The effects of transplanting stress on photosynthesis, stomatal conductance and leaf water potential in Cedrus atlantica Manetti seedlings: role of root regeneration Jean-Marc J.-M. Guehl, Gilbert Aussenac, P. Kaushal ### ▶ To cite this version: Jean-Marc J.-M. Guehl, Gilbert Aussenac, P. Kaushal. The effects of transplanting stress on photosynthesis, stomatal conductance and leaf water potential in Cedrus atlantica Manetti seedlings: role of root regeneration. International symposium Forest Tree Physiology, Sep 1988, Nancy, France. hal-02852897 ## HAL Id: hal-02852897 https://hal.inrae.fr/hal-02852897 Submitted on 7 Jun 2020 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. The effects of transplanting stress on photosynthesis, stomatal conductance and leaf water potential in *Cedrus atlantica* Manetti seedlings: role of root regeneration ## J.M. Guehl¹, G. Aussenac¹ and P. Kaushal² Laboratoire de Bioclimatologie et Ecophysiologie Forestière, Station de Sylviculture et Production, INRA, Centre de Nancy, Champenoux, 54280 Seichamps, France, and Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, 141 004 India #### Introduction Artificial forest stand establishment may be achieved either with container-grown seedlings or with bareroot planting stock. Since growing seedlings in containers may lead to abnormal root development after transplanting (Aussenac *et al.*, 1988), renewed attention should be given to bareroot planting. Bareroot transplanting is accompanied by a specific transplanting stress, that may lead to substantial plant mortality or reduced growth, due to the disturbance of the functional continuity at the soil-root interface (Sands, 1984), or to mechanical damage to roots caused by lifting the plants from the nursery beds (Chung and Kramer, 1975). Physiological processes, such as CO₂ assimilation and translocation (Stupendick and Shepherd, 1980), stomatal conductance and plant water status (Sands, 1984; Kaushal *et al.*, 1987; Aussenac and El Nour, 1986), considered separately, have been shown to be affected significantly by transplanting. However, a satisfactory rationale for studying effects of transplanting should also include valuable information on the possible linkages between these processes and the interrelationships with root regeneration after transplanting. #### **Materials and Methods** One yr old seedlings were transplanted from a nursery to a glasshouse in polyethylene bags (16 x 60 cm) containing sphagnum peat and were maintained well-watered. One yr later, in October 1985, half of the plants were lifted from the bags, stored for 20 h at 20°C, 100% relative humidity and in darkness, and then planted again in similar bags. The other half (control plants) were maintained in the initial bags. The carbon dioxide assimilation rate (A), stomatal conductance (g_s) and predawn needle water potential (ψ_p) of these seedlings were measured just prior to transplanting (day 0), and Fig. 1. Concurrent time course of: a, CO_2 assimilation rate (A); b, stomatal conductance for $CO_2(g_8)$ and c, predawn needle water potential (ψ_p) in control and transplanted *Cedrus atlantica* seedlings. Transplanting was carried out on day 0, after the gas exchange measurements. n=6; bars denote \pm 1 SEM. then on days 2, 9, 16, 23 and 30 after transplanting. In experiment 2, seedlings were transplanted in minirhizotrons. The plants were given optimal fertilization and the root systems were maintained at 20°C in order to promote root regeneration. Assimilation rate measurements and root observations (number of growing roots and root elongation) were made just before transplanting (day 0) and then weekly from day 7 to day 49 after transplanting. Gas exchange measurements were made with a classical open system under standard environmental conditions. In experiment 1, intercellular CO_2 concentration (c_i) values were calculated from the A and g_{s} data, which permits assessment of the extent to which changes of A following transplanting are due to reduced diffusional supply of CO_2 to the mesophyll or to decreasing mesophyll photosynthetic capacity (Jones, 1985). In an A vs c_i plot, these 2 limitations are represented by the supply (Su) and demand (D) functions, respectively (see Fig. 2). #### Results #### Experiment 1 In the transplanted seedlings, a marked and parallel decline in both CO_2 assimilation and stomatal conductance occurred from day 0 to day 9 after transplanting (Fig. 1a and b); afterwards the decline continued, but was less pronounced. The control plants presented a decreasing trend of gas exchange, but the decline INTERCELLULAR CO2 CONCENTRATION (µmol mol-1) Fig. 2. Carbon dioxide assimilation rate (A) versus intercellular CO_2 concentration (c_i) in the control and transplanted plants from day 0 (before transplanting) to day 30 after transplanting. The photosynthetic CO_2 demand (D) and supply (Su) functions have been reported only for day 0. C_a is the ambient CO_2 concentration. n = 6; bars denote \pm 1 SEM. was significantly less pronounced than in the transplanted plants. Predawn needle water potential (Fig. 1c) was affected by transplanting, but significantly lower values than in the control plants occurred only after day 9. The severe decline in A for the transplanted plants was accompanied by an almost constant $c_{\rm i}$ (Fig. 2), thus indicating that, despite the parallel evolution of A and $g_{\rm s}$, the changes in Awere mainly due to an alteration of mesophyll photosynthetic capacity. Fig. 3. Concurrent time course of: \mathbf{a} , CO_2 assimilation rate (A, solid line) and root elongation (dashed line); and \mathbf{b} , number of new and total elongating roots after transplanting. n=15; bars denote \pm 1 SEM. #### Experiment 2 Carbon dioxide assimilation A markedly and gradually decreased after transplanting from day 0 to day 14 (Fig. 3a), and then, from day 14 to day 42, recovered its initial value. The start of recovery in A was concomitant to the beginning root regeneration (Fig. 3). #### Discussion The results of this study support the previous findings of several authors showing that A (Stupendick and Shepherd, 1980), $g_{\rm s}$ and $\psi_{\rm p}$ (Sands, 1984; Aussenac and El Nour, 1986) are affected by transplanting stress. However, the decline of A due to transplanting was not a consequence of reduced $g_{\rm s}$, but was primarily determined by alterations of mesophyll photosynthesis. This, plus the parallel time course of A and $g_{\rm s}$, might even suggest that reduced $g_{\rm s}$ is the consequence of altered mesophyll photosynthesis. Leaf water status is not the factor responsible for the initial decline of A and g_s , but it is likely to be a relevant physiological constraint. The (common?) signal that triggers the initial decline in A and g_s remains unknown (nutritional, hormonal?). Recovery of A was strictly concomitant with root regeneration, but no evidence could be found to ascertain whether a functional linkage exists between these 2 parameters, or whether they respond to a third, still unknown, factor. #### References Aussenac G. & El Nour M. (1986) Evolution du potentiel hydrique et du système racinaire de jeunes plants de cèdre, pin laricio de Corse et pin noir plantés à l'automne et au printemps. *Ann. Sci. For.* 43, 1-14 Aussenac G., Guehl J.M., Kaushal P., Granier A. & Grieu P. (1988) Critères physiologiques pour l'évaluation de la qualité des plants forestiers avant plantation. *Rev. For. Fr.* 40, 131-139 Chung H.H. & Kramer P.J. (1975) Absorption of water and ³²P through suberized and unsuberized roots of loblolly pine. *Can. J. For. Res.* 5, 229-235 Jones H.G. (1985) Partitioning stomatal and non-stomatal limitations to photosynthesis. *Plant Cell Environ.* 8, 95-104 Kaushal P.K. (1987) Analyse écophysiologique des effets de stress liés aux transplantations des arbres forestiers. Thesis, University of Nancy, France Sands R. (1984) Transplanting stress in radiata pine. Aust. J. For. Res. 14, 67-72 Stupendick J.A.T. & Shepherd K.R. (1980) Root regeneration of root-pruned *Pinus radiata* seedlings. II. Effect of root pruning on photosynthesis and translocation. *New Zealand J. For. Sci.* 148-158