

Since the first work by Pincus and Enzman (1935) in the rabbit, it has been
well established in mammals that morphological events of maturation, such
as. GVBD and metaphase spindle formation, generally occur spontaneously
in oocytes removed from their follicular environment and incubated in vitro
and can be observed easily (see reviews by Thibault, 1977; Tsafriri, 1985).
However, morphological criteria are not sufficient to characterize ail aspects
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of complete maturation, which cannot be achieved, for most speuea in
oocytes deprived of any interaction with somatic cells (Thibauit e al., 1975a;
Moor and Trounsen, 1977; Thibault and Gérard, 1987; Mattioli ef «f., 1988a).
Such a discordance between morphological and functional evolution of oo-
cyies isolated in vitro complicates the search for any activity actually control-
ling complete maturation, because research canaot rely solely on morpholog-
- 1cal observations.

Things appear clearer in lower vertebrates where follicular stéroids are
generally necessary (0 induce morphological events of maturation in vitro,
but, in addition to the action of maturation-inducing steroids, other kinds of
interactions with foliicular cells might be necessary for further normal devel-
opment (Iwamatsu and Ohta, 1981).

1. Steroids

No direct, clear-cut effect of steroids has been shown based on morphological
criteria in mammalian oocytes cultured in vitro, aithough a high concentra-
tion of progesterone was found to accelerate maturation in the rabbit (Bae
and Foote, 1975). However, when criteria such as fertilizability, that is,
sperm penetration and chromosomes decondensation (human: Soupart,
1974; Botero-Ruiz ¢f al., 1984; rabbit: Thibault ef ¢l., 1975b; cow: Fukushima
and Fukui, 1985; pig: Mattioli ef al., 1988b; cat; Xu cf «!., 1988), or devélop-
mental ability (ewe: Moor and Trounsoa, 1977; Moor, 1978) are considered,
the importance of the steroid environment of oocytes during maturation
becomes apparent. Further indirect evidence is provided by the effects of
various inhibitors of steroidogénesis in gonadotropin-stimulated follicles on
the maturation of enclosed oocyles. Whercas marphological mataration was
not inhibited in the rat (Lieberman et al., 1976; Billig ef al., 1983) or rabbit
(Testart ef al., 1983) or only partially in the sow (Sz6losi and Gerard, 1983)
and the ewe (Osborn ef al., 1986), such treatments induced fertilization
abnormalities in.the rabbit (Yoshimura ef «f., 1986) and in the ewe (Moor er
al., l980)_that were associated with abrormal patterns of protein synthesis by
the maturing oocyte (Moor, 1978; Osborn and Moor, 1983a, in the ewe).
Moreover, normal fertilizability of mature oocytes recovered from perfused
rabbit ovaries treated with cyanokeione {inhibitor of 33-hydroxysteroid de-
hydrogenase) was restored by estradiol replacement (Yoshimura er al.,
1987). Finally, the administration of progesterone antibodies to immature riats
lowered the proportion of maturing oocyles in response to human chorionic
gonadotropin (hCG) injection (Mori ef ¢l., 1983), whereas the replacement of
progesterone partly reverses the reduced incidence of meiosis. All the above
observations suggest that steroids play a role in the control of the biochentical
events of oocyte maturation tn mammals (Osborn et ai., 1986).

In birds, the available evidence was obtained almost exclusively from
observations in vivo in domestic birds and do not refer specificaily to oocyte
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maturation but to ovulation. A progesterone peak in the blood is associated
“with the gonadotropin ovufatory surge (hen: Shodono er al., 1975; turkey
hen: Mashaly ef ai., 1976; duck: Tanabe er al., 1980), and a corticosterone
peak precedes (hen: Eiches, 1979) or coincides with (hen: Johnson ard Vao
Tienhoven, 1981) ovulation. The plasma ovulatory surge of LH and ovulation
are blocked by administration of aminogluthetimide, a steroid-synthesis
inhibitor, and restored by injection of progesterone (Johnson and Van
Tienhoven, 1984) or testosterone (Lang et al., 1984) but not by estradiol,

showing only an indiréct role of progesterone and testosterone at the pituitary

level (see Section V) Only corticosterone was able to induce ovulation
wnhout promoting a surge of LH, suggesting a direct effect on the ovary (hen:

Lang et al., 1984). However, in vitro a high concentration of progesterone
induced ovulation in the fowl ovary (Tanaka et of., 1987). In the latter
experiment, ovaries had been isolated 16 to 18 hr before the expected ovuia-
tion time, thus prior to the endogenous preovulatory surge (Shodono et al.,
1975) and before the initiation of cocyte maturation (Olsen and Fraps, 1950).
It may be inferred, therefore, that progesierone probably promoted both
oocyte maturation in vitro (Wright, 1971; Snyder and Schuetz, 1973; Thibier-
olites could be involved in the physiological control of maturation: 17a-
hydroxy,208-dihydroprogesterone, which has been characterized as a matu-
ration-inducing steroid (MIS; see below) in some fish, has been partially
identified as a metabolite of progesterone in theca cells of the domestic hen
(Marronc et al., 1985).

In amphibiais, cyanoketone inhibits intrafoflicular, gonadotropin-induced
oocyte maturation in vitro (Wright, 1971; Synder and Sghuelz 1973; Thibier-
Fouchet et al., 1976). Progesterone induces GVBD in odocytes incubated in
vitro cither within their follicle (Masui, 1967; Schuetz, 1967; Alonso-Bedate
et.al., 1971} or after defolliculation (Smiith er al., 1968; Ozon et al., 1975;
Thibier-Fouchet et «l., 1976) or even devoid of zona radiaia (Hirai ef al.,
1983). Progesterone can be synthesized from its precursor pregnenolone by
preovulatory follicles (Thibier-Fouchet er al:, 1976; Snyder and Schuetz,
1973). Progesterone plasma levels increase during the spawning season
(Pierantoni ef al., 1987), and a peak occurs concomitently with the LH surge
induced in vivo by GnRH gonadotropin-releasing hormone adminisira-
tion (McCreery and Licht, 1983). Progesterone is also produced in vitro by
gonadotropin-stimulated ovarian pieces (Fortune ef al., 1975; Fortuné, 1983;
Hubbard and Licht, 1986; El-Zein ef ai., 1988) and more especially by iso-
lated follicles (Lessman and Schuetz, 1982; Schuetz and Glad, 1985). Finaily,
progesterone-specific bindings have been identified in plasma membrane’
fractions, suggesting a membrane receptor mechanism for progesterone ac-
tion {(Kostellow ef al., 1982; Sadler and Maller, 1982; Sadier er al., 1985;
Blondeau and Baulieu, 1984). Steroids other than progesterone, however,
can also trigger GVBD in vitro. These can be either progesterone derivatives
(Reynhout and Smiith, 1973; Ozon et ai., 1975; Morrill and Bloch, 1977), some
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of which are produced by the vocyte itself (Reynhout and Smith, 1973,
Thibier-Fouchet et al., 1976), or corticostéroids (Subtelny ¢t al., 1968,
Schorderet-Slatkine, 1972; Jacobelli et af., 1974; Mornill and Bloch, 1977;
Ishikawa, ef al., 1977} and androgens such as testosterone {Smith and
Ecker, 1971; Morrili and Bloch, 1977; Le Goascogne ef al., 1985). The latter
are produced under gonadotropic stimulation by the preovulatory follicle
(Fortune and Tsang., 1981; Hubbard and Licht, 1986). Finaily, it was re-
cently observed that | 7e-hydroxy,2083- dihyd:op'mg,t.slelone and to a lesser
extent l7a»hydr0xy 20a-dihydroprogesicrone, are effective’ GVBD induc-
ers in defolliculated oocytes from Xenopus laevis (Deshpande and Koide,
1985) and mIrafol!:cp}ar oocytes from Rana pipiens (Lin et al., 1987). The
20e isomer was produced from 17a-hydroxyprogesierone by the oocyte it-
self (Thibier-Foucher et al., 1976). This is interesting, from a phylogenetic
point of view, when compared to the present state of knowledge in fish.

In almost all teleost species investigated, 17a-hydroxy,208-dihydropro-
‘gesterone (17a,208-OH-P) appears to be the most effective maturation-
inducing steroid (MIS). First identified in the blood of postspawning females
of the Pacific salmon, Oncorhynchus nerka (dler et al., 1960), its maturation-
inducing potency was only demonstrated much later for different species in
vitro (rainbow trout: Fostier et al., 1973; Jalabert, 1975; goldfish and northern
pike: Jalabert, 1976) and in vivo (Salmo Jalabert et ef., 1976, 1980a: Bry,
1981; common carp, Cyprinus carpio: Jalabert er al., 1977: northern pike: De
Montalembert er al., 1978). Since then, the in vitro maturation-inducing
potency was confirmed in other species (see reviews by Goetz, 1983; Sun-
dararaj et al., 1985; Nagahama, 1987a; and recent works by Lutes, 1985;
Habibi and Lessman, 1985; Pankhurst, 1985; Goetz and Cetta, 1985; Upad-
hyaya and Haider, 1986; Greeley et al., 1986; Hirose et al., 1987; Lin et al.,
1987; Canario and Scott, 1987; Scott and Canario, 1987; Adachi e1 al., 1988;
Kobayashi et al., 1988; Begovac and Wallace, 1988; Trant and Thomas, 1988;
Haider and Moses Imbaraj, 1989). It was rigorously identified in the blood of
maturing female rainbow trout (Campbell ef «l., 1980; Diederik and Lambert,
1982) and African catfish, Clarias gariepinus (Dam et al., 1989). In some
species belonging 1o the suborder Salmonoidei, 17a,208-OH-P can be
synthesized in vitro by ovarian foilicles (Suzuki ef al., 1981a,b; Sangalang and
Freeman, 1988) and secreted into the culture medium in response to the
highly purified maturational salmon gonadotropin s-GTH (Fostier et al.,
1981a; Suzuki et al., 1988b) or partialty purified gonadotropin (Young er al.,
1983a; Zhao and Wright, 1985; Van Der Kraak and Donaldson, 1986; Wright
and Zhao, 1988). Chemical identification in the culture medium after gonado-
tropin stimulation was performed by Nagahama and Adachi (1985). Finally,
binding activity for 17a,208-OH-P and R502( has been found in brook trout
oocyte cytosol (Maneckjee er al., 1989), but dissociation kinetics, affinity,
and specificity do not fit well the usuat features of receptors, and the bind-
ing activity decreases before maturation. Although less extensive, simslar
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data were recently obtained in species belonging to other orders (C. carpio:
Kime er al., 1987; Carassius auratus: Nagahama et al., 1986; Fundlus: Lin
et al., 1987; Petrino et al., 1989; Clarias: Suzukt er al., 1987, Schoonen
et al., 1989; Oryzias latipes: Sakai et al., 1987). In vivo, a plasma surge of
§7e,208-OH-P occurs during natural maturation in trout (Fostier er af.,
1981b) and other Salmonoidei (reviewed by Goetz et al., 1987) as weil as in
families belonging to other orders (Cyprinidae: Kagawa et al., 1983; Shimizu
et al., 1985; Yaron and Levavi-Zermonsky, 1986; Santos et al., 1986; Ca-
tostomidae: Scott ef al., 1984; Hiodontidae: Pankhurst ef al., 1986; Pleuro-
nectidae: Hirose et al., 1987; Canario and Scott, 1990; Sparidae: Ouchi et al.,
1988; Oryziidue: Sakai et al., 1988). In trout, the plasma surge of 17a,208-
OH-P is most dominant, in comparison with other 208-hydroxylated preg-
nenes and pregnanes (Canario et al., 1989). In the Atlantic saimon, not only.
the ovaries but also the head kldneys can synthesize 17,203-OH-P (Sanga-
lang and Freeman, 1988). However, 17a ,208-OH-P might not be the universal
MIS in all fish. Cortisol was first proposed as an MIS in the Indian catfish,
Heteropneustes fossilis (Sundararaj and Goswami, 1977; Sundararaj et al.,
1979). But according to more récent data in the same species (Sundararaj et
al., 1985) and in-other catfish species (see above), 17a,208-OH-P appears also
10 be the most effective MIS in several species from the order Siluriformes.
Nevertheless, seasonal elevations of plasma cortisol level have been ob-
served du_ri:_lg the spawning season in females of various teleostean species
(Bry, 1985, 1989), and cortisol might exert a positive synergistic effect at the
follicular level to stimulate oocyte maturation (Jalabert, 1975) or be involved
in the control of ovulation (Bry, 1985, 1989). Other candidates have recently
been proposed, such as androgens (Pankhurst and Conroy, 1988) or the
triols 3a/38,17a,208-trihydroxy-Sa-pregnane and 17«,208,21-trihydroxy-4-
pregnen-3-one (Scott and Canario, 1987), the latter being the main ovarian
steroid produced during final oocyte maturation in a perciform, the Atlantic
croaker, Micropogonias undulatus (Trant and Thomas, 1986, 1988). Never-
theless; 17a,208-OH-P predominates in rainbow trout plasma (Canario et al.,
1988).

In conclusion, steroids always appear to be involved in the control of
complete oocyte maturatlc_n in vertebrates, although ne general model can be
proposed. It must be emphasized, however, that it is principally progestins
that elicit stimulatory effects on GVBD in lower veriebrates. In some cases,
corticosterone, deoxycorticosterone, and testosterone appear effective. Es-
tradiol, which is the main steroid involved in follicular growth, is ineffective
or inhibitory to GVBD and appears to be more involved in the acquisition of
fertilizability and developmental competence in mammals.

2. Peptides

Studies in vitro suggest that peptidic factors might exert a physiological
action on the control of oocyte maturation, either directly at the oocyte level
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or indirectly via some follicular mediation. Among these, only growth factors
have been reported to act unambiguously at the oocyte level, although action
at the follicular level can also be demonstrated.

Buserelin, a gonadotropin-releasing hormone agonist, may increase oocyle
maturation rate in isolated oocytes (probably surrounded by cumulus cells)
from a primate, Macaca Jascicularis (Lefévre et al., 1988). Insulin increases
the rate of spontaneous maturation of isolated pig oocytes (Tsafrin and
Channing, 1975a). Epidermal growth factor (EGF) appears able to remove
the inhibition of maturation promoted by the anti-Miillerian hormone (AMH;
see Section 11, B, 1) in denuded rai oocytes in vitro (Ueno ef af., 1988).
Insulin-like growth: factors (IGFs) were recently identified in porcine and
human follicular fluid (Ramasharma et al., 1986), and high levels were found
in preovaulatory porcine follicles {Hammond et ul., 1985). The secretion of
IGF in granulosa cell cultures is stimulated by FSH, LH. and estradiol (Hsu
and Hammond, 1987). ' ' :

In amphibans, insulin alone-is able to induce GVBD in denuded oocytes
(Xeénopus laevis: El Etr et al., 1979; Maller and Koontz, 1981; R. pipiens:
Lessman and Schuetz, 1981). Insulin is less effective than progesterone (El
Etreral., 1979), and its mechanism of action appears to be different (Stith and
Maller, 1984; Deshpande and Kung, 1987). GVBD can also be induced by
IGF:I at physiological concentrations, and it was suggested that insulin-
induced maturation may proceed via nonspecific fixation of insulin to IGF-}
receptors as distinct from both. insulin and progesterone receptors (Maller
and Koontz, 1981). Finally, insulin exhibits a potentiating effect on the
matur.ation-inducin_g action of steroids (Le Goascogne et al., 1984, 1985)."

1In fish, Lessman (1985) recently observed a positive synergy between
insulin and various progestins on in vitro maturation of follicle-enclosed
oocyles of the goldfish.

B. Role of “Oocyte Maturation-Inhibiting
Factors” ' |

In mammals, it is generally accepted that meiosis resumpticn foliows removal
of an inhibition that has been exerted by the follicular cells. This hypothesis
was first suggested by Pincus and Enzman (1935) and further reinforced by
numerous work in various mammalian species (see Tsafriri, 1985, for re-
view). It accounts for meiosis resumption when the follicular inhibition is
removed, either as the result of an appropriate gonadotropic stimulation of
the whole follicle in vivo or in vitro (Ayalon et al., 1972; Lindner et al., [974)
or when oocytes (usually OCC) are artificially extracted from their follicle
and cultured in vitro. Granulosa cells have been identified as the main source .
of the follicular inhibitory action (Foote and Thibault, 1969).

In lower vertebrates, oocyte maturation is triggered by the direct action of
steroids secreted by the follicle in response to gonadotropins. Thus, the
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involvement of inhibitory factors does not seem necessary to explain most of
the experimental data. However, limited observations suggest that follicular
oocyte maturation-inhibiting factors (OMIFs) might also exist. For exampie,
defolliculation accelerates the response (GVBD) of Xenopus oocytes 1o
progesterone (Mulner and Ozon, 1981) and increases the effectiveness of MI1S
in the fish O. latipes (Iwamatsu, 1980). In some ¢ases, defolliculation by itself
was reported Lo induce spontaneous maturation, such as in the fish Fundidus
hereroclitus (Greeley et al., 1987) and in certain dmphlbmn species (Vilain ¢f
al., 1980).

Different kinds of substances have been suggested as OMIF, mainly in
mammals: peptides, nucléotides, nucleosides, purines, and steroids. Among
all potential OMIFs, one or another may appear to play the main role,
depending not only on the species but also on the experimental conditions. It
is therefore impossible to establish a general hierarchy among these factors,
all the more since they often appear to act synergistically.

1. Prosein Factors

A particular OMIF, called the oocyte maturation inhibitor (OMI) (see re-
views by Channing ef al., 1982; Eppig and Downs,. 1984; Tsafriri, 1985; Sato
and Koide, 1987a), present in the follicular fluid of a number of mammalian
species, mhibits spontaneous. nuclear maturation of oocytes isolated with
surrounding cumulus cells from the same or other mammalian species
(Tsafriri and Channing, 1975b; Gwatkin and Andersen, 1976; Jagiello er al.,
1977: TsafTiri et al., 1977). This activity, which decreases during the course of
follicular growth (Stone et al., 1978, in the pig), can be overcome by LH
{Tsafriri and Channing, 1975b). Production of OMI by granulosa cells
(Tsafriri and Channing, 1975b) is apparently dependent on the level of hor-
mones present within the follicular compartment, particularly FSH and an-
drogen (Anderson e al., 1985). Both OMI activity and its antagonization by
gonadotropins appear to be mediated by cumulus cells, since the spontaneous
- maturation of denuded cocytes (devoid of surrounding cumulus cells) is not
inhibited by OMI (Hillensji et al., 1979). Interestingly, the cumulus may also
be a target for OMI with regard to morphological differentiation and
progesterone secretion, both of which are inhibited in 2 dose-related manner
(Hillensjo er al., 1979). Attempted purification of OMI suggests that it is
peptidic in nature, existing in follicular fluid as two or three molecular species
(Channing et al., 1982). '
Other workers, however, were unable 1o find OMI activity in follicular fluid
preparalions{Sato and Ishibashi, 1977; Sato et al., 1982; Liebfried and First,
(1980), but a peptidic inhibitory factor called *‘granulosa cell factor™ (GCF)
was extracted from the surface of the granulosa cells and exhibited some
common properties with OMI (reviewed in Sato and Koide, 1987a). Discrep-
ancies among different authors on the characterization of OMI may be due to
its lability and to differences in the methods of follicular fluid collection and
oocyte culture, particularly regarding the integrity of the cellular architecture
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of the isolated oocyte—~cumulus complex. As underlined by Thibault ef al.
¢1987), isolation of pure cumulus ceti—oocyte complexes is easy in unstimu-
lated follicles of the rabbit, because the cumulus is topographically distin-
guishable from the granulosa celi layer, but the recovery of granulosa-free
cumnmilus complexes is more difficult in most other mummals because cumulus
cells spread over the mural granulosa.

A glycoprotein factor, called anti-Miillerian hormone {AMH) because it
causes the regression of Miillerian ducts in the fetal testis (reviewed by Josso
and Picard, 1986), was also reported to prevent maturation of denuded
rat oocytes (Takahashi et al., 1986a). This factor is present in foiliculur
fluid (cow: Vigier ef al., 1984; Nécklaws ef af., 1986) and in granulosa cells
(cow: Takahashi ¢f al., 1986b; ewe: Bézard er al., 1987, rat: Ueno ef al.,
1989). However, the maturation-inhibiting activity of AMH remasns con-
troversial, probably dué to differences in the methods of preparation and
assay, which might introduce artifacts (Ueno er al., 1988; Tsafriri ¢f al.,
1988).

Finally, inhibin, a glycoprotein hormone synthesized by the granulosa cells
and present in the follicular Auid and known to dct at the pituilary level to
inhibit selectively the release of FSH, was also recently reported to inhibit
spontaneous GVBD in vitro in both cumulus-enclosed and denuded rat 00-
cytes (O et al., 1989).

More work is obviously required to specify which of the above-mentioned
substances have a true physiological role and can be considered as genuine
“OMls.”

Although no comparable approach has been performed in fishes or am-
phibians, mammalian follicular fluid was reported to inhibit cocyte matura-
tion in Xenopus (Cameron et al., 1983; Pomerantz and Bilello, 1987).

2. Cyclic AMP

Cyclic AMP (cAMP) is an important intracocyte regulator of maturation in all
vertebrates (see. Section I1I, B, 4). In some in vitro conditions, artificially
elevated cAMP levels block nuclear maturation in isolated (defolliculated)
oocytes or follicle-enclosed oocytes in vanious vertebrates mammals: re-
viewed by Tsafriri, 1985; Aberdam et al., 1987; Kwon and Schuetz, 1986;
amphibians: Bravo et al., 1978; Maller et al., 1979; Schorderet-Slatkine e7 af.,
1982; fish: Goetz and Hennessy, 1984; Jalabert and Finet, 1986; DeManno
and Goetz, 1987; Finet et al., 1988).

Since the first report of such an inhibitory eftect in mammals (Cho 7 al.,
1974), cAMP was considered for some time to be the main follicular inhibitor
of nuclear maturation, originating in the granulosa cells and transferring to
the oocyte via gap junctions. Numerous conflicting or even paradoxical
results have been obtained in different species under various experimental
conditions (reviewed by Eppig and Downs, 1984; Tsafriri, 1985; Thibault er
al., 1987). It now appears most likely that cAMP is not normally transferred
from follicle cells to the oocyte, even when gap junctions are still functional,
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and that cAMP levels are regulated independently in each cell type (Schultz
et al., 1983a,b). This explains why, after gonadotropin action on the follicle,
the cocyte becomes in fact committed to undergo GVBD at a time when
cAMP level is increasing in the whole oocyte~cumulus complex, as observed
in vive in the mouse (Eppig and Downs, 1988).

" There is no evidence of any transfer of cAMP from the follicular cells to the
oocyte in amphibians and fish. In these vertebrates, the level of cAMP in the
follicular cells and in the oocyte is probably also regulated mdepcndenlly
The maturation-inducing steroid (MIS) is produced in the follicular cells, at
least partly by a cAMP-mediatéd gonadotropin stimulation involving a rise’in
cAMP, whereas the mechanism of MIS. action at the oocyte level seems to
involve a cAMP decrease (see Secuons 1il, B, 4and 1V, A, 3).

3. Purine Bases, Nucleosides, and Nucleotides

Various compounds possessing a purine ring have been suggested as inhibi-
tors of oocyte maturation. Cyclic AMP has already been discussed. In addi-
tion, substances such as purine bases, purine nucleosides, and purine nucleo-
tides could also be involved in the inhibition of meiotic resumption.

Pig and mouse ovarian follicular fluids contain high concentrations of
hypoxanthine (in the 2--4 mM range: Downs e! al., 1985; Eppig et al., 1985),
which can mainiain in vitro both cumulus-enclosed and cumulus-free oocytes
in meiotic arrest (Eppig er al., 1985). Other purine derivatives may also
be involved (Downs et al., 1986; Downs and Eppig, 1987). The lack of a de-
crease in the concentration of hypoxanthine in mouse follicular fluid before
gonadotropin-induced maturation (Eppig et al., 1985) reinforces the hypothe-
sis that gonadotropin must generate a positive maturation- inducing signal
from the follicular cells in order to supercede or negate the presence of
hypoxanthine in the follicular fluid (Eppig and Downs, 1987).

Adenosine, a nucleoside present in mouse follicular fluid (Eppig er al:,
1985), also appears to inhibit oocyte maturation (Downs er al., 1986;
Petrungaro ¢t al., 1986; Preston et al., 1987), probably by acting at the oocyte
plasma membrane (Salustri et al., 1988).

Finally, hypoxanthine, adenosine, and nucleotides such as cAPP {cyciic
adenosine-3',5 -pyrophosphate) could act synergistically with cAMP 1o in-
hibit mouse cocyte maturation (Sato ef al., 1985; Sato and Koide, 1987b).

We recently found in fish that adenine (0.5 mM) blocked in vitro intrafol-
licular trout oocyte GVBD stimulated by the salmonid MIS, 17«,208-OH-P
(Garg and Jalabert, unpublished), as effectively as ¢AMP ( Jalabert and Finet,
1986). Intermediate metabolites such as adenosine-5'monophosphate, adeno-
sine, and inosine-5'monophosphate also inhibit 1 70,208-OH-P-induced
GVBD, but much less effectively than cAMP or adenine. However, the
physiological significance of such observations has 1o be confirmed.

In amphibians, mammals, and probably other vertebrdteb, various natu-
rally occurring compounds that have a purine ring are able 1o exert a. differen-
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tial regutatory effect on adenylate—cyclase activity, depending on the cell
type (Sahyoun et ai., 1976; Fain and Malbon, 1979). Therefore, taking into
account the importance of cAMP levels in each follicular compartment for the
control of meiolic arrest or resumption, it is tempting to suggest that such
compounds are important intrafotlicular regulators.

4. Steroids

Some ovarian steroids inhibit meiosis resumption under certain experimental
conditions, although the actual physiological significance is still debatable.

Such inkibitory effects on the maturation of isolated mammalian oocyles,
were observed with progesterone (rabbit: Smith ef al., 1978), estradiol (pig:
Racowski and McGaughey, 1982, only in the presence of bovine serum
atbumin (BSA); mouse: Eppig and Koide, 1978), and testosterone (mouse:
Sato and Koide, 1987b), although the concentrations could be considered as
nonphysiological (Eppig and Koide, 1978). This kind of effect may be revers-
ible (Moore Smith and Tenney, 1980). Moreover, the administration of anti-
serum to estrone facilitates hCG stimulation of intrafolticular meiosis in rats
(Mori et al., 1979). Testosterone (pig: Rice and McGaughey, 1981) and’
progesterone (mouse: Eppig and Downs, 1984; Batten et al., 1989) enhanced
dibutyryl-cAMP inhibition of spoataneous maturation but had no significant
effect when administered at concentrations similar to those found in the
fraction of follicular fluid that enhances cAMP inhibitory action on mouse
oocytes (Downs and Eppig, 1984). This inhibitory activity can be potentiated,
by estradiol or testosterone in the mouse (Sato and Kotde, 1987b). However,
in other stodies, no correlation was found between the mhlbnory (,apdc:lty of
the follicular fluid and its estradiol or testosterone concentration {pig: Van De
Wiel et al., 1983; human: Channing er of., 1983). More recently, however, an
androgen(19 norandrostenedione), 1dt—:nt1ﬁed in mare, sow, and human follic-
ular fluid (Khalil and Walton, 1985; Dehennin ef al., 1984), amphficd the
inhibitory effect of dibutyryl-cAMP on nuclear maturation of cumulus-
enclosed pig oocytes (Daniel er al., 1986) at physlologacdl concentrations
{Khalil and Walton, 1985). :

[n amphibians, estradiol- 178 was shown to dn[dg,omze GV mq,mtion prior
to GVBD, probahly by acting at the cytoskeleton level (Lessman, 1987).
Estrogens, in particular estradiol- 178, are also able to inhibit progesterone-
induced GVBD in denuded oocytes (X. lucvis: Bauliew ef al., 1978; R. pip-
iens: Lin and Schuetz, 1983). Such inhibition requires continued exposure of

“oocytes to estradiol for several hours prior 1o the addition of progesterone
and during the ulterior incubation period. Although the mechanism of this
inhibition is unknown, the observation that estradiol enhances cholera toxin-
induced cAMP accumulation in the oocyte (Thibier e al., 1982) suggests
membrane adenylate cyclase as a possible site of action. This direct mem-
brane effect is also supported by various studies showing nongenomic actions
of estradiol in mammalian somatic cells (Weiss and Gurpide, 1988).
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HI. INTRAOOCYTE CONTROL
OF MATURATION

The onset of maturation is rapidly followed by a cascade of biochemical
processes within the oocyte (Masui and Clarke, 1979). This makes it difficult
"to distinguish. between the different steps in the transduction and amplifi-
cation of the initial maturation signal and the cellular responses that represent
completion of maturation itself and that are necessary for the acquisition of
competence for fertilization and embryonic development.

A. General Occurrence of a Cytoplasmic
“Maturation-Promoting Factor”

The emergence of an activity called maturation-promoting factor (MPF) in
the cytoplasm of maturing oocytes appears to be a necessary amplification
step common to all animals. The presence of MPF is characterized by the
ability of the cytoplasm from maturing oocytes to cause maturation following
injection into immature unstimulated oocytes. Such an activity was first
observed in Bufo bufo and B. viridis oocytes and attributed to the nuclear sap
{Dettlaff et al., 1964), which was in fact contaminated with some cjtoplasm.
Masui and Markert (1971) démonstrated that the appearance of MPF acuivity
in the cytoplasm of maturing oocytes of R. pipiens does not require the
presence of the nucleus, and they showed its capacity for autocatalytic
amplification by repeated serial transfers of cytoplasm. Afterward, MPF was
found in other amphibians, (X. luevis: Schorderet-Slatkine and Drury,, 1973;
Ambystoma mexicanum: Reynhout and Smith, 1974), in a teleost fish, the
sturgeon (Dettlaff, 1977), in mammals (mouse: Balakier and Czolowska,
1977), and in invertebrates (starfish: Kishimoto and Kanatani, 1976). It rap-
ldly appeared not 1o be species-, order-, or class-specific, as demonstrated by
various cross-injection experiments (Reynhout and Smith, 1974; Dettlaff,
1977: Kishimoto ef al., 1982; Sorensen et al., 1985) and heterologous oocyte
fusion experiments (Fulka, 1983). Another important property of MPF is the
oscillatory character of its activity (Wasserman and Smith, 1978; Masui,
1982, 1985; Gerhart et al., 1984; Hashimoto and Kishimoto, 1988), which
plays an essential role in contr_otl'irig the two successive melotic cycles up 1o
second metaphase. These oscillations of MPF activity are presently believed
to result from changes in the balance between a pulative inactivating factor
(Gerhart er al., 1984; Cyert and Kirschner, 1988) and an activating protein
called ““cyclin’ (Murray, 1989). Cyclin, which was first discovered in fertil-
ized sea urchin eggs where its abundance exhibits cyclical fluctuations from
one cell cycle to the following (Evans ef ai., 1983), can induce GVBD when
microinjected into Xenopus oocytes (Swenson er al., 1986) and was sug-
gested to act as a subunit of the active MPF complex (Draetta et al., 1989).
Highly purified MPF preparations were recently obtained from cocytes of
Xenopus (Lohka et al., 1988) and starfish (Labbé er al., 1988) by using a
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sensitive cell-free bioassay for MPF activity based on the induction of mem-
brane breakdown and chromosome condensation in isolated sperm or s0-
matic nuclei in vitro (Lohka and Masui, 1983; Lohka and Maller, 1985;
Miake-Lye and Kirschner, 1985), much more sensitive than the oocyte mi-
croinjection assay. Purified MPF appears as a 34 kDa protein kinase, identical
to the histone HI kinase known to be transiently activated during mitosis
initiation (reviewed in Labbé er al., 1989) and including one subunit homol-
ogous to the product of the cell cycle control gene cdc2” first identified in
yeast (Anion et al., 1988; Dunphy et al., 1988; Gautier ef «l., 1988; Labbé et
al., 1988, 1989). In fact, most MPF bioassays arc representative only of
metaphase promotion and not necessarily of the whole meiotic maturation
process, which should normally develop after GVBD up to the second meta-
phase spindle. Therefore, genuine MPF should be defined only as a
‘““metaphase-promoting factor.” As such, it is capable of autoamplification in
the absence of protein synthesis (Wasserman and Masui, 1975; Gerhart e al.,
1984; Cyert and Kirschner, 1988), although this point has been controversial
m Xenopus {(Drury and Schorderet-Slatkine, 1975) and mammals (Fulka et
, 1988), probably due to technical particularities. In fact, a :-.ynihem:; of
protem (which is probably cyclin, according to Murray, 1989) is required
before and after the first activation of MPF, particularly in relation to MPF
activity oscillations that occur after the first metaphase (Hashimoto and
Kishimoto, 1988). Further MPF amplification, which is associated with a
burst of phUSphorylauon (Maller ét al., 1977, Wi and Gerhart, 1980; Capony
et al., 1986; Cyert and Kirschner, 1988) has been suggested to result from the
dut_ocatalyuc activation of a preexisting precursor, through rapid changes in
its phosphorylation level. This would directly or indirectly stimulate a cas-
cade of phosphorylations and dephosphorylations promoiing most of the
cellular effects of maturation. One of these would be a reversible hyper-
phosphorylation of the laminal proteins, major structural proteins underlying
the nuclear envelope, thus resulting in the nuclear lamina disassembly, lead-.
ing to GVBD (Gerace and Blobel, 1980; Miake-Lye and Kirschner, 1985).

B. Mechanism of Action of Ovarian Factors (OMSF 5
and OMIFs)

The chain of events between the external signal and the appearance of MPF in
the oocyte is not fully understood, even in amphibians in which many investi-
gations have been carried out. Although limited, work in fish and mammals
can, nevertheless, be compared to that in the amphibians, thus enriching a
more general model for the regulation of oocyte maturation.

1. Apparent Posttranscriptional Character

There is a general agreement that resumption of meiosis involves only
posttranscriptional events. MIS-induced GVBD is unaffected by transcrip-
tion inhibitors in fish (Deulaff and Skoblina, 1969; review by Goetz, 1983) and
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amphibians (Schuetz, 1967; review by Masui and Clarke, 1979) in which the
transitory RNA synthesis following the MIS action does not seem essential to
GVBD (Morrill et al., 1975). Even enucleation does not inhibit maturation in
oocytes of R. pipiens (Smith and Ecker, 1969; Masui and Markert, 1971) and
X. laevis (Schorderet-Slatkine and Drury, 1973), although the nuclear sap
appears 1o be necessary to maintain the yield of MPF production in Plearo-
deles waltlii (Skoblina et al., 1984; Gautier, 1987). In the case of mammals,
transcription inhibitors do not seem 1o block spontaneous maturation of
isolated oocytes in the mouse (Crozét and Szokosi, 1980), but data are more
equivocal in the ewe, depending on the concentration of inhibitor, the time of
application, and the presence of cumulus cells (Osborn and Moor, 1983b).
Even in the mouse, high concentrations of inhibitors can be-effective (Bloom
and Mukherjee, 1972), but this is believed to be nonspecific (Golbus and
Stein, 1976).

2. Membrane Invoivement

Much of the experimental data suggest that the induction by progesterone of
amphibian oocyte maturation may involve specific action at the membrane
level (Baulieu er al., 1985). The maturation response of R. pipiens depends on
the area of oocyte surface exposed to progesierone (Schuetz and Cloud,
1977). Some nonhormonal compounds or hormonal factors known to act on
the cell membrane can either induce GVBD or at least enhance the action of
progesierone (Baulieu ef al., 1978; Dascal ¢r al., 1985; see also Section 11, A,
2). Steroids bound to macromolecules and that cannot enter the oocyte show
that the hormonal signal is effective even when restricted to the oocyte
surface (Ishikawa ef al., 1977; Godeau et al., 1978). The report of cytosolic
receptors (Kalimi et al., 1979) has not been confirmed and may have been due
to the use of an inappropriate buffer that dissolved membrane. proteins (ab-
sence of calcium and presence of ethylenediaminetetraacetate EDTA: see
Pietras and Szego, 1979). The demonstration of a specific binding of '
progesterone to the surface membrane, by the measurement of repartition
kinetics between plasma membrane, cytoplasm, and nucleus, correlates with
the physiological response (GVBD) in R. pipiens oocytes (Kostellow et al.,
1982). Routine methods for the characterization of steroid receptors are
inappropriate for plasma membranes, owing to a particularly high, nonspe-
cific binding of lipophilic steroids. Moreover, the use of a synthetic progestin
(R5020) displaying photoactivated covalent binding to progestin receplors
revealed a 110 kD protein (Sadler and Maller, 1982; Sadler ef al., 1985) or a
30 kD protein (Blondeau and Baulicu, 1984). Such discrepancies make it
difficult to draw conclusions from the binding data obtained by the photo-
affinity method (Blondeau and Baulieu, 1984). Several experimental argu-
ments suggest that receptor sites are located on the internal side of the oocyte
membrane, Autoradiography of Xenopus oocytes incubated with tritiated
progesterone showed labeling **at the level of the cell membrane and the
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underlying cytoplasm’’ (Brachet et al., 1974). Progesterone failed to induce
maturation when microinjected with an aqueous solution but was effective
when dissolved in paraffin oil in order to aveid leakage or metabolism (Tso ef
al., 1982). Finally, GVBD can be induced in Xenopus oocytes by digi-
toxigenin, bul not by digitoxin. Both digital toxins act on the membrane. Digi-
toxigenin is a Cas steroid that can get through the membrane, whereas
digitoxin, which is digitoxigenin coupled to sugar residues, cannot (Cartaud
et al., 1984). '

Fewer data are available in fish. As mentioned above (Section 1), MIS-
induced GVBD does not require transcriptional events, in contrast with
the usual model for the intracellular action of steroids on somatic tissues.
In a recent review, Nagahama (I1987b) reported unpublished results (by
Nagahama and Kishimoto) showing that 172,208-OH-P does not induce
GVBD when microinjected into goldfish oocytes; but some doubt can be
raised about the preservation of MIS integnity in such experiments, as n
‘amphibians (Tso et al., 1982; Thibier-Fouchet et al., 1976). Further support
for cocyte membrane involvement in fish comes from the observation that
asterosaponins, which interact with cholesterol molecules in the cell mam-
brane, stimulate GYBD (Voogt and De Groot, 1983).

In mammals, indirect evidence alse suggests that the ococyte plasma mem-
brane could be involved in the regulation of meiofic resumption, as a target
for adenosine inhibitory effects (Salustri er al., 1988).

3. Early Events at the Membrane Level

The nature of membrane events following maturation induction has been
studied essentially in amphibian pocytes, in which progesterone induces
different kinds of rapid and slow modification. The repartition of intramem-
branous particles shows a relatively rapid response taking several minutes
and a slow response over several hours (Bluemink et al., 1983). A similar
distinction between rapid and slow changes can also be made concerning
membrane fiuidity (Morrill et al., 1989) and other biochemical and biophysi-
cal properties. Thus; pronounced changes in membrane permeability and
electrical potential, which are only noticeable after a few hours (review by
Masui and Clarke, 1979; Morrill ef al., 1984; Richter ef al., 1984), appear as
one of the results of the maturation process. On the other hand, certain early
biochemical events seem to participaté in the transduction of the hormonal
signal. In particular, inhibition of membrane adenylate cyclase has been
demonstrated in whole living oocytes (Mulner et af., 1979} and subsequently
in membrane fractions prepared from progesterone-treated oocytes (Sadler
and Maller, 1981; Finidori-Lepicard ef al., 1981; Jordana et al., 1981; Sadler
et al., 1985). This inhibition would explain the early decrease of cAMP found
in stimulated oocytes (Speaker and Butcher, 1977; Morrill et al., 1977; review
by Cicirelli and Smith, 1985). Rapid changes in the activity of other mem-
brane enzymes also appear to be involved, such as proteases (Morrili ez al.,
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1983 ; Morrill and Kostellow, 1986; Picard er al., 1987; Ishikawa et ul., 1989),
alkaline phosphatase (Le Goascogne er al., 1987), and methyltransferases,

responsible for phospholipid transmethylation (Godeau et al., 1985; Chien et
al., 1986). The rapid activation of membrane enzymes may be promoted by
rapid changes in the rate and/or level of phosphorylation. For example,

progesterone rapldly inhibits the phosphorylation of a unique Mr 48,000-

membrane protein in Xenopus oocytes (Blondeau and Baulieu, 1985). Fi-
nally, following the action of progesterone, short-term changes in membrane
permeability to Ca** (O’Connor et al., 1977) may lead to a transient increase
of internal free Cat* (review by Morrill ef al., 1981; Morrill and Kostellow,

1986). Various.drugs interacting with Ca** fluxes were found to.be potent
GVBD inducers (Baulieu er al.; 1978). Therefore, Ca** was believed for a
time to act as a second messenger (Moreau ef al., 1980). However, increasing
evidencé suggests that Ca* ™ redistribution, which may occur rapidly at the
membrane level after progesterone action, is just one consequence of the
activation of a number of membrane properties, including permeability to.
ions, but that a rise in free Ca*™ per se is not a necessary step in triggering
oocyte maturation (Bellé ef al., 1977; Robinson, 1985; Cicirelli and Smith,
1987; Cork et al., 1987).

4. Cytoplasmic Control of MPF Activation

In amphibians, the important role of some cytoplasmic steps in the cascade of
events that follow the primary action of MIS at the membrane level is well
established (see reviews by Maller and Krebs, 1980; Maller, 1983; Ozon,
1983). These are mainly fluctuations 1n the cAMP level and protein phos-
phorylations.

According to a widely held but controversial model, oocyte membrane
activation would lead to a transient decrease in the intracocyte concentration
of cAMP. This, in turn, would promote a partial inactivation of a cAMP-
dependent protein-kinase that was maintaining putative initiator preteins in a
phosphorylated inactive form. Activation of the initiator proteins wouid then,
via unknown steps involving protein synthesis to some extent (inhibition by
cyclohexzrmde), induce MPF activation. Although many points remain ob-
scure or controversial, a considerable amount of data supporis the above
model in amphibians. The information available in fishes and even in mam-
mals suggests that thé main intracocyte mechanisms could be very similar in
all vertebrates. The importance of oocyte cAMP in the regulation of oocyte
maturation was first suggested by the induction of a rise in intracocyte cAMP
levels by various substances that also inhibit maturation, whether this was
induced by MIS in lower vertebrates or by release of follicular inhibition in
mammals. These substances include phosphodiesterase inhibitors such as
isobutylmethylxanthine (IBMX) or theophylline in amphibians (O’Connor
and Smith, 1976; Bravo et al., 1978), fish (Goetz and Hennessy, 1984; Jalabert
and Finet, 1986, DeManno and Goetz, 1987), and mammals (Cho et al., 1974)
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and adenylaie cyclase stimulators such as cholera toxin or forskolin in am-
phibians (Schorderet-Slatkine er af., 1978; Mulner et al., 1979; Maller et al.,
1979), fish (Jalabert and Finet, 1986, DeManno and Goetz, 1987; Iwamatsu et
al., 1987a), and mammals (Umer er al., 1983; Sato and Keide, 1984).
Moreover, the induction of oocyte maturation was followed by a transient
decrease in oocyte cCAMP in amphibians (Speaker and Butcher, 1977; review
by Cicirelli and Smith, 1985), fish (Jalabert and Finet, 1986; Finet et al.,
1988), and mammals (Schultz ef al., 1983b). Although the evidence for the
presence and timing of a cAMP decrease is equivocal for certain species,
regulation of the intraoocyte cAMP level seems to play an important part in
the control of cocyte maturation. In amphibians, this regulation, which re-
sults primarily from MIS action at the membrane ievel, appears to be due
mainly to an inhibition of adenylate cyclase activity (cf. Section 11, B, 3),
Some stimulation of cytoplasmic phosphodiesterase activity may also eccur
(Allende and Plaza, 1987), at least when maturation is stimulated by factors
such as insulin or IGF-1 (Sadler and Maller, 1987, 1989). In the mouse oocyte,
phosphodiesterase regulation is also involved in the cAMP decrease associ-
ated with the resumption of meiosis (Bornslaeger er al., 1984), and the
meiotic arrest may be maintained by the inhibitory éffect of some follicular
steroids on oocyte phosphodiesterase (Kaji ef al., 1987). The probable in-
volvemeni of the cAMP-dependeni protein-kinase (PK) in the regulation of
meiosis resumption, as a corollary of cAMP decrease, was first demonstrated
by micreinjections of either the regulatory or the catalytic subunit of PK,
which respectively stimulated or inhibited GVBD in the amphibian Xenopus
(Maller and Krebs, 1977; Huchon er al., 198i), as well as in the mouse
(Bornslaeger et al., 1986).

However, even though the mvolvemenl oi cAMP as an important intraoo-
cyte regulator-of maturation is supported by a considerable body of evidence,
as reported above, some data suggest that a decrease in oocyte cAMP would
not be necessary nor sufficient to trigger maturation and that other parallel or
alternative cytoplasmic signaling pathways could be involved. Thus, matura-
tion can be induced in Xenopus by some agents that promote an increase
instead of a decrease of cAMP, such as Mg** microinjections (Bellé ef al.,
1986) or adenosine action (Gelerstein ef al., 1988). Conversely, acetyl-
choline, an agent that lowers the intracocyte level of cAMP, does not pro-
mote maturation by itself but ac‘celerat’es-prugestcr()nc-ind'uced maturation 1n
Xenopus (Gelerstein er al., 1988). In the rainbow trout, Salmo gairdneri,
17a,203-OH-P administered at concentrations too low to induce maturation
is able to promote the same decredse in oocyte cAMP as do higher matu-
ration-inducing concentrations (Fmet ez al., 1988).

The possible occurrence of at least another maturation- reguldtmg path-
way has also been suggested in amphibians by the fact that GVBD can be
promoted by a direct action at the oocyte membrane level, not only of
maturation-inducing steroids but also of insulin or growth factors such as



44 Bernard Jalabert cf oi.

IGF-I (see Section LI, A, 2). The latter appear to acl through different mecha-

nisms, partially independent of cAMP (Stith and Maller, 1984, 1987; Desh-

pande and Kung, 1987; Sadler and Maller, 1987) but involving the Ca™ *-

dependent protein-kinase C (PKC) (Stith and Maller, 1987; Kleis-San Franci-

sco and Schuétz, 1988). As in other cell types, PKC could be activated by

diacylglycerol (DAG) and inositol-1,4,5-triphosphate (1P3) produced as a-
result of membrane phosphoinositide hydrolysis stimulated by insulin or

1GFs. In mammals, where the nature of external maturation signals is still

unknown, PKC also appears as one of the intracellular signaling pathways

possibly involved in the control of maturation (Lefévre et al., 1988).

IV. REGULATION OF THE OVARIAN ACTIVITY
RELATED TO OOCYTE MATURATION

A. Role of Pituitary Gonadotropins.
_I . Nature

1n mammals and most birds and tetrapod lower vertebrates, the existence of
two chemically distinct types of gonadotropic hormones, LH and FSH, is
well established, although their respective biological activities are sometimes
not clearly distinguished, especially in amphibians and some reptiles (see
Licht et al., 1977, for review). According to an oversimplified scheme, FSH is
involved mainly in the conirol of follicular growth, whereas LH is considered
to control mainly ovulation-linked events, including oocyie maturation.
However, either FSH or LH is effective in mammals whose oocytes can
mature within cultured follicles in vitro in response lo gonadotropins
(Lindner et al., 1974). FSH can be eéven more effective than LH in promoting
maturation, whereas LH is more eftective than FSH in stimulating progesier-
one secretion (Neal and Baker, 1975). Considering that plasma levels of both
gonadotropins show a preovulatory rise (Schwartz, 1974), they may certainly
act synergistically (Labhsetwar, 1970).

The actual number of gonadotropins in teleostean fishes has been con-
troversial, particularly when the control of viteltogenesis in the female is
concerned (reviewed by Idler and Ng, 1983). One gonadotro pin, called **mat-
urational GTH,”” which occurs generally in ail teleostean species in which it
has been looked for, was biologically characterized by its ability to induce
intrafollicular cocyte maturation in vitro in rainbow trout (Jalabert e! ul.,
1974; Breton et al., 1976). However, numerous studies have been using a
partially purified preparation, SG-G100 (Donaldson et al., 1972), obtained by
chromatography on sephadex G100 of an acid acetone extract from salmon
pituitaries. More recently, two gonadotropins, GTH 1 and GTH 1, have been
isolated from. the pituitary of the amago salmon, Oncorhynchus rhodurus
(Suzuki er al., 1988a); both stimulate ovarian steroidogenic activity in this
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salmon. GTH 11, which is more effective than GTH I on the the stimulation of
17a,208-OH-P production by postvitellogenic ovarian follicles in vitro
(Suzuki ef al., 1988b), is probably equivalent to the maturationat GTH al-
ready characterized. GTH I appears to be distinct, particularly concerning
the amino acid séquence of its B-subunit (Itoh er al., 1988). Finally, the
plasma levels of each of these GTHs appear io fluctuate differently
throughout the reproductive cycle, GTH I keeping at alower level from GTH
11 at ovulation (Suzuki er al., 1988¢c). Although the specific biological activi-
ties of teleost GTH are different from those commonly used to characterize
LH or FSH, some similarities with mammalian gonadotropins can be found in
their chemical properties (Burzawa-Gerard, 1982) and their structural char-
acteristics, especially of the g-subunit (Jollés er al., 1977: Itoh et al., 1988).
The acronym GTH will be used in the present review 10 refer to the matura-
tional gonadotropin, equivalent to GTH 1 according to Suzuki ef al. (1988a).

2. Endocrine Signals

In mammals, as in all vertebrate species, oocyte maturation and ovulation are
preceded by an increase in the plasma levels of gonadotropins. This increase
is usually termed the “*ovulatory surge’’ because ovulation is normally the
end point of processes that begin with the initiation of meiosis resumption and
are triggered by gonadotropins. Thus, in the rat, an 1.H peak occurs simuita-
neously with an increase of FSH in the afternoon of proestrus, when the
oocytes’ ability to resume meiosis is acquired, and FSH thereafter shows a
secondary rise in the morning of estrus {(Ayalon ef al., 1972}. In the hamster
also, a surge of both hormones appears necessary at the time of proestrus, so
that subsequent preovulatory events can occur (Sheela Rani and Moudgal,
1977a,b). The second FSH surge, in the species where it occurs, may initiate
differentiation of a new sct of follicles for the next cycle (Sheela Rani and
Moudgal, 1977a). The respective preovulatory increases of LH and FSH do
not seem to always depend on the same mechanism, however. The simulta-
neous preovulatory rise of both hormones during proestrus appears to be
promoted by an augmentation of the amplitude and frequency of secretion
pulses (Elias er al., 1982 Walters and Schallenberger, 1984) as a result of
GnRH pulsatile secretion (McNeilly er al., 1984). In contrast, the second
phase of increased plasma FSH concentration may refiect an increase in the
basal FSH secretion rate (Elias and Blake, 1981 a,b).

In the hen, a biphasic LH surge occurs before ovulation (Williams and
Sharp, 1978), but there is no FSH increase (Scanes et al., 1977) (see Sec-
tion V). o

Most information on the lower vertebrates has come from teleostean fish
(reviewed by Idler and Ng, 1983). In the trout, endocrinological data can be
precisely related. to the progress of oocyte maturation followed ir vive by
repeated biopsies: GVBD is preceded by a rise in plasma GTH (Fostier er al.,
1978, Breton et af., 1983), associated with a sharp increase of MIS, 17a,208-
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OH-P (Fostier ef al., 1981b: Fostier and Jalabert, 1986). The form of the rise
in GTH differs from that of the ovulatory surges usually found in mammals. It
is initiated after modification of the pulsatile pattern of the GTH secretion
prevailing during the end of vitellogenesis into a circadian rhythm (Zohar e?
al., 1986). Such a modification of the GTH secretion pattern could account in
part for the shift in the ovarian steroidogenic ability observed at that time
{Zohar, 1982), characterized by the inhibitory action of GTH on aromatase
activity involved in estradiol synthesis (De Mongs, 1987; De Mong¢s and
Fostier, 1987) and its stimulating action on MIS (17a,208-OH-P) syathesis
(Fostier ef al., 1981a). The scheme of endocrine signaling of oocyte matura-
tion might exhibit major variations among various classes of fish, however,
and the salmonid model should not be generalized. In cyprinids, for example,
a typical ovulatory surge of GTH was observed in the goldfish (Stacey et al.,
~ 1979) and in carp (Santos ef al., 1986).

3. Mechanism of Action

The first step of gonadotropin action in the ovary is the binding to ovarian
receptors. The total number of receptors increases during the process of
oocyte maturation in the amago salmon (Kanamori and Nagahama, 1988a)
and in the brown trout Sa/mo rrutta (Breton.and Sambroni, 1989), as well asin
mammals (Kammerman and Ross, 1975), leading to an enhanced follicular
sensitivily to 'g_onadot_ropi'ns in terms of steroidogenic potential {Kanamori
and Nagahama, 1988a; sce Section V1). The regulation of LH and FSH
receptors has been particularly well studied in mammalian granulosa cell
cultures (reviewed by Richards; 1980). The number of FSH receptors in
granulosa cells, which remains essentially constant during foliicular growth,
increases during metestrus and diestrus 1 and decreases during diestrus 2 and
proestrus (Uilenbroek and Richards, 1979; Uilenbroek and Van der Linden,
1983) at the expected time of oocyte maturation. These receptors can be
induced by FSH itself, but only in the presence of estradiol (Louvet and
Vaitukaitis, 1976; Tonetta and Ireland, 1984}, which might be the limiting
regulator of follicular development (Farookhi, 1980). The number of LH
receptors increases from diestrus to proestrus (Nimrod ef al., 1977) simulta-
neously with the follicle’s ability to produce cAMP and estradiol. Even
though LH appears to regulate its own recepiors (Rao ef al., 1977}, FSH 1s
required for theéir induction (Zeleznik et al., 1974; Richards et al., 1976), as
the result of a de rovo synthesis (Segaloff and Limbird, 1983; Loeken and
Channing, 1985). Moreover, the action of FSH on the induction of LH
receptors is greatly stimulated by estradiol (Sheela Rani er al., 1981; Knecht
et al., 1985a,b), which thus seems to play an important role as an autocrine
ovarian regulator of gonadotropin action by its differential effect on LH and
FSH receptors.

Ovarian steps following gonadotropin binding and leading to oocyte matu-
ration should differ in mammals in which the suppression of putative matura-
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tion inhibitors is considered to be the main maturation-inducing mechanism
and in lower vertebrates in which the main mechanism seems to be the
induction of MIS synthesis. In both cases, however, the preovulatory gonad-
otropic surge acts, among othei possible effects, upon ovarian steroidogene-
sis, in particular stimulating progestin production (see Section 1V, B),
whether or not these, in turn, can directly trigger cocyte maturation.

There is good evidence from numerous studies that the effect of gonadotro- .
pins on steroidogenesis is mediated in part by a rise in intraceliular cAMP,
through the stimulation of membrane-bound adenylate cyclase (see reviews
by Marsh, 1976, and Cooke, 1983). Another cyclic nucleotide, cGMP, which
is known to exhibit fluctuations in response to gonadotropin stimulation, was
recently suggested to play a role by activating cAMP- phosphodleslerdsc‘
thus lowering the cAMP level after its. inftial gonadotropin-induced rise
(Hubbard and Price, 1988). Othér kinds of intracellular messengers are proba-
bly involved, such as inositol-triphosphate (IP;) and diacylglycerol (DAG),
by-products of gonadotropin-stimulated phosphoinositide metabolism that
are expected to act on intracellular Ca” * mobilization and protein-kinase C
activation (mammals: Davis et al., 1986a, and reviewed by Farese, 1987;
amphibians: Kleis-San Francisco and Schuetz, 1988).

The regulation of cAMP levels in the different ovarian compartments
warrants further investigation, particularly the chronological aspects, bear-
ing in mind the apparent paradoxical character of its involvement within the
follicle at the time of oocyte maturation induction. This requires a CAMP
decrease at the oocyte level (see Section 111, B, 4), whereas the gonadotro-
pin’s maturation surge is supposed to act through an increase of cAMP levels
within follicular steroidogenic cells. This paradox is illustrated by the effects
on intrafoilicular oocyte maturation of high levels of cAMP, aruficially ele-
vated in vitro by using various substances such as exogenous cAMP or
synthetic derivatives, forskolin or cholera toxin (stimulating endogenous
cAMP synthesis, through the activation of adenylate cyclase), and methyl-
xanthines (inhibiting cAMP degradation, through the inhibition of phosphodi-
esterase). In lower vertebrates, such high cAMP concentrations directly:
promote MIS prodiction or enhance gonadotropm -stimalated MIS produc-
tion but inhibit the oocyte maturation-inducing effect of MIS. However,
transiently high or intermediate cAMP concentrations can stimulate MIS
production without inhibiting the eocyte maturation response (amphibians:
Kwon and Schuetz, 1985; fish: Jalabert and Finet, 1986; DeManno and Goelz,
1987, Iwamatsu et al., 1987a). The same kind of effects can be observed in
mammalian follicles, with minor variations due to species and/or experimen-
tal conditions but with the main difference that steroids, which are produced
in response to increased CAMP, are not considered as maturation-inducing
substances (Ekhiolm ez al., 1984; Racowsky, 1985; Hashimoto et al., 19835
Tsafriri, 1985: Homa, 1988; Dekel et al., 1988a; Hosoi ef al., 1989). As a
general trend, it appears that the differential regulation of cAMPleveis in the
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vanious follicular compartments (intraceiiular synthesis and degradation and
intercellular. exchanges) might be one important mechanism controlling the
timing of meiosis resumption. '

Finally, recent experiments in sheep suggest that a prostaglandin, PGE,,
might also participate in gonadotropin action on intrafollicular cocyte matu-
ration by controlling the expansion of cells of the mural granulosa and cumu-
lus oophorus, thus modulating the possible transfer via cell-to-cell contacts,
of intrafollicular substances (Murdoch, 1988).

B. Regulation of Ovarian Steroidogenesis

The precise role of steroids in the regulation of oocyte maturation in mam-
mals is still unknown. However, as discussed above, an adequate balance
“between the various kinds of steroids is probably necessary for the whole
maturation process. More conclusive data were obtained in lower verte-
- brates, where progestins may be considered as physiological MIS. In both
cases, the regulation of steroidogenesis is an important step in the endocrine
‘control of oocyte maturation, particularly when the competence of matured
oocytes for subsequent development is considered.

In vitro experiments suggest a synergy between different follicular cell
categories, and therefore two-cell type models have been proposed for sev-
eral species: (1) for the production of androgens by thecal cells from
progestins. produced by granulosa cells (Fortune, 1986); (2) for the produc-
tion of estrogens by granulosa cells from androgens produced by thecal cells
(Liu and Hsueh, 1986; Young et al., 1982a; Nagahama, 1987¢c; and (3) for
the production of MIS (17a,208-OH-P) by granulosa layers from 17a-
hydroxyprogesterone produced by the thecal layer in salmonids (Young et
al., 1986; Nagahama, 1987¢; Wright and Zhao, 1988). However, such models
are not universal and still too simple. Thus, in some species, thecal cells are
able to synthesize estradiol (mammals: Evans et al., 1981; Vernon et al.,
1983; birds: Huang et af., 1979; Marrone and Hertelendy, 1983); and aroma-
tase can be detected immunocytochemically in both cell categories (rodents:
Matsuda er al., 1984). Furthermore, stromal tissues may also cooperate n
ovarian steroid production (McNatty et «l., 1980). In the following discus-
sion, experiments performed with various compenents of the ovary will be
considered. Each component may exhibit a specific sensitivily to common
nonspecific regulating factors. Furthermore, data from in vitre experiments
should be interpreted with caution when physiological models of regulation
are proposed. '

The intrafollicular levels of several steroids, and the regulation of their
biosynthesis, have been extensively investigated in many mammals, but
accurate information on the cocylte stages in relation 10 meiosis resumption 1s
often lacking. Moreover, results may be contradictory, depending on the
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species, the particular methodology of in vitro experiments, the quality and
dosage of pituitary hormone preparations used, and the pattern of stimu-
lation. '

However, a general phenomenon observed in vivo after the gonadotropin
preovulatory surge is the increased progestin—-estradiol ratio (P-E), even in
species in which gestation is absent. This increase is mainly due to, at least
within a short period following gonadotropic stimulation, an increase in the
production of progesterone (or 17a,208-OH:P in some teleostean species),
which may be amplified by a décrease in estradiol synthesis (Ainsworth etal.,
- 1980; Vanhems ef al., 1982; Dieleman ef al., 1983; Schenken ef al., 1985
Grant et al., 1989). However, a progesterone increase occurs later in some
species (ewe: Murdoch and Dunn, 1982). In birds and other n_‘o‘n'mamm'a'lian
vertebrates, this evolution of the P-E ratio occurs well before the initiation of
meiosis resumption {(birds: Doi 7 al., 1980; Balirer al., 1983; Robinson and
Etches, 1986; salmonid fish: Fostier and Jalabert, 1986; Van Der Krazk and
Donaldson, 1986), and a decrease of estradiol may occur prior (o the
progestin peak (Fostier et al., 1978). In vitro, the steroidogenic response to-
gonadotropins of follicles taken at various stages of the ovarian cycle show
similar patterns (rat: Hillensjo et al., 1976; fowl: Robinson and Ftches, 1986;
Xenopus: Fortune, 1983; trout: Fostier and Jalabert, 1986).

The decrease in estradiol secretion, in relation to the LH surge, may be due
to a lower aromatase activity in several mammals (Hillensjo et al., 1977;
Dieleman and Blankenstein, 1984; Polan ef af., 1984), birds (Arimstrong,
1984), amphibidins (Mulner et al., 1978), and fish (Young et al., 1983b;
Kagawa et al., 1984; De Monés and Fostier, 1987), but this is still conlrover-
sial. A decrease in androgen production, via a fall in [7a-hydroxylase and
C17,20-lyase activitics, may also participate in the drop in estradiol secretion
(human: Brailly e¢ al., 1981; rat: Suzuki and Tamaoki, 1983; Fortune and
Hilbert, 1986; hen: Marrone and Hertelendy, 1985; goldfish: Nagahama et al.,
1986). Dcpendmg on species, a direct inhibitory effect of LH or of GTH on
the activity of aromatase was demonstrated in vitro (pig: Tsang éf al., 1985;
Xenopus: Mulner et al., 1978; trout: Sire and Dépéche, 1981; De Monés and
Fostier, 1987) and was also demonstrated on the activity of C17,20-lyase (rat:
Uilenbroek, 1985). Aromatase was also inhibited in vitro by prolactin (Tsai-
Morris et al., 1983). _

In mammals, FSH and LH enhance progesterone production at various
steps of the steroidogenic pathway: uptake of hipoproteins, liberation of
cholesterol from lipoproteins, mobilization of cholesterol, conversion of cho-
lesterol into pregnenolone, and conversion of pregnenolone into progester-
one (Ireland, 1987). FSH does not retain its stimulatory effect on estradiol
secretion by granulosa cells collected during or after the LH peak but retains
its capacity to amphify progesterone production (Channing and Reichert.
1984; Fortune and Hilbert, 1986: Quirk et al., 1986). Prolactin, in addition to



50 Bernard Jalabert es al.

the inhibition of estradiol production, may also increase progesterone secre-
tion by granulosa cells (Fortune and Vincent, 1986}

.In lower vertebrates, the stimulation of M1S production by gonadotropins
has been. well documented. Two chemically distinct glycoprotein gonadotro-
pins, GTH [ and GTH I, have recently been purified and characterized from
chum salmon pituitaries (Suzuki ¢f al., 1988a,b; see Sections 11, A, Iand IV,
A, 1). GTH II, which is more similar to tetrapod gonadotropins, was claimed
to be more potent than GTH 1 in stimulating 17¢,208-OH- P production by
intact amago salmon ovarian follicles in vitro (Suzuki et al., 1988b). In some
teleosts it was suggested that 208-hydroxysteroid dehydrogcnase (208-
HSD), the key enzyme converting 17a-OH-P into 17a,208-OH-P, is induced
de novo. by gonadotropins (Nagahama. er al., 1985), but other enzymatic
steps are pmbably involved. The availability of the precursor (17«-OH-P) for
208-HSD is increased (Kanamori e/ al., 1988}, both through stimulation of its
own synthesis at early steps of steroidogenic pathway (Young er al., 1982b;,
Petrino et al., 1989) and probably through an inhibition of 17- 20-lyase (Zohar,
1982; Scott er al., 1983).

The regulation of steroid-transforming enzymes by endogenous steroids
themselves is now well established (Gower and Cooke, 1983). Thus, a steroid
produced within one particular cell may act on its own synthesis or on the
synthesis of another kind of steroid within the same cell, in another ovarian
cell belonging to the same category, or in other ovarian ceil categories.

Several studies indicate a reversible inhibitory action of estradiol-178 on
progesterone secretion by granulosa or thecal cells of mammalian preovala-
tory follicles, cultured with or without LH (Haney and Schomberg, 1978:
Fortune and Hansel, 1979; Hunter and Armstrong, 1987). However, estradiol

‘also exhibits either a long-term (4 days) stimulatory or a short-term (20 h)
inhibitory action on progesterone biosynthesis by cultured swine granulosa
cells (Veldhuis, 1985a,b). In the former, cholesterol side-chain cleavage and
38-hydroxysteroid dehydrogenase (38-HSD) activitics were enhanced by
estradiol, whereas 38-HSD was inhibited in the latter. The authors suggested
that estradiol might act in vivo to limit the premature produclmn of progester-
one in developing follicles, while simultaneously **preparing’’ enzymes for
the later production of progesterone. This “prcpamtion might also occur at
the level of low density lipoproteins (LLDL) receptors, which are increased by
estradiol alone (Veldbuis and Gwynne, 1985) or in synergism with a growth
factor, somatomedin C (Veldhuis e al., 1986). Inhibition of progesierone by
estradiol has also been reported in blrds (Johnson ef al., 1988).

Inamphibians, estrogens could act directly on the oocyte to inhibit matura-
tion (see Section 11, B, 4), but they could also exert an inhibitory effect on
gonadotropin-stimulated progesterone synthesis (Lin and Schuetz, 1985a,b).
As in mammals, estradiol inhibits 38-HSD activity in R. pipiens ovarian
follicles (Spiegel et al., 1978; Lin er al., 1988). Similar results were obtained in
vitro in fish: inhibition of MIS (17a,208-OH-P) secretion in trout ovaries
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(Jalabert and Fostier, 1984a) and 38-HSD inhibition in yellow perch ovaries
(Theofan, 1981).

Testosterone may enhance progestin secretion in preovulatory follicles of
rat (Quirk et al., 1986 Fortune, 1986), chicken (Phiitips ez al., 1985), and trout
(Jalabert and Fostier, 1984a). However, either no eftect or even inhibition
have also been observed (primates: Bernhisel 1 al., 1987; Shaw et al., 1989;
hen: Johnson et al., 1988). '

Intraovarian factors other than steroids were showa to modulate progestin
secrefion; for example, cAMP, at feast as an intracellular relay of gonadotro-
pins (rat: Nordenstrom et al., 1981; hen: Hammond et al.; 1980; frog: Kwon
and Schuetz, 1986; rainbow trout: Festier and Jalabert, 1986; Kanamori and
Nagahama, 1988b), opiocids (Facchinetti er ¢f.; 1986y, GnRH-like factors (see
Section C), growth factors {reviewed. by Carson et al., 1989), follicular
inhibin-like activity (Chari et al., 1985), and cocyte maturation inhibitor
(OMI) (Hillensjo er al., 1980). Finally, the synthesis of ovarian steroids might
be directly controlied by the central nervous system via specific neural
pathways (Aguado and Ojeda, 1984). However, further investigations are
necessary in order to assign an actual physiological role to these and other
factors. For instance, the physiological involvement of prostaglandins in the
regulation of steroidogenesis is debatable (Hertelendy and Hammond, 1980;
Evans ef al., 1983). ' ’

In conclusion, whereas the role of gonadotropins in the periovulatory
production of steroids is relatively well known, further investigations of the
possible role of other pituitary hormones and potential paracrine factors are
needed in order to draw a more detailed and pertinent scheme of steroidogen-
esis regulation at the time of meiosis resumption.

C. Involvement of Ovarian Peptides

At least three kinds of peptides may be of importance for intraovarian
paracrine regulation related to the control of meiosis resumption. One is
vasoactive intestinal peptide (VIP), known to inhibit a wide range of activities
in various cells. VIP was recently located by immunofluorescence in neive
fibers within the stromal and thecal compartments of the rat ovary (Ahmed et
al., 1986). It stimulated meiosis of follicle-enclosed rat oocytes in vitro, but
with a lower efficiency than LH (Carlsson et af., 1987; Tornell er al., 1988).
However, its physiological significance remains unclear in all vertebrates. In
addition, epidermal growth factor (EGF), insulin-tike growth factors (IGFs)
and transforming growth factors (TGFs) appear able to stimulate intrafol-
licular maturation of rat oocytes (Dekel and Sherizly, 1985; Feng et al., 1988).

Another kind of peptide suspected to be involved in the intraovarian regu-
lation of cocyte maturation appears to be related to gonadotropin-releasing
hormone (GnRH). Arguments favoring this hypothesis have been provided,
$0 far mainly m mammals, by the observation of direct effects of GnRH on the
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ovary, the characterization of ovarian receptors, and the identification of
GnRH-like activity within the ovary (see Knecht et al., 1985c, and Cooke and
Sulljvan, 1985, for review). Although the evaluation of GnRH effects on
ovarian functions may depend on various factors such as response critenia,
methods, and species, direct effects are essentially inhibitory in immature
follicles, with suppressed responsiveness to gonadotropins, whereas stimula-
tory actions arise in more mature follicles (Knecht ez al., 1985¢}. Thus, GnRH
or its agonists promote ovulation in hypophysectomized rats {Ekholm et al.,
1981: Corbin and Bex, 1981; Dekel et al., 1985). They promote ovulation in
perfused rat ovarnes (Koos and LeMalre 1985), but rabbit ovaries appear
much less sensitive (Eisenberg er al., 1984; Koos and Le Maire, 1985). They
stimulate the maturation of follicle-enclosed rat oocytes in vitro (Hillensjd
* and LeMaire, 1980) and can improve the proportion of isolated oocytes from
the primate Macdca fascicularis that undergo GVBD in vitro (Lefévre ef al.,
1988). Specific receptors were identified in all ovanan compartments in the
rat (Séguin et al., 1982). In the rat, ovarian GoRH receptors show some
similarities with pituitary receptors with respect to structural properties -
(Iwashita and Catt, 1985) and the relative potency of various agonists and
antagonists (Hsueh et al., 1983). The mechanism of action of GnRH on the
follicle leading to oocyte maturation in mammals is not better understood
than that of gonadotropins. As with LH, GnRH and its agnonists were found to
induce a dosage-dependent stimulation of prostaglandin E; progesterone, and
androstenedione by isolated preovulatory rat follicles (Hillensjo ez al., 1982;
Popkin e? al., 1983). Both hormones seem to gencrate, as an early step of their
action on granulosa cells, rapid modifications in the metabolism of membrane
phospholipids, leading to the production of IP; and DAG (Davis er al.,
1986a,b). However, unlike LH, GaRH does not promote any noticeable rise
in cAMP level, either within isolated follicles (Hillensjo ez af., 1982) or in
isolated granulosa cells (Clark et al., 1980; Naor ef al., 1984). Morcover,
GnRH appears to stimulate cAMP degradation by the membrane phospho-
diesterase of granulosa cells (Knecht et al., 1983), an action which could be of
importance for the differential reguiation of the cAMP level between the
oocyte and other follicular compartments at the time of oocyte maturation.
Finally, the existence, inthe ovary, of GnRH-like peptides was demonstrated
in the rat (Ying ef al., 1981; Aten et al., 1986}, the cow and the ewe (Aten et
al., 1987, and in human follicular fluid, where a chemical primary structure
was determined (Li er al.; 1987). All daia demonstiate that ovarian GnRH-
like peptides.are different from the hypothalamic GnRH.

Few data are presently available concerning the possible involvement of
GnRH-like peptides in the intraovarian regulation of oocyle maturation in
lower veriebrates. GnRH failed to alter testosterone or progesterone secre-
tion or GVBD, induced in vitro by gonadotropins in frog ovarian fragments
(Hubbard and Licht, 1985), whereas an agonist analogue of teleost GnRH
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reduced the GVBD response of goldfish follicie-enclosed vocytes to gonado-
tropins, 17¢-OH-P, and 17a,208-OH-P (Habibi ¢t af., 1988). More data are
obviously needed in lower vertebrates.

V. REGULATION OF THE HYPOTHALAMO-
HYPOPHYSIAL ACTIVITY RELATED TO
OOCYTE MATURATION

The “‘preovuatory surge’” of gonadotropins is a signal that initiates a cascade
of physiological events beginning with cocyte materation and leading to
ovulation. It results from the mutual adjustment between environmental
constraints, integrated by the central nervous system, and the endogenous
rhythms of follicutar differentiation. We will focus here only on the mecha-
nisms by which follicular differentiation modulates the hypothalamo-
hypophysial activity and thus the preovulatory surge through'the rclroactlon-
of ovarian steroids.

Although varicus models have been described in different mammalian
species, some general trends can be considered. Estradiol seems. to be the
first ovarian signal to initiate the LH preovulatory surge and, presumably,
concomitant FSH release (primates: Knobil, 1980; rat: Goodman and Knobil,
1981). Whereas estradiol negatively modulates the pituitary response to
GonRH pulses from the hypothalamus during follicular growth, it finaily
reaches a high threshold level that induces a positive feedback leading to the
preovulatory surge. Progesterone appears also to play an important role in
modulating the amplitude and the time of the LH surge (reviewed in Ramirez
et al., 1984). This may account for the rise in the hypothalamic GnRH content
at proestrus in the rat (Wise e af., 1981) and was shown to induce GnRH
release in vitro by isolated hypothalamus.from mature rat (Rasmussen and
Yen, 1983). This action of progesterone seems to require, however, estro-
genic priming (Kim and Ramirez, 1985, 1986).

In the hen, increased levels of progesterone (Furt er al., 1973), testosterone
(Shahabi ez al., 1975a,b; Eiches and Cunningham, 1977) and estradiol (Senior
and Cunningham, 1974; Shahabi et al., 1975a,b; Shodono et al., 1975) are
associated with the preovulatory LH surge. This LH surge was shown in fact
to'be biphasic: an initial small increase occurs just after the onset of darkness,
followed by a subsequent larger preovulatory release (Williams and Sharp,
1978). Converging experimental data have demonstrated that this last main
preovulatory surge of LH is induced by a positive feedback effect of
progesterone secreted by the largest yolky ovarian follicle, when present,
responding to the first small LH peak (Etches and Cunningham, 1976a,b:
Wilhhams and Sharp, 1978; Johnson and Van Tienhoven, 1984). The major
involvement of progesterone rather than other steroids rising at the same time
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was suggested by the complete inhibitory effect of injected progesterone
antibodies on ovulation. Estradiol antibodies were not inhibitory, and testos-
terone antibodies were only partially inhibitory (Furr and Smith, 1975). Es-
tradiol, however, was shown to facilitate progesterone-stimutated LH release
(Wilson and Cunningham, 1981) and was suggested to increase hypothalamic
and hypophysial concentrations of progesterone receptors (Kawashima ef
al., 1979a,b). Progesterone seems to act at the pituitary level by increasing
LH production but not necessarily spontaneous release, as shown in vitro in
dispersed cells from hen pituitaries taken at vartous times during the ovula:
tory cycle (_Kawashima, et al., 1982). Furthermore¢, the pituitary responsive-
ness to GaRH in vive appears unaffected throughout the preovulatory period
(6-24 h) (Bonney et al., 1974). At the hypothalamic level, several indirect
observations sugpest that progesterone increases GnRH secretion (Tanaka ef
al., 1974; Fraser and Sharp, 1978; Knight et al., 1984).

In fish, we will only comsider the rainbow trout, Salmo gairdneri, where
sufficient endocrinological data are consistent enough to allow a model to be
sketched comparable to that in mammals and birds. An increase in GnRH
content of pituitary and brain is observed during the period of GV migration
(Breton et al., 1986). in vitro experiments show thai the secretion of GTH by
cultured pituitary cells from fish at the GV migration stage, in response 10
GnRH administered in vifro, is enhanced when these cells are preincubated
with 17«,208-OH-P concentrations in the physiological range of plasma
values present before the initiation of cocyte maturation (Weil and Marcuzzi,
1987). It can be hypothesized that the rise of plasma GTH observed before the
initiation of maturation (i.e., the preovuldtory surge, sensu stric t0) might be
due to an increased pituitary sensitivity to GnRH promoted by a positive
feedback of low concentrations of 17«,208-OH-P secreted by the differen-
tiating ovarian follicles. The further large GTH surge observed during matu-
ration could -be due both to the increased pituitary sensitivity to GnRH
observed at that stage (Weil, 1981) and to an increased GnRH release (from
the neurohypophysial part of the pituitary to the gonadotropic part) as sug-
gested by the overall decrease in pituitary GnRH content observed at the
same stage (Breton ez al., 1986). Finally, at the ume of ovulation, when the
levels of both GTH and l7a ,208-OH-P are very high in vivo, the pituitary
response to GnRH in vitre is also very high but can then be decreased by
physiological concentrations of 17a,208-OH-P (Weil and Marcuzzi, 1987),
which supports the hypothesis of a negative feedback of 17« ,208-OH-P at
that stage ( Jalabert et al., 1976; Jalabert ¢1 al., 1980b).

From a companson of data in mammals, birds, and fish, it appears, in
general, that ovarian progestins secreted as a result of follicular differentia-
tion play an important role in allowing or even initiating the preovulaiory
gonadotropin surge and in modulating the evolution of further periovulatory
gonadotropin secretion.
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VI. ACQUISITION OF
MATURATIONAL COMPETENCE

The concept of maturational competence may be extended 1o any component
of the female organism, from the germinal and somatic ovarian cells to any
tissue, gland, and organ involved in the production of oocytes with the
potential to resume meiosis, to be fertilized and to yield viable embryos. It
implies that each component is first able Lo receive and to translate correctly
an external signal (receptivity) within a normal physiological range (sensitiv-
ity) and then is capable of giving the appropriate response (responsiveness),
which may be the emission of another signal or the realization of the final
biological events. Most of our knowledge concerns receptivity and sensitivity
levels, which can be evaluated by measurable criteria capable of being stimu-
lated by exogenous stimuli. The actual responsiveness of a biological system
is more difficult to predict because morphoilogical or biochemical criteria
generally available are only partial indicators in comparison to the complex-
ity of the final response. Finally, carrect evaluation of compiéie maturation is
facing a last methodological difficulty: embryonic development, which is the
best critenion for such an evaluation, requires factors other than those strictly
dealing with oocyte maturation (i.c., relating to adequate fertthization and
environmental conditions). The following discussion will focus exclusively
on the ovarian competence, considering the follicle and the oocyte level.

A process of recruitment occurs in mammals during folliculogenesis, when
a group of preantral follicles becomes responsive and dependent upon gonad-
otropins. Some of them are selected to grow and become dominant under
control of endocrine and intraovarian factors. lreland (1987) recently re-
viewed the various factors that could control follicular growth and develop-
ment. Dominant follicles ¢laborate factors able to inhibit, within the ovary,
the development of other follicles. Besides, they secrete estradiol and in-
hibin, both of which depress the secretion of FSH, leading to a hormonal
milieu inhibiting the growth of other follicles. Since estradiol is necessary for
normal follicle growth and granulosa differentiation, attention has been fo-
cused on the regulation of aromatase. A protein that inhubits granulosa cell
aromatase has been purified from porcine follicular fluid (Ono er af., 1986). It
inhibits estrogen secretion by cells from medium-sized follicles but not from
large follicles. Dominant follicles could thus secrete enough estradiol to favor
their own development and prevent the differentiation of other follicles by
inhibiting their estrogen synthesis. During follicular growth, the number of
FSH and LH receptors increases (see Section [V, A, 3) and the patterns of
steroidogenesis evolve (see Section 1V, B). The capacity of the tolhicle-
enclosed oocyie to resume meiosis following exposure to LH is correlated
with the responsiveness of granulosa cells to this hormone (Dekel et al.,
1988b). Once antral follicles have reached their final size, they become ready
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10 respond to the preovulatory gonadotropin susgeé. This, in turn, induces
changes in follicular physiology, particularly steroidogenesis, aiready de-
scribed (Section V). Besides, follicular environment may prevent oocyte
degeneration at this stage (Sato and Ishibashi, 1988). '

In lower vertebrates, the follicle size is mainly dependent on oocyte growth
(vitellogenesis); poor attention has been paid to the follicular differentiation
itself, except in terms of GTH receptor capacity (Kanamori and Nagahama,
19884; Breton and Sambroni, 1989) and of steroidogenic capability (Naga-
hama, 1988). Steroid secretion.can be stimulated diring the whole reproduc-
tive cycle by GTH, but the MIS is mainly secreted by postvitellogenic folli-
cles in amphibians (Fortune, 1983) and fish (Young et a/., 1983¢; Fostier and
Jalabert, 1986; Van Der Kraak and Donaldson, 1986; Sakai et al., 1987 Lin et
ai., 1987; Kanamori et al., 1988). At this stage, the ncosynthesis of steroi-
dogenic key enzymes may occur {Nagahama ef al., 1985). In coho salmon,
both 208-HSD activity in the graﬁulosa cells and 17a-OH-P secretion by the
theca cells are determining factors for the 17a,208-OH-P surge (Kanamori et
al., 1988). However, the way in which this potentiality is acquired by follicu-
Jar cells is stll unknown. Besides, follicular sensitivity to GTH increases
during the postvilellogénic stages, evaluated either through the final GYBD
response (Jalabert and Fostier, 1984b) or MIS secretion (Fostier and Jala-
bert, 1986). This evolution is associated with that of plasma GTH profiles
(Zohar, 1982; Zohar et al., 1986). Continuous exposure of follicles to GTH
seems necessary to obtain a maturational stermdogcmc response (Zohar,
1982; Zohar et al., 1986). GV migration to the oocyte periphery has been
posntwely correlated with this increase in sensitivity (Jalabert and Fostier,
1984b). The ovarian sensitivity to GTH may be repressed by follicular fac-
tors, among which estradiol is a possible candidate (see Section IV, B),
whereas these follicular factors themselves may be depressed by low prunmg
levels of GTH. Thus, the percentage of GVBD afier coculture of carp ovarian
fragments from pnmed females (injected with a low dose of carp pituitary
homogenate) with ovarian fragments of unprimed females is decreased in
comparison with cultured fragments from primed fish alone (Kime el al.,

1989).

Concerning the oocyte itsclf, the term competence has been used for two
kinds of phenomena: (1) Developmental competence is the ability to undergo
fertilization and embryonic development after meiosis resumption (Staig-
miller and Moor, 1984). In many ‘mammalian species, this ability may be
acquired only after the initiating action of GVBD-inducing factors and even
after GVBD. It needs the action of factors, probably including steroids
originating in the granulosa cells (see review by Thibault e al., 1987, and
Section 1, A, 1), and requires direct cell-oocyte contacts to be effective
(Mattioh et al., 1988a,b). In the fish O. latipes, the arousal of developmental
capacity also requires factors from the follicular cells (Iwamatsu and Chta,
1981). (2) Meiotic competence is the ability to resume meiosis when the
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follicular inhibitory action is suppressed (mammals) or when specific MISs
are provided (lower vertebrates) (Thibault, 1977). We wili focus. here on
meiotic competence. This is an intrinsic characteristic of the differentiated '
oocyte, even though its differentiation has been obtained with the necessary

help of cooperating follicular cels {Thibault er al., 1987). Thus, studies on the

blockage of spontaneous intrafollicular maturation in R. pipiens show that the

higher sensitivity to progesterone induction observed in follicles from

animals around the natural breeding season (spring) in comparison to tollicles

from winter frogs is probably related to a different balance between negative

and positive hormonal control and not to a different oocyte sensitivity (Lin

and Schuetz, 1985b). Such data show that the evaluation of the actual oocyte

competence is necessarity difficult since, in all species, the follicular cycle isa

dynamic process during which the levels of all endocrine and paracrine

factors are continuously varying until ovulation. Therefore, meiotic com-

petence should theoretically be evaluated independently of its complex envi-

ronment.

In mammals, meiotic competence is acqaired only around the period of
antrum formation, when the oocyte reaches 80 to 90% of its final size (Thi-
bault et al., 1987). However, the cocytes from juvenilec animals are generally
incompetent to resume meiosis, even if they come from antral follicles (re-
viewed by Thibault, 1977; Moor and Warnes, 1978). The ability 1o resume
Meiosis bponldne'ously in culture is not acquired until the age of 15-21 days
pospartum (pp) in mice, 23 days pp in hamsier, and 20-26 days pp in rat
(Tsafriri et al., 1983). Meiotic competence, abolished after hypophysectomy
in the rat, is restored by FSH but not by L H. Restoration appears to require
steroid synthesis since it is prevented by steroidogenesis inhibitors (Bar-Ami
et al., 1983). Thus, the completion of RNA accumulation during oocyte
growth could be a prerequisite for the acquisition of competence (Moorand
Warnes, 1978; Moore and Lintern-Moore, 1974). Treaiments with pregnant
mare serum gonadotropin (PMSG) or estradiol are effective in restoring
oocyte competence when administered between 25 and 31 days pp in rat
hypophysectomized on day 15 pp, but they are ineffective prior to 25 day’s pp.
The time at which hormonal replacement can restore meiolic competence
corresponds to the age at which competence is normally acquired, and this
timing suggests an essential role of age-dependent differentiation of the ovary
(Bar-Ami and Tsafriri, 1986).

In lower vertebrates, only indirect conclusions can be drawn from experi-
ments performed on fish oocytes, since they were usually cultured within
their follicles. Qocyte sensitivity to MIS may be acquired early in F. hetero-
clitus, at a smaller size than that of cocytes undergoing spontaneous matura-
tion in vivo (Wallace and Selman, 1978). However, the sensitivity of oocyles
gradually increases when they are collected closer to the naturai spawning
time, when follicular size ts still increasing (Begovac and Wallace, 1988), or,
in some specics, when GV peripheral migration is occurring (Goetz and
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Theofan, 1979; Jalabert and Fostier, 1984b; Goetz and Cetta, 1985; Lutes et
al., 1987). Such evolution can exhibit very short, one-day ¢ycles in daily
spawning fish (Iwamatsu, 1974; Kobayashi er al., 1988). This increase in
sensitivity secems to be correlated with an overali increase in intraoocylte
basal levels of cAMP (Jalabert and Finet, 1986). More data are available on
amphibians. Denuded oocytes are sensitive to MIS at a smaller size than
those able to respond in vitro to hCG inside their follicle (Reynhout er af.,
1975). However, smaller oocytes unresponsive to progesterone undergo
GVBD when microinjected with MPF. Further analysis showed that this lack
of a response by small cocytes might be due to less receptors to MIS and to a
deficiency in an event(s) subsequent to cAMP relay and prior to MPF action
(Sadler and Maller, 1983). These studies demonstrate that intrinsic Qocyte
differentiation is required before the successful initiation of maturation and
involves various cellular processes.

VH. CONCLUDING REMARKS AND
BIOMEDICAL IMPLICATIONS

Numerous works on the endocrinological, cellular, and molecular mecha-
nisms regulatmg oocyte maturation in mammals have been directly stima-
lated by the need to improve human fertility control and fecundity in domes-
tic mammals. The principal applications concern the control of ovulation in
vivo and the identification of oocyte maturation quality markers for in vitro
maturation and fertilization (reviewed by Pellicer er al., 1987, in human).

From a more general point.of view, oocyte maturation represents an impor-
tant phase of female meiosis, which may be considered as a particular case of
the general process of cell division, subject to multiple stop—go controls
(Lindner er al., 1980). These controls involve a number of intracellular fac-

-tors, such as MPF and cytostatic factors ( Masui, 1983), and several external
chemical or physical factors acting as specific signals inducing the first and
second meioltic divisions. Data in this field may provide valuable information
about the fundamental mechanisms of cell proliferation and, lherefore are of
considerable biomedical interest.

For example, MPF was first discovered in the cytoplasm of amphibian
oocytes resutning meiosis (see Section 111, A). It subsequently turned out to
be an important regulation factor, involved in the control of afl kinds of cell
division (not only meiotic but also mitotic). Thus, it was found in the cy-
toplasm from unfertilized eggs and synchronously cleaving embryos (Reyn-
hout and Smith, 1974; Wasserman and Smith, 1978; Gerhart et al., 1984;
Detilaff and Ryabova, l986) and in synchronously dividing cultured somatic
cells (Sunkara er al., 1979; Nelkin er al., 1980). MPF is not even restricted to
vertebrates, since it was found in other eukaryotes such as yeast (Weintraub
et al., 1982) and the slime mold Physarum polycephalum (Adlakha et al.,
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- 1988). Iis recent characterization (see Section 1, A), which is due to the
convergence of molecular genetic and cell biology approaches, opens fasci-
nating perspectives to understanding the general mechanisms regulating lhc
cell cycle (reviewed by Murray, 1989).

Another example comes from the observation that several proteins, first’
identified as oncogene products of transforming genes, are able 1o interfere in
the cellular transduction of meiosis-inducing signals and may normally partic-
ipate in the control of cell multiplication.’ This is the case for the p2] ras
protein, which induces GVBD when microinjected in X. laevis oocytes
(Birchmeier-et al., 1985), appedring as a potential mediator of insulin ac-
tion (Korn et al., 1987; Deshpande and Kung, 1987). This is also the case for
the c¢-mos proto-oncogene” product, which is detectable only during
progesterone-induced maturation in Xenopm oocyles, whereas its specific
antisense oligonucleotide blocks GVBD (Saguta et al., 1988).

All the above data have been obtained by the convergence of both celiular
and molecular biology approaches initially performed in lower vertebrates.
From another point of view, it must also be uaderlined that the identification
of maturation-inducing steroids in lower vertebrates has been encouraging
reinvestigations into the rolé of steroids in . mammalian cocyte maturation
(Tesarik, 1986). :

Even if the primary interest of such works is in the human, the use of
“model systems’” in animals is required because of ethical considerations and’
organ availability (Lindner er al., 1980). Besides, although mammalian mod-
els have been extensively used, they present some technical limits, such as
the small size and the low number of synchronous oocytes available from the
ovaries of one donor female. 1n contrast, many amphibian and fish Species are
characterized by the availability, at the end of the reproductive cycle, of
numerous and large oocyies at the same stage of development (3,000/1 kg in
rainbow troiit; 20,000 in northern pike; and 100,000 in common carp). While
oocyte diaméter in eutherian mammals ranges between 60 and 150 wm (Thi-
bault et ¢l., 1987), it can reach i.3 mm in amphibians and 6—8 mm in salmo-
mds as a result of the yolk volume. Manipulations with forceps, microin-
jections, and microsurgery are thus much easier with such ococytes
(Hitchcock and Friedman, 1980). The availability of a lirge number of
synchronous oocytes or foilicles from only one donor female can be used to
climinate the problem of variations among individuals in seasitivity levels. -
This was used 1o set up various kinds of in vitro bivassays: some homologous
gonadotropin assays have been using the GVBD response of oocytes within
cultured follicles from Xenopus (Thornton, 1971), rainbow trout { Jalabert et
al., 1974) and Fundulus (Lin et al., F987), whereas a heterologous assay for
porcine and human OMI has been developed using the inhibitton of the
GVBD response of progesterone-stimulated oocytes from  Xenopus
(Cameron et al., 1983; Pomeranlz and Bilello, 1987). The initial discovery of
MPFE, and the assessment of its main properties,. was made possible by the



60 Bernard Jalabert ef al.

GVBD sesponse of living amphibian oocytes microinjected with cytoplasmic
extracts {Deltlaff er af., 1964; Masui and Markert, 1971). The same bioassay
has been used to confirm the invoivement of cyclin as a possible activator of
MPF (Swenson et al., 1986) and 1o assess the activity of highly puritied MPF
preparations. Final MPF identification and characterization succeeded
thanks to a still more sensitive, cell-free assay using cytoplasmic extracts
from Xenopus oocytes (see Section 111, A). Finally, a low molecular weight
factor active on fish intrafollicular oocyte maturation has been found in
chicken and rabbit steroid-free sera and deserves further investigations
(lwamatsu et al., 1987b). The large number of eggs available couid also be
used to screen the toxic and teratogenic effects of various chemicals or
medications, which ceuld be fortuitously used during the process of oocyte
maturation (Armstrong, 1986) or which are administered in order to cause or
- facilitate ovulation in infertile women (Scialli, 1986; Yun e af., 1987).

A number of other features of lower vertebrates may be of interest for
various expernimental purposes. The follicular morphology seems to offer a
simpler model because of the absence of cumulus cells (granulosa cells are
directly.in contact with the oocyte) and- of antral cavity. Due to poikilo-
thermy, physiological experiments can be performed over a wide tempera-
ture range, and extreme levels can even be used. This may be done in order to
define precisely optimal and limiting temperatures for various physiological
mechanisms (lwamatsu and Fujieda, 1977; Epler ef al., 1987) and should be
considered as a possible tool for simulating and understanding phenomena
such as the heat stress in mammals, responsible for decreased reproductive
performances in domestic mammals (Baumgartner and Chrisman, 1987).
From a more general point of view, lower vertebrates can provide very
suitable models for studying the role ard mechanism of action of all kinds of
external factors. ' '

From the present review, it becomes apparent that many features of the
endocrinological and cellular regulation of cocyte maturation are common 10
all vertebrates. The great interest in lower veriebrate models has been partic-
ularly well demonstrated by several discoveries ultimately extended to mam-
mals. This is the case for MPF, first discovered in amphibians and teleosts
before its ubiquity was further demonstrated (see Section 111, 1). This is true
also for the central role of cAMP and of some of the mechanisms of its
regulation in the cocyte. From a general point of view, the suggestion that
binding on the external membrane is the first step of progesterone action on
the amphibian oocyte raised new interest about the role of the interaction of
steroids with the plasma membrane as a more general mechanism of their
action on other cell targets in all vertebrates (Szego and Pietras, [981).

Taking into account the general interest of research on the regulation of
oocyte maturation performed on iower vertebrate models, many fields of
investigation remain open frow, and some challenging problems can be briefly
listed:
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I. Identification and purification, in addition to MPF and cyclin, of other
cytoplasmic factors involved in the control of the celt cycle

2. Characterization of the various cellular mechanisms extending from
the external stimulation to the activation of MPFE

3. Identification of follicular factors that participale in the acquisition of
meiotic and developmental competence

4. identification and mechanism of action of factors that inhibit the matu-
ration of already competent oocytes

5. Comprehension of mechanisms involved in the ageing of matufe 00-
cytes | |

6. ldentification of the MIS in species belonging to various orders and
classes

7. Respective role of endocrine and paracrine controls on MIS pro-
duction |

8. Modulation of MIS activity by other steroids

9. Mechanism of action of MIS at the membrane and CY[Op]dmeC levels
(the queston of whether the external membrane is the only oocyie target of
MIS action in lower vertebrates is of particular interest regarding the role of
steroids in the acquisition of developmental competence in mammals) '

10. Knowledge of extraovarian functions of MIS, which appears to be
involved in the coordination of various aspects of reproductive activity, not
only as an endocrine messenger but also as a putative pheromone in ceriain,
fish species (Sorensen e7 al., 1987; Stacey et al., 1989),

11. Comprehension of the natiire of intrafoilicular regulations involved in
the chronological link beiween maturation and ovulation

12. Understanding of the biological integration of environmenial cues

As shown in the present chapter, some of the best model systems for
solving these problems can be found in amphibians and fish. However, more
work should also be performed on repiles and birds, so that a comparative
survey may bring out general evolutionary trends and improve our under-
standing of the mammalian model.
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