N

HAL

open science

Pratical computing in fuzzy logic

Didier Dubois, Roger Martin-Clouaire, Henri Prade

» To cite this version:

Didier Dubois, Roger Martin-Clouaire, Henri Prade. Pratical computing in fuzzy logic. Fuzzy Com-
puting: Theory, Hardware and Applications, Elsevier Science, pp.11-34, 1988, 978-0444704498. hal-

02856245

HAL Id: hal-02856245
https://hal.inrae.fr /hal-02856245
Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inrae.fr/hal-02856245
https://hal.archives-ouvertes.fr

34

Dub85c

Far86

Leb87

Marg4

Mar86a

Mar86b

Mar87a

Mar87b

Pra85

Zad78

Zad79

D. Dubois et al.

DUBOIS, D., PRADE, H. (1985) Fuzzy numbers : an overview. In Tech. Rep.
n°219, LSI, Unlv P. Sabatier, Toulouse and to appear in The Analysis of

Fuzzy Information (J.C. Bezdek, ed.), Vol. 1, Mathematics and Logic, CRC
Press, Boca Raton, Florida, 1987.

FARRENY, H., PRADE, H., WYSS, E. (1986) Approximate reasoning in a
rule-based system using possibility theory : a case study. Proc. 10th IFIP
World Congres, (Kugler H.J., ed.), Dublin, Sept 1-5, Elsevier Sci Publ.,
407-413.

LEBAILLY, J., MARTIN-CLOUAIRE, R., PRADE, H. (1987) Use of fuzzy logic
in a rule- based system in petroleum geology In

Approximate Reasoning in
Intelligent Systems, Decision and Control, (E. Sanchez, L.A. Zadeh, eds.),
Pergamon Press, 125-144.

MARTIN-CLOUAIRE, R. (1984) A fast generalized modus ponens.
BUSEFAL, n" 18, L.S.1., Univ. Paul Sabatier, Toulouse, 75-82.

MARTIN-CLOUAIRE, R., PRADE H. (1986) SPIl-1 asimple inference engine
capable of accommodatlng imprecision and uncertainty. In Computer-

Assisted Decision-Making (G. Mitra, ed.), pp. 117-131, North-Holland, 1986.

MARTIN- CLOUAIRE R. (1986) EfflClent deduction in fuzzy logic. Presented
at |n in

mmmww Paris, June 30 - July 4.

MARTIN-CLOUAIRE, R. (1987) Management of imprecision and uncertainty
in a rule- based system : an application to a petroleum geology problem. To
appear in "Un i in_Anifici i ", (D. Dubois, H. Farreny, H.
Prade eds.), Springer Verlag.

MARTIN-CLOUAIRE, R. (1987) Semantics and computation of the
generalized modus ponens. Proc. 2nd Inter. Fuzzy Systems Association
Congress (IFSA-87), Tokyo, July 20 - 25.

PRADE, H. (1985) A quantitative approach to approximate reasoning in
rule-based expert systems. To appear in MMQ_L (L.
Bolc, M.J. Coombs, eds.) Springer Verlag. Also Tech Rep. n* 229, LS|,
Univ. P. Sabatier, Toulouse.

ZADEH, L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy
Sets & Systems , 1, 3-28.

ZADEH, L.A. (1979) A theory of approximate reasoning. Machine
Intelligence, 9. (J.E. Hayes, D. Michie, L.l. Mikulich, eds.). Elsevier, New
York,149-194,



g

32 D. Dubois et dl.

In Figure 13, we have :
=2, i*=1,
j*=1, j*=2.Hence, L = {|[1, 2], {1}, {2}}.

In Figure 14, we have :

F=i*=1,

i*=0, j*=2. Hence, L ={|[0, 1]}, |[0, 2]|, I[1, 2], {1}}-
Note that |[0, 1]| is not useful here.

1 e

Figure 14.

5. CONCLUDING REMARKS

The main lesson of this paper is that, under some technical constraints operated on
the representation of uncertain and imprecise knowledge, one can use the
generalized modus ponens tool in real (i.e. computationally realistic) inference
system.s. Indeed, it has been shown that the deduction process with this approximate
reasoning technique amounts to some simple and not numerous computations on the
parameters defining the involved possibility distributions.

The approximation technique presented in this paper for the single rule case has been
lmpl'emented and adapted to the inference engine SPIl [Mar86a] [Mar87a] which is
equup_ped with several other approximate reasoning capabilities. So far, our
experlm(_ents with real life problems have shown that the above mentioned constraints
are not limiting the representational power too much and thus are perfectly acceptable
from a practical point of view. Future versions of SPIl will include the treatment of
collections of rules as well as the possibility of interpreting the rules in other ways
[Ma.r87b_] than the one related to the Godel implication function and the "min"
conjunction operator as used in this paper.

When processing a set of rules Ai—Bi, i=1,n, we have seen that a key point in order to
infer the most precise and the less uncertain conclusion from a fact A" is to build new
rules Aj—>B| where A| = Ue| Aiand By =Uic| Bi,orA;= Niel Aiand By =Mic| Bi. Rules of
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Ay A’ This generalizes a situation which already exists when the Ai's and the Bi's
are ordinary subsets.

In the general case, it may happen that A’ is included in Aj u Aj+1 (for instance) but is
not even weakly in Ajn Aj+1, nor in one of Aj, Aj+1. An idea in order to obtain a
conclusion more specific than Bj L Bj+1, would be to perform a non-logical combina-
tion of the form A| = AL.Aj @ A A+t and Bj=A.Bj® ABj+1, with0<A <1, 0<SA <1, A+ A=
1 and where @ denotes the addition of fuzzy numbers (see [Dub85a,c]). Obviously, the
rule Aj—Bj, constructed with the Aj and By that have just been defined, should only be
considered as a plausible approximation (i.e. this rule cannot be proved to be valid as
in the case of the logical combination-based generation) and presupposes that Y
varies continuously and "gently” with X. It is just an extended linear interpolation.
Adding such interpolated rules may help improve the coverage of the rule base, if
needed. Clearly, A.Bj @ A".Bj+1 is more specific than Bj u Bj+1 in general. Moreover, A
and A’ can be chosen such that A.Aj @ A".Aj+1 contains A’ and such that A.Bj @
\".Bj+1 is as precise as possible. Lastly, the specificity (or precision) of A.Bj & A".Bj+1 is
intermediary between the one of Bj and Bj+1. The systematic study of interpolation
techniques in a set of fuzzy rules is a topic for further research.
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In Figure 9 we have :

i*=2,i"=1,Ax=A1 N A2

ff=i"=1,A"= A1

Hence, L = {{1}, {2}}.

In Figure 10 we have :

Note that here A|[O, 2] = S(A1) U A2 A", Hence we obtain S(B1) U B2 by the rule
AI[O, 2l B![O, 2]l This is why the left hand side of ug- is not similar to its right hand

side.

t=1,i=2,

=0, j"=2

Hence, L ={|[0, 2]| , |[1, 2]}}.
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In Figure 11 we have
ir=i*=1
[=0,i"=1
Hence L = {|[0,1]], {1}}.

31

Note that in this case |[0,1]] gives nothing interesting compared with {1} because
C(A") falls out of C(A1) on the left hand side only. In Figure 14, a situation where C(A”)
is contained in S(A1) but falls out on both sides of C(A1) will be considered. In such a

situation, the extra-rule A0—Bo plays an active role.

In Figure 12, we have :

=4
i*= i*=3,
=2, j*=4.Hence, L = {|[2, 4], |[3, 4], I[2, 3], {3}}.
'y
14
0
4
0
Figure 12.
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Ao Ay, i'IBi[ 5, 1])) Since [Ay, +e0) 2[A*, +<) and (-0, A || = (-0, Ay N A*]. But [}, i]] is

in $*. The same reasoning applies when i’ > j*.

4.4.3. An algorithm for dealing with a set of fuzzy rules

The inference engine algorithm is given next. For clarity, we shall use a simple
Pascal-like 1angage in which the keywords specific to the langage are in italics. Let

us assume that A" =(a’1 a2 a’3 a'4).

Procedure Selection (Step 1)
let i = max{isuch that a;1 <a'2}
let i* = min{isuch that a4 > a"3}
ifi<i*let I"=|[i*,i*]| (i.e. in this case A+ = Ap)

if i*=i"+1let I"=g (i.e.in this case A» = Ai* N Ai™)
let it =max{j: al<a’l;a2<a2}

let j* =min{j: ajS 2a’3;ad4>a'4}

ifir<j* let J* = |[*,i*]| (i.e.in this case A* = Ags)
ifi=j*+1let J*=g (i.e.in this case A* = Aj* N Aj™)

Procedure Firing (Step 2)
if J*=0 then

begin

let B°o = Bj* n Bj*

let L = {0}

end

else (i.e.J* #0)

begin

let L=g

if I"#@ then

forall k,k” suchthat j<k<i* and i* <k <j*

begin
let K=|[k, k]|
add the element K to the set L
Iet B',K = A’ (o} (AK"-)BK)
end

else (i.e. I" = g)

for all k, k" such that j* sk<k <j*

begin
let K=|[k,k]|
add the element K to the set L
let B.K =A"0 (AK—)BK)
end

end

Procedure Combination (Step 3)
let B"=ny | By

Practical Computing in Fuzzy Logic 29

Remarks :
. In Step 2, the computation technique described in Section 3 is used and the
approximation B¥ may be computed instead of the exact B".
. In Step 3, the result of the combination may have a complicated shape. One may
wish to keep only a trapezoidal approximation denoted by B¥ in the figures
exhibited in the next subsection .

-t uc N Aiis a trapezoidal fuzzy interval, which yet does not cover S, four situations
may be encountered. Each of them requires slight modifications in the use of the
above algorithm.

. If i* ori™ cannot be found then the algorithm must return B" = T.

.If jor j* cannot be found just because a;2>a2or a,3<a’'3 then,
depending on the case, add the redundant rule A0o—Bo0 or An+1—Bn+1 to the
rule base R, where Bo = S(B1), Bn+1 = S(Bn) and Ao = S(At) - Uie NC(A),

An+1 = S(An) - U, NC(Ai), and start all over again with the new rule base.

Examples are provided through the figures 10 and 11.

. If j*or j* cannot be found just because a;1>a’1or a;4<a’4 then,
depending on the case, let j = min{i/ Ai=Bie R} or j* = max{i/ AioBie %} and
use the algorithm as in the normal case. In such a situation, a level of indeter-
mination will pervade B’.

. It j*or j* cannot be found because aq1>a’1anday,2>a2ora,4 <a'4and
a33 < a3 then combine the tricks given in the two previous points. Figure 14
corresponds to this case.

4.5. Some examples

In all figures but Figure 12, the number of rules n is assumed to be equal to 3.
For the sake of clarity we consider only cases of strong consistency. The
approximation B# is drawn only on the parts where it differs from B’.
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4.4. Practical computing with a set of fuzzy rules

Given a set R of n consistent rules, the following approach is adopted as an inference
algorithm.

Step 1 Selection : Find {I/N21,A o (A|-B)) = T} = 3 with A = U Aiand B| = U | Bi.
Step 2 Firing : Compute B 1=A"0(Aj>B) V!IeS.

Step 3 Combination : Compute MNeg Bl

The combinatorial problem lies in Step 1. The following remarks help in reducing the
complexity :

. If C(A") is not included in or equal to S(A|) then lg3.

.MfJdolthenA’o (Ay—By) 2 A0 (Aj-B)) as long as A2A.
Hence, letting & = {I/N o], S(A;) 2 C(A")}, one can define 3* as
$*=R-{Jer/TLeR,IDL, AL 2 A’} and put it in place of S in the above élgorithm.
3* contains the "useful” rules to be triggered.

4.41. Assumptions for the rule base

To further reduce the selection set 3* and to be in a position to use the results of
Section 3 we shall make some assumptions regarding the modeling of rules and the
way they cover the set S. Namely, each element of {(Ai, Bi) / ie N} is supposed to be a
pair of trapezoidal fuzzy intervals, modelled by the 4-tuples (aj1 a2 a;3 a;4) and (b1

b;2 b;3 b;4) respectively. R is assumed to be separated ; let s; be such that paj(s) =1,

and HAj(S;) = 0 Vj#i. The rules are supposed to be numbered so that S1<8p<.. <5,

Note that 'separatedness’ forbids the existence of Ai and Aj, j#i, such that Ajo Ai.
Moreover, it ensures that the rule base is not redundant in the sense of 4.2 since
JteT, pa(s)—-upit) =pg;t) < p.A,-(si)aqu(t) =1, except if Bi = T! It also implies that if

S < then inf S(Aj) 2 inf C(Ai) and sup C(Aj) = sup S(Ai). Consequently,

Vo méax(Ai(a), Aj(e)) = Aj(a) where max is the extended max in the sense of interval
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analysis [Dub80] and Ai(a) is the a-cut of Ai.

Lastly, in order to be able to apply the resuits of Section 3 we want the As's to be
trapezoidal fuzzy intervals. Therefore, we must add a covering assumption. The
covering of S, that is made by the set {Ai/ie N}, must be such that Uie N C(A) is

compact (i.e. there is no gap in Uie N C(AD). If S is a subset of the real numbers, as

assumed here, then Uie N C(Ai) must be an interval.

In order to prevent the fact that some points in S are covered by too many rules, one
may require that Vi, j, kel, i#j# k = Ai 1 Aj N Ak = g. Note that this property holds if R is
separated as indicated by Lemma 1.

4.4.2. Coping with complexity

Under the assumptions of consistency, separatedness and proper coverage, we are
in a position to reduce the complexity of the selection step. We use the following
preliminary results.

If1={i,i+1,...,1}, that we shall denote by [i,1]l, and J ={j, j+1,...,|} then Ap, Ajand

AN A are trapezoidal fuzzy intervals when non-empty. A|is of the form (a1 a;2 3;-3
a;4). Actually, we have Ay A = Aj~y if InJ#e and AINA =Ar A+ if j=iel;
AlNAj=o if supl<infd-1or sup J < infl -1. By convention, Ai,u Ai+1 is denoted A;

with I=[i,i+1]]. Moreover, only the rules Aj—B| where I=|[i,i]| need be considered
when A’ is also of a trapezoidal shape. This latter remark breaks down the complexity
since the number of elements of {I1/N 21, I= I[i, 7]l fori<ieN}is equalto n.(n+1 y2.

Consider the minimal elements in {1/N21, S(A;) 2 C(A")} which is assumed non-empty
(the case of emptiness corresponds to B” = T). The minimal elements are made of a
single set I = |[i*,i*]| or of two singletons {i*}, {i*+1}, such that Ai* ~ Ait+1 o C(A’), due to
separatedness. Let us define A« either as A+ oras Ai* 1 Ai*+1 depending on the case.

Now consider the set {J / Ay 2 A’}, which is assumed non-empty unless otherwise
specified, and its minima! elements. They are of the same form, say J* =[[j*,i*]| or {j*},
{i*+1}. Let us define A* either as as A J* or Ai* nAp+1, depending on the case.

Proposition 5 : O Nol A0 (A-B) =n le3* A0 (A|—>B)) where

3*={1/N2|,A* 2 Aj A I=][i,i] i<i}.

Proof : As noticed earlier, if A2 A* then A0 (A=B)2A'0(A*>B*). IfA«> A; then
IseC(A"), ”A;(S) =0, thus the rule A|—-B; gives nothing. If InJ* =2 then Ao (Al—B)) =
T. Assume J* = |[j*,j"]l, i* < j*. We consider the case when Apz A NA* DA« If
I={[i,i]l,J*=1[}*,i"), i< J*, then ANA*= AI[J" il and one can check that A" o (A—-B)) =
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However, one can apply this algorithm to the saturated rule base R, since, due to (20),
we have the following inclusion relationships :
NieN A" 0 (AioBi) o |, Nol A0 (Aj-B) 2 A 0 (NN AiBI) =B (25)

As we shall see, applying the inference engine algorithm to R (i.e. as is done in the
second term of (25)) will prove very powerful, provided that we can master its
increased computation complexity. First, let us give some theoretical results.

Proposition 2 : If A"=Ai then B"=Bi, provided that C(Ai) is not contained in Ui S(Aj).
Proof : From (25), Bi o B” is obvious. Let us show now that B" o Bi.
V1, ugt) = supg min(pai(s), HAi(S)—upilt), ming; na;(s)-upj(t)

2 SUPge G(A) min(ug;(t), minj# uAj(s)«)qu(t)) = pug;({t) provided that
SUPse C(Ai) minj# uAi(s)—mBi(t)) 2 ug;(t), ¥ t. A natural sufficient condition for that is
3s;eC(A), Vi, uAj(si)—mBj(t) =1 forallt, thatis “Aj(si) =0 Vj=i. It all comes down to
require that C(Ai) is not contained in i S(A)). Q.E.D.

This result puts forward the question of the comparative range of applicability of the
rules and leads to the following definition.

R is said to be separated if and only if V ie N, C(Ai} is not contained in Uit S(Aj).

This property means that deleting any of the rules from R leaves a point in S to which
no rule applies. It means that every rule is useful. Note if R is not separated, then if

A’ =Ai one may obtain B” such that Bio B’. In this case, we might think of changing the
rule Ai-»Bi into Ai—B’ since the former is clearly redundant with respect to the latter.

In the sequel R is supposedly separated.

Let s; denote an element of C(Ai) that is not in Uiz S(A)).
Corollary 1 : If R is separated, Aio A" and 3s;e C(A") then B'=Bi= NieN A’ o (Aj—Bj).
Hence, the usual inference engine approach is good in this case.

Note that Proposition 2 can be extended to conjunctions A" = N, | Ai, under the sepa-
ratedness property. To see it we need the following lemma. '

Lemma 1 : If R is separated then for any pairwise distinct Ai, Aj, Ak Ain Aj NAk=2.
Proof : Since R is separated, it is possible to number the Ai's so that sy <s, <... <5,
Let i,j, k besuchthat i<j<k. AinAj nAk# g impliesthat AinAk=g and S(AiuU Ak)
2 S(Aj) since [s;, si] 2 S(Aj). But this fact contradicts separatedness according to
which ”Ai(sj) = uAk(sj) =0.Hence AinAj nAk=0. Q.E.D.
Consequently, we only have to consider conjunctive facts of the form ;.| Ai where
the set | has two elements such that | = {j, i+1}.

Proposition 3 : If R is separated and A" = Ain Ai+1 then B = Bin Bi+1.

Practical Computing in Fuzzy Logic 25

Proof: From (25) it is obvious that Bi ~ Bi+1 2 B". Now

vVt ug-(t) = supg min [minj=i’i+1 min(uAj(s), uAj(s)—mBj(t)), mink#,m BAk(S)—=upk(t]
2 SUPse C(A)NC(Ai+1) MIN(B;(1), HBiL1 (1), Mingy 41 LAKE)Hp(t)
= min(ug;(t), Uiy (1)

providedthat Ise C(Ain Ai+1),s¢ S(uk#’ i+1 Ak). But since R is separated,

[s;, si,4] 2 Ain Ai+1 and Sj4q Sinf S(uj>i+1 Aj), s;2sup S(uj<i Aj), so that this

property holds. Q.E.D.
Note that for any A" normalized, such that Ai n Ai+1 2 A”, then B’ = Bi A Bis1.

Let us consider now disjunctive facts of the form A" = A| = Ui | Al
Proposition 4 : If R is separated and A" = A then B'=B| = Ui Bi.
Proof : B 2 B is obvious from the right most inequality in (25). Now
Vi, pug-(t) = supg min(maxc) pai(s), mitic N KA(S)—Hpg;(t)

= MaXg | Supg Minfuai(s), mingcy Rai(S)-ug;(h)

= max;. | ug;(t) since R is separated. Q.ED.

Corollary 2 : If R is separated and A" = Aj then B" =y Nol A7 0 (AI=B)).

This corollary indicates the potential of the inference engine algorithm (STC) applied
to the ;aturated rule base, to deal with disjunctive facts which are not treated
appropriately in the usual approach. ’

Note, however, that the equality A o (Mie Ny ASBI) = M N} A" 0 (Aj—By) does not hold
generally as shown by the following counter-example.

Qggntgr-g. xgmplg : Let us consider two rules A1—B1 and A2—B2 such that C(A1) is
not contained in S(A2) and C(A2) is not contained in S(A1) (Separatedness). Let A" be

such that S(A1) 2 A" and C(A") is not contained in S(A2). Clearly, A" 0 (A2—B2) = T,
S(B1)2 A" 0 (A1-B1) 2 C(B1) ; A" 0 (ATUA2-5B1UB2) 2 A" 0 (A1—-B1). Hence,

N, Nol A 0 (A|-B)) =A" 0 (A1-B1).

Now Vi, ppg-(t)= supg min(pa-(s), ka1(S)—=ug4(t), BA2(s)—upo(t)). Letting t such that
ug1(t) =4 > upa(t) = A, > 0. Figure 8 depicts a case where HA"0(A1-B1)(t) = 1 while
ug-(t) =1y = ug4(t) only. Hence, inthis case N={1,2} andB =A"o (Mie N Ai-Bi) is
strictly included in M, Nl A" o (A|—B)).
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ponding possible value of Y must be in B1 n B2. If the property (15) with LR(s, t) =
minj1 » HAi(S)—Hp;(t) is not satisfied it implies that B1 n B2 is empty and, thus Y cannot
be assigned any value. In other words, it means that the two rules are contradictory.

Let us write (15) in the case of a set of rules expressed by means of Gédel implication :
(15) & Vse S, J1eT, VieN, pai(s)— up;(t) = 1 where N = {1, 2,..., n}.
Let Ig= {i / pps(s) > 0} ; we get
Vse 8, IteT, Vie lg, pai(s) <pp;lt). (16)
Since the inequalities must hold for any s, let us write p(s) = a; and then (16) is
equivalent to :
VisuchthatN 2|, 3teT, Viel, ppis) = o = uplt) 2 o
which boils down to the following consistency condition
VlsuchthatN o1, m Ailog) #8 = nyg | Bi(e) 2 2, V¥ (o, iel), 17
where Ai(c) is the o-cut of Ai. A consequence of (17) is that
Vo,V lsuchthat NQ |, if M) Ai(e) = then M, | Bilor) # @, which is equivalent to
V Isuchthat N o1, hgt(m Ai) < hgt(m, Bi) (18)
where hgt(F) = sup pp, a consistency condition already sugested in [Dub82).
It is easy to find examples where (18) holds but (17) does not. So (18) may be used for
inconsistency checking only.

It is important to ensure at first sight that a set of rules is consistent. A sufficient
condition for that can be

Visuchthat N2, if m | S(A) =g then M| C(B) = 2, (19)

where S(F) and C(F) denote the support and the core of F, respectively defined by
S(F) = {u, pp(u) > 0} and C(F) = {u, pg(u) =1} ; it is obvious that (19) implies (17). (19)
is called strong consistency.

Note that consistency implies ¥V A" normalized, B” is normalized too.

4.2. Redundancy

Arule r="if Xis Athen Y is B", or r=A—B for shor, is redundant with respect to
{r; = Ai-Bi/i=1,n} if it brings nothing new that was not already in the knowledge base.

Let us denote (9) as B" = A" o (", y Ai=Bi) = A" o R, for short. The rule A—B is redun-

dant if and only if
VA, AAoR =A"0(Rn (A-B))

which is equivalent to R = R n (A—B), or in more detailed terms
Vs, V1,31 upals)-ug(t) 2 pai(s)—up;it)-

Examples of redundant rules with respect to R = {Ai—Bi/i=1,n} are created as follows.
Proposition 1 : The rule AiUAj — BiUBj where HAIUA] = Max(pp;, Hpj) is redundant with
respect to R.
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Proof : It is sufficient to prove that V a,b,c,d min(a—b, c—d) < max(a, c)—max(b, d).
Indeed if a < b, ¢ < d then max(a, ¢} £ max(b, d) and both sides are 1, otherwise
min(a—b, c—d) < max(b, d). Q.E.D.

Consequently, for any | included in or equal to N, the rule A|—B|, where A| = Ve Ai, is
redundant with respect to R and we have the following equality :

VA, A0 (Mg ABi) = A”0 () o AI-B): (20)

A rule base R is said to be saturated if and only if

V (Ai—Bi), (Aj—Bj) e R, AiUAj — BiUBj eR.
If R is not saturated then & = R U {A|-B;/ Nol} is called its saturation. This concept
will prove very useful to derive an efficient inference technique.

In order to make a first step to redundancy checking, let us examine conditions under
which a rule Aj—B;j is redundant with respect to another rule Ai—>Bi. A necessary and
sufficient condition is provided by Formula (21).
Vs, V1, ppis)-ug;lt) = pas)—upi(t). (21)
It is easy to check that a—b > c—d < (a <b) or (a> b and b = c—d).
Hence (21) is equivalent to
Vst if pals) Supi(t) then pas) <ugi), (22)
it MA(S) > Hgi(t) then (wai(s) <upjt) or (ugi(t) > ngidt)- (23)
. uAi(s) < uBi(t) V s, t, implies that Bj = T since Ajis normalized. This is the trivial rule
“if X'is Ajthen Y is T" which is redundant with anything.
. The other condition leads to qu(t) 2 pup;(t), V't such that 1 > ppg;(t), choosing s so that
Hai(s) = 1.
Moreover, (22) implies that V t e C(Bi), qu(t) 2 maxg pAi(s), i.e. uBi(t) = 1 since Ajis
normalized. So (22), (23) imply that Bj > Bi. Now, given Aj, Bi, and Bj2 Bi, (22) implies
Vs, pai(s) < influpit) / npi(t) = na(s)} - (24)
When Bj = Bi, (24) leads to Ai o Aj, which is a rather expected result. So, Aj—»Bjis
redundant with respect to Ai—»Bi if and only if Bjo Bi and Aj satisfies (24).

4.3. A new approach to multiple-rule inference

As recalled in Subsection 2.2, given a set R of n rules relating two universes S and T,
and given a fact "X is A™ we have the following inequality :

NieN A 0 (Ai-Bi) 2 A0 (Mg y AiBi)
which expresses that triggering the rules separately, and combining the partial results
in a second step does not provide conclusions as precise as one could get by
combining the rules in a first step. The usual inference engine algorithm “select, trigger
and combine" (STC) is especially inadequate when facts are disjunctive. Indeed, in

general, a disjunctive fact of the form A" = A= U, | Ai, suchthat N, yields
Mic N A0 (Ai—Bi) = T as long as the set | contains more than one element.
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As a consequence, ppg# differs from ug- only in the area of transition from the core to
the values having a uniform degree of possibility induced by the level of uncertainty.

Concludmgﬁy in any case, the inference process amounts to a simple transformation
of B into B¥. In the first case (i.e. total uncertainty), the transformation yields the
universe T. In the fifth case (i.e. the fact perfectly satisfies the condition), the
transformation is the identity. In cases 2 to 4 (i.e. partial matching), the distribution

associated to B¥ is of a 6- -trapezoidal shape as shown in Figure 7. Its 8-support is the
support of B and the transformation consists at most in two operations, each directly
linked to the compution of o, or o,. Indeed, from @, one gets the level of uncertainty (or

indetermination) 8 pervading the conclusion and from ®, one can derive quantitatively

the wndenmg (or enlargement) to be performed on the core of B in order to obtain the
core of B¥. More explicitly, the five-tuple describing B# is such that

b1 =b1

b2=b2-(1-w,)b2-b1)
b'3=b3+(1-w,)(b4-b3) (14)
b4 = b4

0= @,
where o, = min(upa(a2), pa(a’3)) and @, = max(up-(al), pa-(a4)).

b1 b2 b3 b4
a’i a2 a’s a’4 b1 b2
Figure 7.

3.4. Uncertain facts and compound variables

Assume now that A" is pervaded by a level of uncertainty A and is defined via pa-(s) =
max{p,(s), A) where ., is represented by the four tuple (a’1 a2 a’3 a’4). As shown at

the very beginning of this section, the mapping fr that modities B into Ba" is defined by

fa=max(f, L) where f is obtained out of A only, as has been explained in the above
subsections. Therefore, an approximation upg,# of pg,- is readily obtained as the five

tuple (b"1 b2 b'3 b’4 6,) where the first four parameters are defined as in (14), and
0, = max(w, , A} with @, =max(uy(al), uy(ad)).

An important feature of the proposed approximation is that the distributions involved in
facts and those deduced through the generalized modus ponens have the same

A-trapezoidal shape, which is very useful for chaining rules.
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Finally, let us consider the case of X being a compound variable of the form X =
(Xq,.-.,Xp) where the X/'s r=1,...,p, are non-interactive variables. Such a situation
corresponds to a conjunction "Xy is Ay and...and X, is Ay" of non-interactive conditions
in the antecedent part of a rule. Let the fact "X is A™ be of the form "X, is A" and...and
Xpis A’p" or equivalently "X is A'1x...xA’p" and let [T, ,...,H’p be the possibility measu-
res associated with A'1,...,A'p respectively. Noting that As = Ao x...xApm it is easy to
verify that, in Formula (12) we have I1'(TAs) = max, =1yp IT" (TAw). Let f, denote the

mapping that modifies B into B, through the artificial rule A,—B and the fact "X, is A",".

Then, for any o in [0,1], f(w)= max, _ f(w) and the mapping # is thus easily
r=1,..,p'r

obtained from f#r » r=1,...,p. The pair (@, , ®,) associated with #is easily calculated from

the pair (0" , ©'y) associated with f#r , as follows :

o oy and o

=max, q, ., 1

=mi "
=Mmine_q,..p @1

0 )

4. USING A COLLECTION OF RULES : PRELIMINARY RESULTS

This section addresses the problem of the practical computation of the B deduced in
the pattern (8). For the sake of clarity, all along this section it is assumed that X is a
non-compound variable.

When using a set of rules one has to be careful about their consistency. A natural
consistency condition to be satisfied by a collection of rules is given in Subsection 4.1.
The complementary question is that of redundancy. It is the topic of Subsection 4.2.
Subsection 4.3 gives some theoretical results about the general case of dependency
between X and Y. Subsection 4.4 provides a practical computation technique when
the involved fuzzy sets are trapezoidal fuzzy numbers. Some examples are closing the
section.

4.1. Consistency of rules

With the Gddel implication function and the hypotheses of normality of the involved
distributions, any rule "if Xis Ai then Y is Bi" verifies that for a given s in S there is at
least one corresponding element tin T such that pa;(s) < pg;(t). In other words, such a

rule, considered in isolation, represents a fuzzy relation R defined by
uR(s, t) = pa;(s)—ug;(t) as specified by Formula (3) and having the property :
V se §,3teT sothat pR(s, t)=1. (15)

A collection of rules is inconsistent if the fuzzy relation R, defined this time by the
conditional possibility distribution minq ¢j<n HA(S)—=KR;(1), no longer satisfies the

property (15). Let us illustrate with an example involving two non-fuzzy rules, say "if X
is A1 then Yis B1" and "if X is A2 then Y is B2" where A1, A2, B1 and B2 are crisp
sets, how the property (15) is related to their consistency. Notice that for each rule (i=1

or i=2) we have np;(s)—up;(t) =1 when pp;(s) =1 provided that ug;(t) = 1. This simply
expresses that if we consider a value of X in Ai the corresponding possible value of Y
isin Bi. Now, if a given value of X isin A1 A2 it can be proved that the corres-
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then fHw)=1 ifo2>a*
= 0" + (0-0")(1-7") / (0" - ©") if B" <o <oty

=0 foso"

— kA A", +oo)

co+1
m+
0 >
S
Figure 4.
4th case a’1 <al; a2 <a’2. See Figure5.
Then tHw)= 0 fo2a*
= o'+ 0 (@ - w*y) / B* otherwise.
® >
S ®
Figure 5.

Sthcase al<a’l; a2<a2
Then fHo)= @ Yoe [0, 1].

The calculation of f” is similar, changing (a1, a2) into (a4, a3) , (a’1, a'2) into (2’4, a’3)
and reversing the inequalities. The quantities w, @'y, @ are evaluated similarly to @*o,
(D+1, o

Hence both f* and f~ are piecewise linear, and f is thus also piecewise linear, but
possibly involving more break-points.

3.3. Approximating the exact computation
In order to simplify the calculation and facilitate the chaining of rules, only an

approximation of f, say #is computed. The construction of i# which is such that # > f
is given next. The five cases elicited in the previous subsection are considered in turn.
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First, note that, in case 1, o'y =1, w*y =0, ¢ ]0,1[;
incase 2, ote )0,1[;
incase 3, 0y =0;
in case 4, o'y =1;
incase 5, 0y =0, oy =1," ¢ ]0,1{.
Thus, the quantities w®;, ®°;, @°, e € {-,+} are always defined.

Let o, = max(w*y, wp) and w, = min(w*, @’). The following tests are made to specify

the shape of i#.
1.lfwy=10rw,=0 then ff = and #(w) =1, as in case 1. This case results in total

uncertainty about the conclusion.

2. 1f O<w,<1or0<wm,<1then #>1 and # is defined as f* in case 2 (deleting the +).

3.If ®,=0and0<w, <1then set®=min(@",®’) and t# could be defined as f* in
case 3 (deleting the +). We obviate the need for computing ® by setting ® =0 (i.e.
the dashed line in Figure 6).

4.1f 0<w,<1and o, =1thensetm=max(®",®’) and # could be defined as f+ in
case 4 (deleting the +). We obviate the need for computing @ by setting @ =1 (i.e.
the dashed line in Figure 6).

5 lfwy=0and o, =1 then # = f as in case 5. This situation corresponds to A’
included in or equal to A (which implies B" = B).

e f#

case 3 case 4
Figure 6.

Thus, t#is fully characterized by the pair (w, , ®,). Let us define B# by
ug#(t) = f#(uB(t)) forany tinT. B# compares to the actual result B” as follows :

- B¥ contains B’ since # > f ; therefore, deducing B¥ instead of B is logically valid.
- The core of B¥ is equal to the core of B” ; indeed, the peak of B is dictated through

the set {w / f(w)=1} whose lower bound is clearly min{w*,, ©’y) which, by construc-
tion, is also the lower bound of {w/ f#(m)=1}.

- B* and B” have the same level of uncertainty given by inf ug- = inf ug# = o, since
inf { f(w) / 0 e [0,1]} = w, = inf { f#(m) /we [0,1]}.

- The points where pg# reaches its level of uncertainty are the same as for B” since
they coincide with the endpoints of the support of B.
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pp-(t) = max [supge g Min(ua(s) , HA(S)SHB()) , SUPge g MIN(A, pA(S) =g ()] =
max [supge g Min(p,(s), HA(S)—=uB()) , Al

Consequently, B” is easy to obtain provided one knows how to compute (10) when A”
is given by a trapezoidal distribution.

In the next three subsections, it is assumed that X is a non-compound variable and
that A" is not pervaded by a level of uncertainty ; A" is represented by the four-tuple
(@'t a’2 a’3 a’4). Subsection 3.1 shows that the computation of the supremum
expressed by (10) can be performed via a generic treatment applied independently on
two subparts of S where the interesting phenomenas occur. Subsection 3.2 presents
the above-mentioned generic treatment which permits an exact computation of (10).
Usually, an approximation of the exact results is sufficient and convenient. Subsection
3.3 provides such an approximation. Finally, Subsection 3.4 extends the computation
of the approximation of the generalized modus ponens to situations where A’ is given

by a A-trapezoidal distribution or X is a compound variable.

3.1. Decomposing the problem

Letting ® = pg(t), the calculation of (10) is split into two steps :
i) calculate the mapping of [0,1] into [0,1] expressed by

Y, f(w) = supgc g min(up-(s), pA(S)—0) ;
ii) calculate ug- as pg-(t) = f(up(t)).

Let us focus on the first step. Using the definition of —, expressed by (3), leads to
f(o) = max(supgg Ag MA(S) , SUPge A MiN(®, Las(s)
= max(IT' (TAwm), min(w,IT"(As))) (1)
where Ag is the strong w-cut of A (i.e. Aw = {se S/ Ka(s) > w}), and IT" is the possibility
measure based on the distribution pa- (i.e. for any fuzzy or non-fuzzy subset F of S we
have IT'(F) = supgeg min(ug(s), pa(s))-
Note that if TI(TAs) 2 @ then () = IT'(TAw) > ,
whereas if [I'(TAs) < o then IT'(TAc) = 1 and f(a) = ».
Hence, in the general case, (11) can be simplified into
f(@) = max(IT'(TAs), w). (12)
N.B. : Incidentally, Formula (12) shows, if needed, that B° o B whatever A",
Denoting Az by the open interval ]Va, Adf, it is not difficult to figure out that
IT'(TAe) = max(u[A', +°°)(Vo)) + Moo, A'](A(o))
where HA", +o0) and P(-e, A7] M8 fuzzy intervals defined by (see Figure 2)
H[A", +00)(S) = SUP<g HA"(U)
H(-c0, A](S) = infy>g 1-pp-(u).
Introducing the auxilliary functions f+ and " defined by
(@) = Max(ua”, 4oo)(Ve), ©) (13a)
f0) = max(k(oo, A7)(A0), ©) (13b)
we have f = max(f*, ).
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—— KA, +o0)

Figure 2.

Consequently, the computation of the generalized modus ponens can be decomposed
into two independent calculations corresponding to local evaluations of what is
happening on each side of A. These two calculations are obviously similar. In the next
subsection, we give the complete results pertaining to one of them. Namely, we show
how to compute the effects of the mismatching between A" and A in the case where
the latter takes place on the side of the lower possible values constrained by A ; this
side is henceforth referred to as the left hand side of A (respecting the left to right
orientation usually employed in graphical representations of the real line).

3.2. Evaluating the effect of what is happening on the left hand side of A

This subsection gives a detailed presentation of how to calculate t+ as defined by
(13a). The shape of f+ depends upon the respective locations of+(a1, a2) with respect
to (a1 a2).

1stcase a’2<al. See Figure2.
Thenclearly fHw)=1 Ve [0, 1]

2nd case a’l <al <a’2<a2. See Figure3.
Let o' = HA", +°°)(81) and o*y = A, +°°)(a’2)
then ffw)=1 ifo>of

= o'y + o (1- 0'y) / ©o* otherwise.

— ka7 KA, +ec)
1 i
oty
oty
0 >
S
Figure 3.
3rd case al <a’t; a2 <a2. See Figured.

Let @* suchthat pp(s) = pp-(s) =" <1
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associated implication function, denoted by na(s)—up(t), which is known as the Gédel
operator given by (3).
1if pa(s) <pg(t)
HA(S)—-up(t) =
ug(t) otherwise

for any sinSandanyt in T. (3)

Actually', within the interpretation linked to the t-norm 'min', there is another possible
semantic acceptation of the dependency between X and Y : this latter acceptation
b_elng a_ssociated to the contrapositive form of the rule (i.e "if Y is not B then X is niot A")
since, in fuzzy logic, a rule is not necessarily equivalent to its contrapositive form.
Thus, according to this acceptation and with the usual definition of complementation
(i.e. p—a(s) =1-ua(s)), the conditional possibility distribution is taken as

1 if 1- pg(t) < 1-pa(s)

Ty/X(8, 1) =
1- pa(s) otherwise

for any sinSandanyt in T. 4)

Forinstance, if A is a fuzzy set and Bis a crisp set, Formula (4) gives
Ty/x(s, ) = max(ug(t), 1- pa(s)). (5)

Thus, for a given s, in A, Ty /x(Se, 1) = max(ug(t), A) with A = 1- HA(S,) and therefore
Ty/x(S,, - ) is of the A-trapezoidal form ; this means that the smaller A the more certain

that thg _value o'f Y is in B. In other words, the contrapositive form of the rule expresses
a cond_lt_lonal piece of knowledge of the form "the more X is A the more certain the
proposition Y is B". Formula (3) does not support the above interpretation.

In the §equel, we shall only consider the acceptation in agreement with (3). Basically,
accorqlng to this acceptation, the generalized modus ponens is characterized by the
following properties : '
-B’=BwhenAA".
- A uniform level of indetermination (or uncertainty) appears in B” as soon as the

support of A" is not contained in A, that is, if it is somewhat possible that the value
of X is completly outside the scope of the rule.

- If the core of A" is not contained in the core of A, then it causes the core of B’ tobe
larger _than the core of B, yet still being contained in the support of B. In other
words, if any completely possible value for X is outside the clas$ of values that are
surely within the scope of the rule; then the set of the completely possible values
for Y becomes less specific that the one expressed in the rule.

If X is a compound variable of the form X = (X1,...,Xp) where the X/'s r=1,...,p, are

non-inter_active variables (i.e. the possible value of one variable does not depend on
the possible values of the others) it means that A = A1x..,xAp and A'= A’1x4..xA‘p. In

such a case, pp and p,- in Formula (3) and in the definition of Ty must be taken as
follows [Zad78] :

Vs= (31----:Sp) € S, pa(s)=min r=1,..p uAr(sr) (6)
Vs= (s1,...,sp) € S, pa-(s)=min r=1,..p uA'r(s,.) (7).
Each of the A's and A"'s is respectively represented by a four-tuple and a five-tuple.

Practical Computing in Fuzzy Logic 15

Usually, the dependency between X and Y is described through a collection of rules
rather than a single one. The generalized modus ponens problem corresponds then to
the following pattern of reasoning.
Xis A’
if Xis Ai then Y is Bi i=1,...,n (8)

Yis B’

One way of processing a collection of rules could consist, first, in making as many
inferences as there are rules and, second, in combining the results provided by each
of them via a fuzzy set intersection. In reality, it has been demonstrated [Dub84]
[Dub85b] that in such a case, it is better to combine the rules before the inference is
performed. This prior combination permits to take into account the fact that the rules
complement each other. The main advantage of the technigue involving a prior
combination is that it may provide a more specific conclusion in many situations (and
an as specific one in the others). Indeed, consider a relationship between X and Y
described by a collection of rules as indicated in Pattern (8). Assume the fact "X is A™
is such that A" = Aju Ak with 1 <j<k <n. Then, the technique involving a prior
combination of the n rules yields the conclusion "Y is B™ where B’ is included in or
equal to Bj u Bk. In the same situation, the other way of processing does not necessa-
rily preserve this desirable property (actually, it may likely yield a completely indetermi-
nate conclusion). If one sticks to the interpretation associated to the min-Gédel
operators, the computation of the generalized modus ponens with a collection of rules
(used jointly) is done according to the following formula [Dub84], [Dub85b] :

Mp-(t) = SUPses Minfip-(s), minj_y o my/x(st) for any tin T (©)
where niy/x is the conditional possibility distribution built from the i-th rule with the
Gédel function. The prior combination of rules stands in the use of min; _y _, wy/x(s.1)
as the global conditional possibility distribution. In this paper, it is assumed that niy/x
is in agreement with the acceptation defined by Formula (3).

Works oriented toward the practical computation of ug- in Formula (9) are still in

progress. Some simple--yet having practical significance--cases of this problem are
dealt with in Section 4. The next section gives the complete results concerning the
case where the deduction is based on a rule used isolately.

3. THE SINGLE RULE CASE

This section gives a technique for obtaining B” in a situation fitting Pattern (1).
For any t in T, ug-{t)is given by
Hg-(t) = supge g min(ua“(s), HA(S)—-HB() (10)
where pa(s)—pg(t) is the Godel implication function that approximates the conditional
possibility distribution according to (3).

As explained in Subsection 2.1, the possibility distribution na- may be such that, for
any sin S, pa-(s) =max(u,(s), A). If so, by distributivity of "min" over "max", we have
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Xis A’
if Xis A then YisB 1)
YisB’

Basically, this means that from a rule which associates a variable X --for which we
consider the class of values represented by the fuzzy set A-- with a variable Y --that
takes then a value loosely specified by the elastic constraint B-- and a fact "X is A™"
expressing what information is available about the value of X, one can infer that "Y.is
B™ where B" is the deduced elastic constraint on Y. Any elastic constraint is
represented by a fuzzy set.

Our approach exploits the fact that, from a pratical point of view, it is sufficient to use
parametrized functions for representing the involved fuzzy sets in the given rule and
the observed datum. By means of a simple approximation and without any costly
computation one can then derive a parametrized function of the same kind for
representing the deduced value of Y. The technique is developed for the particular
setting where the involved possibility distributions are continuous, normalized and
unimodal. Moreover, the rules are interpreted according to the 'sup-min' composition
with the Gddel implication function.

The next section provides some background about the generalized modus ponens
and introduces the parametrized functions used as representation tools. In Section 3
the computation of the generalized modus ponens is treated in the case where a
single rule is used at one time. When the dependency between the two considered
variables is expressed via a collection of rules it has been shown that the best resultis
obtained through a global treatment of the rules rather than an independent and
isolate use of each of them. Section 4 deals with the computation of the generalized
modus ponens when such a global treatment of a collection of rules is performed.

2. KNOWLEDGE REPRESENTATION AND THE GENERALIZED MODUS PONENS
2.1. Unconditional information

First, let us consider the pattern of reasoning expressed by (1) and let us stppose that
X is not a compound variable (i.e. X is not of the form X = (X;,..., Xp)). The variables X

and Y are taking their values in S and T which are both assumed to be subsets of the
real line.

The imprecise value A" of X is represented by the possibility distribution wy. If it is

known with absolute certainty that the value of X lies somewhere in a particular
bounded subpart of S then ny is expressed via a trapezoidal distribution which,

practically, requires the identification of only four parameters ; two for bounding the
core (i.e. the set of completely possible values) and two for representing the support
(the set of values that are not completely impossible). Now, if one is not sure that the
value of X is in the considered bounded subpart of S it means (without any further
information) that it is possible at a degree greater than or equal to a non-zero

constant, say A, that the value of X is anywhere in S. The distribution =y is then
expressed via a so-called A-trapezoidal function that can be encoded in a five-tuple of
the form (a1 a2 a’3 a’4 \) as shown in Figure 1. The interval [a'2, a'3] is the core
of A" and Ja'1, a’4[ is called its A-support.
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The fuzzy set A appearing in the condition part of the rule represents a clags having
ill-defined boundaries. It is modeled by a trapezoidal distribution encoded in a fo‘ur—
tuple (a1l a2 a3 a4) equivalent to a five-tuple encoding with the last para'm_e_ter bgmg
equal to 0 (the O-support is simply the support) ; see Figure 1. The possibility distri-
pution associated to B in Pattern (1) is represented by the four-tuple (b1 b2 b3 b4)
and, as we shall see, B” can be approximated by a five-tuple distribution denoted by

(b1 b’2 b3 b’4 6).

A S S A St

al a2 a3 a4
a’l a2 a3 a4
Figure 1.

Thus, the possibility distribution pa- depicted in Figure 1 represents an imprecise and

uncertain information item [Dub85a] [Pra85]. For example, if the value pf X }s pbtained
through a physical measure, the imprecision may come from the techrpc_gl limits of '_the
measuring devices and the uncertainty may result from the possibility of having
misused some of the involved instruments.

The imprecision, considered isolately, may be conveyed by an interval or a fuzzy
interval, say A, that can be represented by a trapezoidal distribution. The possibility

distribution pa- is then constructed as pp-(s) = max(pp(s) , A) for any s inS;ittells

immediately that there is a certainty (or necessity) equal to 1-A that X is in the support
of A. Such a representation of unconditional information has been successfully used in
several knowledge-based systems equipped with approximate reasoning capabilities ;
see, for instance, [Bui86], [Far86], [Leb87] or [Mar87a].

2.2 Conditional information and the generalized modus ponens

As explained in some detailed presentations [Dub84] [Du_b85b] the possibility
distribution associated to B’, restricting the possible values of Y, is computed as
pg-(t) = supges t-norm (na-(s), my/x(st) for any tinT 2)
where "t-norm" is a triangular norm operator (i.e. a conjunction operator) and my,x 1s a
conditional possibility distribution of Y given X. my/x is usually unknown, however, one
i imati i ideri implicati jon built from the
can obtain an approximation of it by considering any implication function bul
rule “if X is A then Y is B". It has been shown in [Dub84] [Dub85b) _that, in orde?r to
ensure a suitable behavior of the generalized modus ponens te_chm_que_ (i.e. B = B
when A" is equal to or included in A), one must chose the implication fl_.mctlon
according to which t-norm is used. Different t-norms correspond to different

interpretations of the dependency expressed by the rule "if Xis AthenYis ?"_[Mar87p].
In this paper, we consider only the interpretation linked to the t-norm ‘min and its



M.M. Gupta and T. Yamakawa (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1988 11

PRACTICAL COMPUTING IN FUZZY LOGIC

Didier DUBOIS - Roger MARTIN-CLOUAIRE - Henri PRADE

Université Paul Sabatier
Laboratoire Langages et Systémes Informatiques
118 route de Narbonne
31062 TOULOUSE Cédex

Abstract : This paper presents an efficient technique for performing deduction
with the generalized modus ponens. This fuzzy logic reasoning tool is
considered in the particular setting where the involved possibility
distributions are normalized, unimodal, defined on continuums and
continuous. In addition, the rules are interpreted according to the 'sup-min’
composition with the Gdédel implication. The efficiency of the method stems
from the fact that the distributions, involved in rules and data, are
represented by parametrized functions. The deduction process consits then
in some simple computations performed on the parameters. Moreover, the
technique involves an approximation that aims at keeping only the
meaningful and essential features of the deduced information and at yielding
a conclusion of the same form than what is processed as data (thus
permitting to chain rules). The paper treats in detail the case where the
deduction is based on a single rule. The more general situation where
several rules are available for describing the dependency between two
variables is considered under some restrictive conditions.

Keywords : Fuzzy logic, Generalized modus ponens, Rule-based systems

1. INTRODUCTION

Fuzzy logic or fuzzy arithmetics make an extensive use of sup-min composition or
convolution. Especially when the universes on which the fuzzy sets are defined, are
continuums, the practical computation of supremums on such domains may appear to
be time-consuming. However it is has been shown for several years that it is possible to
perform arithmetic operations on fuzzy numbers defined on the real line, using
parametrized representations [Dub80], [Dub85c]. Then the computation comes down to
standard arithmetic operations on the parameters. It can be proved that the obtained
result is always (at worst) a good approximation of the theoretical one.

This paper presents a similar approach to the computational handling of the
generalized modus ponens [Zad79]. In its simplest form the generalized modus
ponens is an approximate reasoning technique that can be expressed by the following
syllogism.

* R. Martin-Clouaire is supported by a grant from the Elf Aquitaine company.



