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INTRODUCTION

In our industrial and agricultural environment, pollution sources for
groundwater are diverse and numerous. Industrial wastes which are in constant
growth and accidental spreads of chemical substances constitute potential and
effective contamination risks. Fertilizers and pesticides are used in large quantities
by a more and more intensive agriculture, and up to the last few years little interest
was borne to their behavior. With the new problem of radioactive wastes storage an
increased interest has been borne to the understanding of transport mechanisms
through porous media and to the prediction of solutes movement in the saturated and
unsaturated zomes. = This afrowing concern for groundwater recharge, pollution
problems and environmental protection has resulted in an increasing number of
studies and models attempting to describe and predict the physical and chemical
behaviors of water and solutes transported through heterogeneous porous media.

Early studies have focused primarily on solute movement through soil
laboratory columns made up of uniformly packed disturbed materials. gSolut.es
transport through these porous media is modeled by the convection—dispersion
equation (C—D). Although this approach is restricted to uniform field soils, the
convection—dispersion equation has been and is still widely used to describe the
transport of dissolved substances. In fact, it appeared that the simple convection
diffusion equation was not an appropriated tool when applied to undisturbed
materials, and that a lot of physical mechanisms was not accounted for in this model.
The C—D model is a macroscopic one, assuming that local heterogeneities in
pore—water velocities due to pore geometry and pore—size distribution and occurring
at a microscopic level can be lumped into an average pore—water velocity and
dispersion coefficient. These assumptions are reasonable for soils which exhibit a
narrow pore—size distribution and hence a relatively uniform velocity field.

In fact, for natural undisturbed materials a large pore—size distribution often
exists, ranging from a porosity referred as micro—porosity or textural porosity to a
size of pores corresponding to large voids often referred as macro—porosity or
structural porosity. @ These pores corresponding to cracks in swelling soils,
inter—aggregates voids, earthworm or gopher channels, old roots holes, are
preferential pathways for water and applied solutes, and that not only for drastic
boundary conditions. Thus, it is obvious that a large fraction of applied water and
solutes is going to be transported through these ways and that the classical approach
will fail to predict soil water contents as well as solute distributions. A lot of
experimental studies have highlighted and underlined the important role played by
macropores in the hydraulic working of the soil, Anderson et al. (1977 a,b), Bouma et
al. (1977,1979,1982, 1984), Trudgill et al. (19835, Smettem et al. (1985 a,b,c).

Until about ten years ago, very little work was done to account for the
different transport mechanisms operating in soils with large pores. Up to that time,
however, several potentially useful models were formulated and used in both chemical
and petroleum engineering literature, Rosen (1952), Turner (1958), Coats ans Smith
8964), Pellet (1966), Babock et al. (1966), Villermaux and van Swaay (1969).

uring the last years, following the way opened by these peoples, several models have
been proposed in the soil science and civil engineering literature to simulate solute
transport in structured soils. From a conceptual point of view all these models are
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very similar. The main common assumption being that the velocity field can be a
function of the space variables but is independent of time. One of the purposes of this
report is to present and discuss these models, their hypothesis, solutions ans
usefulness. The possibility to obtain analytical solutions throuih an extensive use of
Laplace transforms, among other mathematical techniques, has been one of the
reasons of the popularity and success of this approach in the last years. However,
many people recognize now that numerical methods are needed to deal with complex
real situations, Huyakorn (1983a,b).

As it has been said, the’ different available models have in .common the
steady—flow assumption. This is a limitation to their field application. In natural
conditions and in the saturated—unsaturated zone this hypothesis is barely acceptable.
We are there more concerned with a succession of transient flows of variable
intensities and durations. In fact the hypothesis of steady—state flow can be released
if we are not restricted to obtain analytical solutions. However, the prediction of
water flow characteristics in an heterogeneous media is not easy and the coupling of
water and solute transport in such conditions is still a very open research subject.

If we want to be able, not only to identify all the different mechanisms
involved in solute transport, but also to predict the behavior of these substances in
real situations and for management purposes, a coupling between water flow and
solute transport models is necessary. As referred above, some approaches have been
developed for solute transport assuming the knowledge of the velocity field. In
homogeneous media where DARCY'S law is assumed valid, the velocity field can be
easily obtained through the resolution of RICHARDS' equation. In heterogeneous
conditions, many problems arise. DARCY'S law is no longer applicable and
conceptually ifferent approaches have to be developed to model
saturated—unsaturated water flow in such media. Until now, very little works have
been done in this domain. They are restricted to well defined geometry media, single
crack or network of cracks, and thus can easily account for the flow in the
macroporogity. They are mainly used to demonstrate the importance of preferential
pathways on runoff, pollution risks and deep migration of fertilizers. An important
problem arising when dealing with water flow in heterogeneous media is to take into
account the possible modifications of the medium geometry and hence the
modification of its hydraulic characteristics with time. This is done in saturated flow
models by assuming deformations law for the porous media based on the elasticity
theory, Jouanna a.ng Louis (1984). At our knowledge, very little has been published
to accounted for modifications of the structural porosity with time for unsaturated
flows in swelling soils, Jarvis et al. (1987a). Only available models are concerned
with water flow in homogeneous deformable media.

Even if it appears that a lot remains to be done in the field of solute transport
and water flow modeling (water flow in particular), many models and solutions have
been published in the past years and our modeling capacity has been improved.

This report aim at providing an overview of what is the actual state of the
research in water flow and solute transport modeling through heterogeneous media.
Special attention has been paid to present the different available models and their
physical hypothesis in a form as detailed as possible so as the reader can easily
appreciate the degree of sophistication and have an immediate and easy comparison
between the different available approaches. A discussion of the different application
conditions and hypothesis is presented with each model or group of models.
Associated applications and field experiments are also presented when available.
When analytical solutions are involved, which is frequently the case for solutes
transport models, a complete expression of the solution is given, directly in the text or
in annex, in such a way that the reader can readily use it. When numerical solutions
are used, it is assumed that the reader is sufficiently familiar with numerical basic
techniques, so that only the main steps leading to the numerical scheme are given.
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In this report water flow models for saturated fractured media are presented
first. Two different approaches are developed. One will be referred as deterministic
and the other as stochastic. The particular meaning of these terms will be explained
later. Then are discussed the different approaches and works published to deal with
unsaturated flows in heterogeneous media. This part will cover models for single
crack or pore, networks of cracks, double porosity models, and kinematic waves based
models. An extension to non rigid media will end this part.

Solute transport will be split into three parts. The first will present the
models developed for well defined geometry media. Equations and analytical
solutions will be derived for spherical egates, and extensions presented for other
types of geometry, planar voids and planar aggregates, cylindrical voids and
cylindrical macropores. The notion of a regate shape factor will provide a link
between the different geometries. Special attention will be payed to analytical
solutions and Laplace transform inversion problems. The macroscopic approach will
be the second part. The concept of mobile—immobile water is at the base of this type
of approach. Relations will be established between the parameter controling the
interphase transport rate in these models and the geometry of the porous blocks or
aggregates in the former ones. The concept of Block—Geometry—Function which
appears to provide a new and inovative way to model solute transport will be fully
developed. Its links with previous models will be also fully discussed. At the end of
this part will be presented the transfer function approach developed by Jury (1982) to
cope with spatial variability of transfer processes. Finally the coupled water flow,
solute tra.ns}:ar problem will be considered.
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1. SATURATED FLOW IN HETEROGENEOUS POROUS MEDIA

1.1 INTRODUCTION :
Simulation of saturated water flow in fractured porous media has been and

still continues to be an important research subject in areas such as petroleum
engineering or karst hydrology. The problem of underground nuclear wastes storage
and the assessment of assossiated groundwater contamination risks arose in the past
few years and gave a new dimension and importance to this field of research. In this
part of the report we review some models lately proposed for saturated water flow
modelin%_in fractured media. At first, it may seem that this problem is not of great
interest irom the point of view of agronomic research. In fact it is a first step toward
unsaturated water flow modeling in heterogeneous media and in particular can
provide useful ideas in order to model the interaction between the fractures or more
(gienera.lly the macroporosity and the porous matrix. The models which have been
eveloped for saturated water flows are of two types and usually referred as Discrete
approach models and Double porosity models, Narasimhan (1982a,b,c,d), Huyakorn
(1983a). These two approaches will be developed in the following paragraphs. These
models are based on physical laws for saturated water flow in the macroporosity and
microporosity. As such, they will be referred as deterministic. Hereafter, we present
two of the last published models which seem to best illustrate these two concepts.
Others techniques can be used to simulate water flow through fractured
media.” Among them, random walk methods and particles tracking techniques proved
to be useful. This last method has been used to study the response of a fractured
media to a step injection when a constant hydraulic gradient exists throughout the
medium. Particles tracking through a network of cracks in which water velocity is
calculated by a numerical model provides a useful tool to estimate the influence of
fissuration characteristics on the transport. Because of the probabilistic generation of
the crack networks, these models will be referred as Stochastics, Smith and Schwartz
(1984), Smith et al. (1985), Schwartz et al. (1983), Schwartz and Smith (1985). This
technique can also be very interesting and useful for solute transport modeling.
However, a strong limitation is that the models based on random networks of cracks
can only be used for theoretical studies. Some examples are given at the end of the
part treating of solute transport, (Ch. 4)

1.2 DETERMINISTIC MODELING.

As mentioned before this paragraph deals with the so called Single crack and
Double porosity approaches. Duguid and Lee (1977) have proposed a complete
mathematical derivation of the flow and stress equations for a confined fractured
media. The resulting set of equations can be viewed as a double porosity model.
Later, Huyakorn (1983a) published the finite element solutions for different sets of
equations corresponding to a double porosity model with different formulations for the
coupling term modeling the intrephase transport rate. A model was also proposed for
a single crack by the same author. Narasimhan (1982a,b,c,d) has proposed a model
based on the IFDM (Integrated Finite Difference Method) numerical method and
capable of performing flow simulations using either the double porosity concept, the
discrete crack approach or both. In the following paragraph we describe in detail the
models of Duguid and Lee ((11977) and Huyakorn et al. (1983a). The model proposed
by Narasimhan (1982a,b,c,d) is more briefly reviewed. Applications are presented

later. _
1.2.1 DERIVATION OF THE GOVERNING EQUATIONS.

Duqguid Model
In this model, developed by Duguid and Lee (1977), the fractured porous
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media is treated as an elastic media which contains two kinds of porosity. The
primary porosity assumed isotropic and also refered as microporosity, and a secondary
porosity called macroporosity, which characteristics, anisotropic among others,
depend on the spatial distribution of the cracks. Water is allowed to flow from one
porosity system to the other in response to changes occuring in their respective
pressure head distributions. Since the system is assumed to be elastic and always
saturated, modifications in the two porosity systems occur when water is removed
from or injected into the global system. If we note ¢and ¢ the two porosities ,o
and o9 the pressures coresponding to these two domains, and # the compressibility
coefficient of water, we can write the two equations:

o= A FIZ-(1-¢) ®, pge [1.1]
o= N P-(-9) 0, pgZ. [12]

Given a surface S enclosing a volume V containing fluid and solid, the continuity
equation for the fluid phase is :

r r r
ng pfgaidV = J %(pfzpf)dV +J N.pgpe<ve>dS = 0 [1.3]
\Y% Vv \Y
where <v¢> is the space—average velocity of the fluid, and ps the mass density of
water. Writing <vs> the space—average velocity of the solid phase and <vgs> the
space—average velocity of the fluid relative to the solid phase we have:
<> = <VE> — <Vg> . (1.4]

Substituting [1.4] into [1.3] and applying the divergence theorem, one obtains the
following continuity equation:

dis v v = 1
o + .(pf(pf<vs>) + .(pfcpf<vfs>) =0 [1.5]
or
(d/dt)(pfcpf) + pftpr.<vs> + V.(pf(pf<vfs>) =0 [1'.6]

where: (d/dt) = (9/dt) + <vs>.V

Let T be the mass of fluid which flows from the microporosity into the
macroporosity per unit of time and volume unit of the medium. I' is sometimes
referred as the leakage term. It can be seen that changing the sign of T, the inverse
phenomena is accounted for. If we take into account I', the continuity equations for
the two fluid phases (macroporosity and microporosity) and for the solid phase are

now:




Fig. 1.1 Relation between 2 and w
[after Duguid and Lee, 1977

as = szdu

Fig. 1.2 Volume element [after Duguid and Lee,1977]
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(Ko 0 )/8t] + V.(pp <v >) =0 [1.9]

where subscripts ; and » respectively stand for the fluid phase associated with the
microporogity and for the fluid phase associated with the macroporosity. The
subscript s stands for the solid phase. Motion equations are all we need now to
complete the model. To derive these equations some assumptions have to be made
regarding the geometry of the phase associated with the macroporosity.

Heterogeneities are idealized as a set of tubules of elliptic sections such that
the length and the major axis of a tubule are significantly larger than its minor axis.
Fluid flow in a tubule is then governed by the Navier—Stokes equation:

p(dva/dt) = pg — Vpa + uV?v,y . [1.10]

where p is the fluid viscosity. Using the relation vy = vg + vgg, where vg is the
velocity of the solid phase and vss the fluid velocity relative to the solid phase, Eq.

[1.10] becomes:

éag—s + % + (Vs+V25).V(Vs+V2s) =
P8 — Vp2 + uV?(vs+vas) [1.11]

As the velocity of the solide phase, v, is supposed to be small as compared to the
fluid velocity, the terms in vs of highest order are neglected and equation [1.11] is

simplified to:

p(Ovas/ 8t) = pg — Vpa + pVivys . [1.12]

This is the motion equation for one tubule. But as the medium is made u? of many
fractures, an average over a representative volume must be performed before [1.12
applies to the entire medium. Remark that at this point it is implicitely assume

that a macroscopic law can be derived that accurately describes the saturated flow in
the macroporosity continuum. The validity of this implicit hypothesis is discussed
later in the part reserved to stochastic models. (See §1.3.2)

Here is introduced the notion of pore mairiz function f(x,). The pore matrix
function is statistically defined as the number of oriented tubules per unit area per
unit solid angle. The dependence on z allows to account for the inhomogeneity and
the dependence on 2 allows to account for the anisotropy. This concept is clarified b
Fig. 1.1 . Considerinf a direction defined by the vector 2, and the surface A
orthogonal to {2, the solid angle sustaining AA about the point x is noted df2. Hence,
according to the definition of the pore matrix function, the number of tubules AN
oriented within the solid angle d2 about the direction Q is given by:
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AN = f(x,2) AA dQ .
" But if we look at the number of tubules passing through the surface AS.w we have :
AN(x,Q,w) = f(x,2)Q.wASdN.

Now, if we want to know the total number of tubules passing through AS regardless
of their orientations we have to perform a solid angle integration, and we obtain:

27

AN(x,2,w) = AS f f(x,)0.wd . [1.13]
0

If we suppose that the velocity in a tubule is colinear to O and of module Uss, then
the motion equation (Eq. [1.12]) can be written:

(8] )(UsQ) = pg.00 — Vpp. 00 + BV3(Ugs). [1.14]

In order to apply equation [1.12] to the entire medium we must obtain an average
value of the velocity over an elementary volume of the medium. This is performed
integrating the velocitf' in a single tubule over the entire solid angle (4IT). Hence, the
flux is given by the fol owing expression:

<Q2s(X)> = pa<vyg(x)> = %f Ugs.Q dr [1.15]
T2

the expression we derived for the flux is valid for a volume of fluid and not for a
volume including the solid phase. Thus, we must now establish a relation between an
integral over 5 and an inte;-ﬁral over 7. Considering Fig. 1.2 one can see that the
length of a tubule oriented ong 2 and passing through an elementary surface w is:

280w, and that its volume is: 28Q.wrbc . If we consider surface dS = #dw , the
number of tubules oriented along Q and passing through dS is given by:

AN(x,Q,w) = f(x,2)0.wdNPdw .

Thus, for any scalar function Q depending on the position x and the vector )
we can write the following formula;

27
f Q(x,N) dr = %{ZOﬂf | f beQ(x,2)f(x,2)(2.w) dQ) dw} [1.16]
T2 0

where the first integral in the right hand side is taken over the entire solid angle,
(4II). As the pore matrix function is point symmetric, this integral is simplified to:
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: g 2T
f Q(x,)dr = g §ww dwf rheQ(x,2)f(x,02)00 dw [1.17]
T2 . 0

Given that Q0 = I, the identity tensor, and gg ww dw = 471/3 equation [1.17]
becomes:

f Q(x,N)dr = fﬁﬁcQ(x,Q)f(x,Q) dQ . [1.18]
p]

Now, for an elliptical tubule the velocity verifies the relation
0
Vz(U2s(Q)) =2 [—GUZS(Q)] [1-19]

where: G = 4(b% + ¢?)/b%>2. Substituting [1.18] into [1.14] we obtain an expression
for the average velocity in a tubule:

Uas()0 = X}TG[—,;(a/ac)Uzs(n)n + 08.00 — Vp,.00) [1.20]

Using [1.15] an expression for the flux is derived:
<a2> = 757 | o BB(Q)0 + pg.00 — vpy.00] dr [1.21]
Q25> = EAGT P—at—( pg. p2. - .
T

We can now use [1.18] to obtained an expression of the flux over any volume in the
medium:

<qp> = _Ill 271’1)_/\_& f(x,Q).(—pg+Vp2+vaa€—s-).QQ dq. [1.22]

In a similar way Space—averaged values for pressure gradients and acceleration can be
defined. It comes

V<pz> §1(x,0).00 d = $ ¥p2.£(x,0).00 do [1.23]
and
Z<au> $1(x,0).00 dn = 6% x,0).00 do [1.24]

respectively. Now, if we define the intrinsic permeability by:

_ | 7bc b2¢?
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a general form of Darey's law is obtained from equation [1.22]:
<Q2s> = —(Kz/ﬂ)[VUz + p(@/é‘t)<qgs>] . [1.26]

Since Darcy's law is assumed to apply for the fluid flow in the microporosity,
the flux <qis> is given by

<q1s> = —(K1/p)(pg + Vo) = py<vis> [1.27]

where K, is the permeability of the porous matrix. Combining equations [1.1], [1.7],
[1.9] and Darcy's law we obtain the flow equation for the fluid phase in the
microporosity. The equation for the flow in the macroporosity continuum is derived
in a similar way using equations [1.2], [1.8], [1.9]. It comes respectively,

(I-¢2) 18 g‘t—" + (1—p2) 28 %‘-2 + (1—p2)V.vs + -5— = %l.vzal [1.28]
(1o B g;—’l + (1—m)mﬂ€‘r:2 * (1—1)V.vs —% +V.<qs> =0 . [1.29]

It remains now to define the interaction term I. This is done using the flow equation
in the porous matrix. In order to derive an expression for the leakage term T, the
authors assume that the microporosity continuum is made up of porous blocks for
which Richards' equation can be solved. Notice that for a rigid and saturated media,
Richards' equation in fact reduces to the Laplace equation and is a particular case of
Eq. [1.28]. Assuming a simple form for the geometry of the blocks and appropriated
boundary conditions, analytical expressions can be derived from which it is easy to
obtain I'. If for example we assume that the macroporosity consists of a set of plane
fractures we have the following flow equation in the microporosity:

9o/ 36 = (K1/0uBp) V2o . [1.30]

By means of Darcy's law, a solution of this equation will provide an estimation of the
flow rate between the two phases per unit surface of crack. Now, in Eq. [1.28] and
(1.29], the term T is a leakage term per volume unit of the medium. Hence, we have
to convert the flow rate into the macroporosity which is expressed in unit volume of
fluid per unit surface of fracture in a flow rate expressed in unit fluid volume per unit
of the total volume. Again, the pore matrix function is used in a way similar to the
one followed to derive the continuity and motion equations. Given an elementary
volume 7 and the hypothesis of elliptic tubules, it can be shown that the following
relation ‘holds: Sa/7 = 4 o/(nc) where S, is the surface developed by the fractures
contained in 7. Thus, the coupling term is defined by:

_4 v p <qis>
r= — [1.31]

where <qy5> is the flux at the interface calculated from Darcy's law and the solution
of Richards equation. (For example [1.30] for plane fractures.) The main problem in
this approach is the choice of the boundary conditions for equation [1.30].

At this stage of the calculation, Duguid and Lee (1977) make the hypothesis
that the porous blocks are parallelepipeds, and use an analytical solution of equation
[1.30 to derive an expression for I With this eometry, the flow is one—dimensional
In the porous blokc. The analytical solution they have used corresponds to
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Dirichlet—type conditions at both boundaries. In this case the Dirichlet condition
applied in the center of the blocks is not very well appropriated. An analytical
solution with a Neumann—type boundary condition at the center of the block should
have been used. Other sets of boundary conditions and other ways to couple the two
phases will be presented within the models of Huyakorn et al. (1983a) and
Narasimhan (19823,b,c,d%.

. The pore matrix function introduced, under assumption of cracks with elliptic
section, and applied to obtain a permeability tensor and to link the leakage rate by
area unit to a leakage rate per volume unit is a general and theoretically attractive
tool. Particular cases will appear in the following models and later for solute
transport models. :

Huyakorn Models

The double porosity models hereafter described use for the flow in the
macroporosity a formulation different of that developed by Duguid and Lee (1977).
No compression of the porous matrix is accounted for and the flow equation used for
the macroporosity phase is consequently slightly different regarding the storage term.
Using the concept of REV, the following equation is used:

%i(Tg?—q) =s®_r_q i1 [1.32]

where h is the hydraulic head in the fractures, T and S are the fracture transmissivity
and storage coefficients respectively, I' is the volumetric rate of fluid flow from the
porous blocks to the fractures per unit area, and q is the volumetric rate of fluid flow
per unit area via sinks or sources. The leakage term, I, can be defined as before from
a solution of the flow equation in porous blocks of well defined geometry. Beside that
approach, an other definition of I', more simple but less accurate, has been proposed
by Barenblatt et al. (1960), that does not require a geometrical conceptualization of
the porous blocks. Let us first define I, in that way independent of the geometry.

Models based on this approach are called, Quasi—Steady Fracture Flow
Models, and assume that I' depends only on the gradient existing between the
pressure head in the macroporosity and an "average" pressure head in the
microporosity. The mathematical formulation derived by Barenblatt et al. (1960) is:

T =11 6? (h'~h) [1.33]

where, II is a leaka%le parameter assumed constant, ¢ is the specific surface of
fractures defined as the surface area of fractures per unit of volume of the medium,
and h' is the average head in the porous matrix. The model is completed using a
mass balance equation for the fluid phase in the porous blocks

s o162 (bh)=-T [1.34]

where S' is the storage coefficient. This equation is easily solved using the Laplace
transform, Streltsova (1976). Noting w = II¢?/S', T is given by

t
~T=§wf BTy, [1.35]
0
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- A second way to derive a coupling term is to assume a network of parallel
fractures. In this case, as a geometrical representation of the media is assumed, the
leakage term i3 more rigorously obtained. In the porous blocks bounded by plane
surfaces, the following set of equations is solved:

. 2
K'ﬁé sy o, h'=h! at t=0
h'=h atz=0, --3151'= 0 at z=a

This approach is very close to the one developed by Duguid and Lee (1974).
However, the boundary condition at the center of the block is different. Duguid and
Lee used a Dirichlet condition, Huyakorn a more realistic Neuman boundary condition
deriving from the symmetry of the system. An analytical solution of this set of
equations can be obtained for constant boundary conditions. Duhamel’s theorem
allows to obtain the solution for a time—dependent boundary condition from the
solution for a constant boundary condition. The velocity at the matrix—fracture
interface is then given by:

t

_ 11on’' _ 2K'% oh ~an(t—7)

Vn-KaEIZ=0__rn§0f a?e dr [136]
0

where: ap = 7%(2n+1)’K'/(45'a?). The coefficients ay come from the solution of the
Laplace equation expressed as a series. Solutions of Laplace equation for various
geometries and boundary conditions can be found in Carslaw and Jaeger (1959). The
specific surface of the flow between porous matrix and fractures is: o = 1 a, where 2a
is the width of the porous blocks. So, if H is the thickness of the aquifer and b the
half of the fracture aperture, T is given by:

I= () Vao [1.37]

The third approach is based on the assumption of a medium made up of
parallelepiped shaped blocks separated by three sets of planar fractures. These blocks
are regarded as spheres for transport modeling, and the interaction term is derived as
for the planar previous model by solving the flow equation in spherical coordinates
with appropriated boundary conditions. The outward normal velocity is founded to
be:

t
_ __2K'§ [ oh an(t—7)
V“‘K?Elr=0"_a_n§1f6?e ) ar [1.38]
0

where: a; = 7’n%K'/(S'a?). The specific surface of the flow between porous matrix
and fractures is: o=3/a, where a is the radius of idealized spherical porous blocks. So,
if H is the thickness of the aquifer and b the half of the fracture aperture, I' is given

by:
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I= (;{Tas)'v""’ [1.39)

It can be seen that for these three approaches a convolution integral appears in
the formulation of the coupling term. This is due to the analytical method used to
solve the flow equation in the porous matrix blocks and to the use of Duhemel’s
theorem to accomodate time—dependent boundary conditions. If we don't use an
analytical solution a set of two coupled partial differential equations results. Thus,
one have the choice between two strategies to numerically solve the problem. A
comparison between the two methods is presented in §1.2.2.. The numerical solutions
developed by Huyakorn use a finite element solution for equation [1.32] and the
coupling is handled either calculating the convolution integrals or using a finite
difference algorithm to solve the flow equation in the porous matrix. The solutions
obtained by both methods are very close and this is not surprising as the finite
difference solution of a linear equation is well known to converge to the analytical one
when the space step is sufficiently refined. In fact the finite difference based
algorithm avoids the problems involved in summing infinite series who's convergence
rates can be slow and strongly dependent on the characteristic of the porous medium,
glconductivity, storage coefficient,..), and of the time. For future extensions, the finite

ifference approach offers more possibilities to incorporate variable boundary
conditions. However, finite differences are not very well suited to handle sharp
radients, often present at early times. An other advantage of the convolution
integral approach, not reported in this study, will cleraly appear with the concept of
BGF developed in Chap. 4.

Narasimhan Model

The mode! developed by Narasimhan (1982d) is essentially based on the IFDM
numerical method presented by Narasimhan and Witherspoon (1976). This numerical
method can of course be used to solve the different conceptual flow models proposed
before. In fact the equations derived by Narasimhan 1982d) are not specifically
based on one of the currently used approaches, double porosity for example. The
IFDM method, using a set of equations directly derived from the mass conservation
equation, allows to calculate the flow in a medium composed of porous blocks of
arbitrary shapes separated or not by plane cracks. The immediate drawback of this
approach is the very detailed description of the medium which is required. Thus, it is
not a predictive tool which is developed but an analysis one. Let us first presented
the IFDM method, and then look how Narasimhan's model compares with others.

-The basic mass conservation law is applicable to any elemental volume [ of the
flow region whether that elemental volume comprises a portion of fracture, a portion
of porous matrix or both. Thus, for any elemental volume ! surrounded by a surface
I'y we can write the following equation:

0Mwl
Iy}

where G is a volumetric rate of fluid due to sources or sinks, K is the hydraulic
conductivity, ¢ = z + ¢ is the fluid pressure head, n is unit vector normal to I'1 and
oriented outward, and My, is the mass of water in I The specific storage coefficient
of the material is defined as:

Se,1 = plg(nﬂ + mv,l) [1.41]



Fig. 1.3 Example of discretization for the inte%ral
finite difference method. Nodes 5, 6 and 7 are located
in a crack [after Narasimhan 1982
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where n is the porosity, f is the water compressibility coefficient, and my,) is the rate
of change of the porosity according to the external pressure. The fluid mass capacity
of the element /is then given by: :

Moi=p VS [1.42]

where, V) is the volume of [ In equation [1.40] the surface I can either be
completely interior to  or coincide with parts of the external boundary of the total
System. - So, separating these two kind of boundaries, equation [1.40] can be written:

oM
PG I+f PK Vo.n dT'+ f pKVd.n dI‘=MC, [—a—:’?—l [1.43]
Tim I'i,b

The discrete equations are directly derived from this expression. As in others
numerical methods the flow domain is subdivided into small domains, and a discrete
form of equation [1.43] is derived tra.nsformi?fg integrals in discrete sums and
approximating first order derivatives by finite di erence formulas. It is obvious that
the size of elemental volumes, /, has to ge small enough in order to insure convergence
and precision in the calculations. Figure 1.3 gives a local example of the spatial
discretization with both porous matrix and fractures elemental sub—domains. Given

an element, /, equation [1.43] is approximated by:

G+ X P1nKin(V$.n)ATy, + )gp]bKlb(VQ).n)AFlb = MchAY(?I [1.44]
m

where , denote all interior surface elements and b all exterior surface elementg
(elements in contact with the boundary of the system), AT, is the area of the
interface between two elements and Kin 18 the conductivity at the interface,

In previous double porosity models, the fluxes between porous matrix and
fractures were treated as sinks or sources for the global flow equation and were

developed by the heterogeneities. Moreover, this coefficient was supposed constant all
over the domain, which is a probably strong and quite irreal hypothesis. Of course
many different weighting coefficients can be fitted according to the assumed
eometry. In the IFDM method the fluxes between fractures and porous matrix
ﬁlocks are explicitly calculated. The pressure head gradients between the two
sub—domains, regardless of their location (fracture or porous matrix elements), are

approximated by:

where Dy, is the distance between the nodal points /and m. Equation [1.45] assumes
implicitely that the line joining / and m is orthogonal to ATy,. In Fig. 1.3, D1,n is
equal to di,; + dm,i. Using [1.45] in (1.44] for all the nodal points, we obtain the
following set of differential equations of time:

aG) + 7Zlel,m((I)m— $) + If): Unb($p— 1) = M, %%l 1=1,23,...,L [1.46]
m
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where the conductances, Uy,n and Uy}, are given by:

Upn = H——'Kl T?};l 2 and - Upp = 'g—b—'—Kl ll’élt:l b, [1.47]

Attention has to be payed to the signification of the parameters. First, calculating
the conductance for an interface fracture—porous matrix, the following formula is

used:
Upye = 255 Al0e [1.48]

where, K is the porous block conductivity and d.; the distance from the nodal point
to the interface. The second important parameter is the storage parameter for a
fracture element. The amount of water released from or inject into the fractures for a
unit change in pressure head is given by:

M, = ﬂl@ﬂ) = Vit %% + pd—}i%’—f [1.49]

where, Vs i3 the volume of voids in the fracture element. Normalizing with reference
to the bulk volume, Vs, of the fracture and since p = pgy we have:

M,1 = Vb,1pg[nef + my,q] [1.50]

where ng is the porosity of the fracture element, and mys = — dn /dp is the coefficient
of volume change. Finally, the conductivity of the fractures is related to their

apertures by the classic formula:
2b)?
K= (—1-%7‘25— [1.51]

where, 2b is the aperture, and 4 the viscosity of water. The validity of this law has
been extensively discussed by Wilson (1970) and Witherspoon (1980). As the flux

through the fracture is related to (2b)3, this expression is often referred as the cubic
low. Time integration of Eq. [1.46] i3 then performed by a mixed implicit—explicit
scheme.

As said before, the double porosity concept can be hold by the IFDM method.
To develop a double porosity concept based model, some assumptions have to be
made in order to obtain coupling terms between the two phases. In Huyakorn model,
several geometries for the heterogeneities have been assumed leading to different
coupling terms. In the model of Duguid and Lee (1977), the interaction term is
derived using the porous matrix function which in fact provides a statistical and
geometrical description of the medium. For Narasimhan (1982d), the double porosity
model is based on a representation of the macroporosity continuum by a set of
parallel fractures. This situation has already been described and discussed for the
model of Huyakorn. Let us give only the set of equations for the IFDM:

—div(pK V) + paKr(Pr—0r) = pss"gtih
— paKr(G—0r) = /’Ss'g%

[1.52)
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where a'is a parameter related to the specific surface developed by the porous blocks.
'1.2.2 DISCUSSIONS AND CONCLUSIONS.

These models are in fact mainly studying tools and cannot be really considered
as predictive. They have been principaly used to study the effects of various
heterogeneity geometries when pumping tests are conducted for an aquifer. Principal
studied cases involve horizontal fractures, vertical fractures, sets of both.

In his paper, Huyakorn (1983a) compared numerical and analytical solutions
for the three different conceptual double porosity models he developed. Numerical
simulations are used to demonstrate the effects on draw—down curves of various
leakage factors (II in Eq. [1.33]) related to fractures network geometry. An improved
interpretation of pumping tests may result from this study. Similar problems are

In fact, going through the biblioa%raphy, one realizes that trying to set up a
meaningful model, we are facing several kinds of problems. Of course the more
rigorous approach is provided by models fully accounting for the geometry of the
media and using known and reliable transfer laws. However, even for these models,
some physical laws are only roughly approached. For example the "cubic law"
relating the flux in a fracture to its aperture is only an approximation since the cracks
do not have a constant aperture all along the flow pattern and in addition have rough
surfaces. Recognizing that these models are powerful analysis or studying tools but
obviously without great interest concerning real situations simulations since they
require an irrealistic degree of detail in the description of the media, an other
approach is required. The logical step when dealing with transport phenomena is to
try to derive macroscopic physical laws which com ined with a continuity equation
provide a mathematical model for the flow problem. This reasoning has led to the
concept of equivalent porous media. It is now well recognized that this approach fails
to provide a useful tool in many cages, and is only applicable to particular situations.

porous media concept. The following step has been to introduce the double porosity
concept. The meaning of this concept, its utility and its applicability have been
discussed at long by Narasimhan (1982d5, who call this model ” truly mathematical
approzimation whose ezact relation to physics is ill defined”. It is recognized now that
it produces, via different formulations for the coupling term, a useful tool to analyse
flow in real situations and for example, pumping tests. The double porosity
conceptual models we have presented, use to simulate the flow in the macroporosity
continuum a macroscopic law analog to Darcy's law, assuming laminar flow and
cracks of small apertures (e.g. the averaging procedure developed by Duguid and Lee
1977), or equation [1.32] in the model of Huyakorn (1983a)). The conditions where
arcy's law can be used to simulate the flow in the macroporosity continuum are
discussed later, (see §1.3.2). Progresses remain to do for Bingham fluids and
non—Darcian flows.
The formulation of the coupling term constitutes certainly another weak point
of these approaches. This one is usually defined from geometrical assumptions and
the solution of Richards' equation in the microporosity. Several formulations are
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Block Geometry Function concept). Notice that the coefficient, o, accounting for the
"density of fissuration" and appearing in the formulation of the coupling term is
typically a fitting parameter. '

The double porosity model which interphase transport rate is modeled as
simple first order process, Eq. (1.33], lacks of physical background. It is obvious that
the first order rate process based on a gradient between the pressure in the
macroporosity continuum and an average pressure in the porous blocks only rawly
approximates the water uptake process obeying Darcy's law. The same kind of
approach has been used for unsaturated flow and also for solute transport in
aggregated or fractured media. A full disccusion of this model, its relation with the
real physical process and its applicability are given in Chap. 3. g§3.6)

In fact as noticed by Narasimhan (1982a,b,c,d), the double porosity concept is
only a particular case of a more general concept involving several interacting media.
An attempt has been made by Pruess and Narasimhan (1985) to use this concept for
coupled heat transfer and water flow simulations in a fractured media. In fact, the
proposed approach, named MINC, ((I]Multip'le Interacting Continuum), based on the
IFDM method, is very close to the *Unsteady Blocky Fracture Flow Model” developed
by Huyakorn (19833)yand discussed above. In the MINC approach the medium is
split in ideal cubes delimited by planar cracks. The different continuums are defined
by their distance to the nearest crack. Thus, we have a set of smaller and smaller
nested cubes whose distance to the nearest crack is larger and larger. Fluxes and
mass balances between and for each element are calculated in the way described for
the IFDM. One can see that this approach is in fact quite equivalent to solve a
transport equation in cubic porous blocks, a "finite difference grid" being provided by
the faces of the nested cubes. This approach is slightly more general than Huyakorn's
model, a3 many different discretizations of the space can be used, and as the flow in
the macroporosity is explicitly calculated.

However, one can see that this is not a fully multi continuum approach as a
continuum i is only connected with continua i—1 and i+1. A truly multiple
continuum approach would allow direct coupling between different continuums or all
the continuums, without introducing a hierarchy based on geometrical considerations.
This kind of modeling is still to be developed.

In fact it seems that the two kinds of models, double porosity and
geometrically based models, have not really been compared and used together in order
to define for example what kind of coupling term is more adapted for a given crack
network characterized by some geometrical parameters such that connectivity,
isotropy, irregularity of apertures distribution, etc... Huyakorn's work only, presents
the influence of the coupling term on model responses, but only from a qualitative
point of view. The power of the IFDM could be used to simulated flows in randomly
defined cracks networks. Useful indications on the sensibility of the interphase
transport term to geometrical parameters.

. Networks of fractures with varying lengths, aperture, spatial distribution, etc..
can be easily generated. Deterministic simulations conducted on these networks offer
an interesting theoretical way to analyse the problems arising when it comes to decide
if macroscopic laws such as for example Darcy's law or Fick's law can be applied to
the macroporosity continuum. The following paragraphs present some works using
this technique to analyse the phenomena of dispersion and the validity of Darcy's law
for saturated water flow in fractured media. This approach has also been followed for
solutes transport and will be reported later. '
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1.3 STOCHASTIC APPROACHES.

As said before, this approach use randomly generated networks of cracks and
as such has been referred as stochastic. Initially, it has been developed to study the
dispersion in a fractured medium, and in which way the macroporosity continuum in
a fractured media can be replaced by an equivalent porous medium as far as saturated
water flow is concerned, Long et al. (1982). Hence, this modeling approach appears as
more related to solute transport problems. But as the first studies were not
accounting for the diffusion in the matrix and were rather focusing on the calculation
of the flow and the dispersion of a particles swarm, we chose to present this work in
this part of the report. An extension of the hereafter presented approaches,
accounting for the matrix diffusion, will be presented later.

1.3.1 METHODS

The models developed by Long et al. (1982), Smith and Schwartz
(1980—1984), Schwartz and Smith 1985)n§chwartz et al. (1983), Smith et al. 31985)
and Andersson et al. (1986) are closely related and particular cases of the percolation
theory, developed by Broadbent and Hammersley (1957). In a synthesis article,
Guyon et al (1984), have summarized some usefull results concerning the critical
percolation thresholds for random networks of cracks in two or three dimensions.

The first step in this approach is the generation of the network. Several
methods can be used to generate a set of cracks in a bounded domain. We have to
distinguish between two problems. The first one is to choose the kind of distributions
that should be used to characterize the length, aperture and orientation of the cracks.
This choice can be done according to some available experimental data.

The second problem, more related to the percolation theory, is to decide what
type of spatial distribution should be used to distribute the cracks in the domain.
They can be uniformely distributed, in a clustered way, randomly, or according to
some combination of these distributions. Obviously this choice will have a
non—negligible weight on the results. For example the connectivity of the system and
its critical percolation thresholds can be quite different. The residence time of a
solute will probably also depend on this choice. Here too, experimental data can help
to decide. Usually a random distribution is chosen.

Even though most of the published works are concerned with 2—D networks,
some papers exist for three dimensional networks. In those cases, the cracks are
either represented by pieces of plane or by disks. Particularly, Baecher and Lanney
8978% developed a conceptual crack geometry model, using circular disks randomly

istributed in the space. Later, Long et al. (1985), Elsworth (1986), and Andersson
and Dverstorp (1987), each proposed three—dimensional models to simulate water
flow and mass transport in fissured rocks. What follows concerns 2—d networks unless
otherwise specified.

It seems that according to experimental data, the lenght of the cracks can be
determined by sampling a negative exponential distribution. The probability density
function of this distribution is given by:

gl) = e [1.53]

However, lognormal distributions are also found in the literature. Apertures are
usually obtained by sampling lognormal distributions.

Fractures orientations data are certainly the best understood of all geometrical
properties recorded. A computerized method for analysing cluster orientation has
been developed, Mathab et al (1972). An hemisherical normal distribution is used to
represent these data. The cumulative probability function of this distribution is :
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P(4) = [1 — exp[k(cosf — 1)]]/[1 — exp(k)] [1.54]

where k is the dispersivity coefficient.

Simulations in three dimensions are only available at our knowledge for
networks generated with strong hypothesis on the shape and orientation of the cracks.
Calculations on §enera.l networks have only been done in two dimensional domains.
The generation of the network generally proceeds as follows:

1— Definition of a background rectangular grid whose nodes will be used to
locate the middle of the cracks. The spacing between the nodes and the size of the
domain give the number of nodes in both directions.

2— Random determination of a set of nodes and sampling of the different
distributions to define the characteristics of the cracks associated with these nodes.
In the works of Schwartz et al. (1983), Smith et al. (1984) the background grid has
usually between two thousands and’ three thousands points while less than one
hundred cracks are generated.

Once this is done, one have the choice to keep or eliminate dead—end
segments. It is obvious that if we are only interested in estimating the dispersivity of
the network, or the flow developing under a pressure head gradient applied at the
boundaries of the domain, we are allowed to eliminate the dead—end segments. Of
course, if we want to account not only for convection but also for diffusion inside the
cracks and from the cracks into the matrix, the dead—end segments cannot be
elir?inated as they represent a non negligible part of cracks volume and exchange
surfaces.

The next step, common to all approaches, is to calculated the pressure field
generated by a hydraulic gradient applied at two opposite boundaries. Usually, on a
rectangular domain no flux conditions are applied on the two other boundaries,
Schwartz et al. (1983). Long et al. (1982) use a slightly different set of conditions to
create a constant hydraulic gradient along the two boundaries parallel to the flow.
Notice that the pressure head distribution throughout the network obeys the Laplace
equation. In order to calculate pressure head and flux distributions, Long et al.
(1982) use a finite element model developed by Wilson (1970) in which the cracks are
considered as line finite element and the cubic law mentioned before, Narasimahan
model (§1.2.1), is used to calculate the fluxes. To solve the flow problem in the crack
network, Schwartz et al. 19838, and Smith et al. (1984) use a finite difference model
similar to the one described by Castillo et al. (1972a,b). For three—dimensional
systems, an algorithm have been proposed by Long et al. (1985), based on the solution
of Laplace equation in each fracture and the theory of images. This leads to a set of
mass—balance equations. Later, Elsworth (1986) proposed a numerical algorithm
combining finite element and boundary element methods to solve Laplace equation.
Andersson et al. 51987) use a boundary element technique described in Shapiro and
Andersson (1983, 1985).

The velocity distribution resulting from the distribution of gradients in the
domain is then used in a particle tracking simulation. In this kind of simulations, a
swarm of particles is instantaneously released in the domain at the upper boundary.
Schwartz et al. (1983) use a single gacture to release the totality of the swarm, thus
simulating a point source. Other choices are possible. The particules are then
individually through the domain according to the velocity field. Here also many
choices are possible. Some authors use the background grid as a guide to move the
particles from one node to the other. In this case a particle is moved for a time equal
to a base time step At, in a series of small steps corresponding to a mesh size of the
background grid. Each of these small step take a time At;, calculated according to
the ﬁow velocity. The particle is moved until the base step time At is completed.
Then the particle is stopped somewhere in a crack and not necessarily at the
intersection of two cracks. This is repeated for all the particles and as many times as
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required to move the swarm all through the domain.

, When a particle arrives at an intersection, the direction followed is determined
from probabilities weighed according to the relative amount of flow moving away
from the intersection in each fracture. Thus, a macroscopic dispersion is modeled in a
realistic way. In these models, mixing effects related to small scale dispersion and
diffusion are expected to be much less important than those related to fracture
connections geometry and heterogeneity of the distribution of velocities.

The last step of the simulation to get a Monte—Carlo method is to repeat a
sufficient number of times the generation of the network and the particule tracking
simulation. For example, Schwartz et al. (1983) use five hundred particles and three
hundred realizations of the process.

The steps followed for threedimensional simulations are quite similar. In the
work of Smith et al. (1985), planar fractures are generated sampling distributions for
their aperture and length. In this case the network is composed of two sets of parallel
cracks. - Then the flow equation is solved by a finite element method, in which the
macroporosity continuum is discretized using triangular elements. The particle
tracking technique proceeds as for the two—dimensional case.

1.3.2 APPLICATIONS AND RESULTS.

It is generally recognized that this approach is unlikely to be used for
prediction purpose and simulation of real situations. So the main developed
applications are concerned with sensitivity studies and numerical experimentations.
However, Schwartz et al. (1985) have given an extension of their approach allowing to
cope with realistic domains. This technique involving a connection between
continuum and discrete concepts is described at the end of this paragraph.

An important problem in modelinF water transfer in heterogeneous media is to
choose an appropriate conceptual model according to the medium characteristics.
Particularly the question is: are we allowed to use the continuum approach and the
related equations 7 Numerical experimentation is typically very well suited to study
this problem and furnish some qualitative information and quantitative thresholds.
Long et al. (1982) have used a simulation technique very close to that described in the
preceding paragraph to determine when a crack network can be replaced by an
equivalent continuum porous medium. The precise question being: is it possible to
find a symmetric conductivity tensor such that water flow in the medium can be
simulated using a continuity equation and Darcy's law ?

Numerical experiences consist in generating a network of cracks by sampling
some distributions for their length, aperture and orientation. Two different pressure
heads are applied at two opposite boundaries and a constant gradient is imposed on
the two boundaries parallel to the flow. Then the steady—flow through this artificial
medium is calculated using a finite element technique, Wilson (1970). Using Darcy's
law, an equivalent saturated hydraulic conductivity can then be calculated. By
rotating the flow region (rotation of the direction of the gradient) and keeping the
network fixed, different output flow rates will be obtained, and hence different values
of the hydraulic conductivity which will reveal the anisotropy of the network. If the

medium is homogeneous and anisotropic the values of 1/yK plotted against ¢, the
angle measuring the rotation, must approximately lie on an ellipse. If it is not the
case the medium is heterogeneous and the flow cannot be modeled by Darcy's law. Of
course, in all these simulations, the macropore continuum only is considered and all
interactions with the porous matrix are neglected.

Long et al. (1982) have studied the effects of fracture density, fracture spacing
and fracture orientation on the K(¢) relationship. One can retain the following
conclusions. Increasing the fracture density leads to a medium behaving more like a
homogeneous medium. However, a quite dense network of cracks is required.



@ =2

=92

v NO Flow Boundary
e Movina Particles Added

Fig. 1.4 (a) Example of a fracture network before
removing dead—end segments. (b) Network remaining
after dead—end segments are removed. f is the angle
between the first set of fractures and the direction

of the hydraulic gradient [after Schwartz et al. 1989
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Acceptable results are obtained for a flow re§ion of 25x25 cm in which one hundred
fractures with lengths of 10 or 20 cm and uniform aperture are randomly distributed.
The same network expanded in a 40x40 cm region gives erratic results. If the
aperture of the crack is not homogeneous, a dramatic increase in the heterogeneity
results. Of course the effects are magnified by the cubic law relating the flux to the
aperture. Finally for a given set of fractures, the spreading of the orientation
improves the homogeneity. Of course these qualitative conclusions are not surprising;
but the results of the numerical simulations show that really demse networks are
needed for one can use an equivalent porous media approach for the macropore
continuum. Long and Billaux (1986) have also discussed the relationships existing
between the degree of interconnection and the permeability of a crack network.
Following a quite similar scientific approach, the first works of Schwartz et al.
(1983) and Smith et al. (1984) tried to bring a response to the question: can the
aispersion process in a fracture network be modeled by a classical dispersion equation?
Their calculations are restricted to networks of orthogonal fractures having all the
same aperture. In the paper of Schwartz et al. (1983}, the only varying parameter
was the orientation of the network relative to the main flow direction. "An example of
the type of network used by the authors is given Fig. 1.4. The network is presented
before and after elimination of the dead—end segments. Their first simulations with
6=0, show that the longitudinal mass distributions from one realization to another
can be very different. Some realizations show spreading of the mass over 90% of the
domain before the beginning of the breakthrough. The distributions have a quite
complex form and can be multimodal. The breakthrough curves exhibit very long
tails and the recovering of all the mass can take a very long time. This behaviour is
related to the large diiferences existing between the velocities in the two orthogonal
sets of cracks. While the velocity distribution in the first set, fractures parallel to the
flow, is very narrow, it is much more spread for the second set of fractures orthogonal
to the flow. Obviously, such a fractured domain does not behave as an equivalent
porous medium. Increasing f, means and standard deviations of the velocity
distributions in the two sets of cracks become more similar. This results in a
diminution of the spreading of the mass through the domain. The initial
breakthrough time is not modified, but significant reductions of the times at which
25%, 50%, 75% and 90% of the mass is recovered are noted. For example the time lag
between the thresholds 25% and 75% is quite divided by 3 for 4 passing from 0 to 33
degrees. A chi—square analysis of the mass distributions shows that more and more
realizations exhibit a Gaussian distribution when @ increases. In order to get a more
reliable index on the possibility to represent the dispersion process by a diffusion

equation, Schwartz et al. 31983) have analysed (do?/dt) the time variation of the
variance of the longitudinal mass distribution. If a single value of the dispersivity
exists, this derivative will be constant. Analysing the simulation results, it appeared
that the dispersivity coefficient was never constant or even time—dependent. This
indicates that the diffusion model for the dispersion can only be applied in very few
cases. However, since these results have been obtained for networks of orthogonal
fractures, one may wonder if the conclusions may be extended to more general
networks.

Smith at al. (1984) have studied on an identical network and with a f—angle
equal to zero, the influence of the mean aperture of the second set, the influence of the
number of fractures forming each set, the influence of the length of the fractures and
the influence of the source loading, Their conclusion is that mass transport
characteristics are directly related to the connectivity of the network. This is a rather
general result of the percolation theory obtained on more general networks. The
discussion of the different simulations and the sensibility analysis being rather
painful, we refer the interested reader to the mentioned paper.
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. An interesting extension of this discrete approach has been proposed by
Schwartz and Smith 51985). The basic idea of the method is to model the spread of
the contaminant by a random walk method. The characteristics of this process are
determined from deterministic mass transport simulations carried out on discrete
fracture networks. Practically, a small part of the flow domain is used for
deterministic simulations from the results of which the characteristics of the random
walk will be derived. With this approach one must require the flow realizations used
to derive the characteristics of the random walk process to be ergodic. This means
that the flow realizations are not dependent on the local geometry of the network, but
are representative of the overall statistical features of the network. Practically, this
means that a sufficiently dense network has to be used. In other words, ergodicity
imposes the sub—domain on which the deterministic simulations are conducted to be
sufficiently large to represent an average behavior of the entire flow domain.,

The characteristics of the ra.:ﬁom walk process are collected from statistics
elaborated on the entire swarm of particules. Two methods are possible. The first
one is to derive the probability distributions for the velocity in the three directions,
upward, downward and downstream, directly from all the velocities experienced by all
the particles. The second is to calculate the mean and the standard deviation of the
velocity distribution experienced by each particle and for each direction. The means
obtained with the two methods are evidently equal but the variances are different. In
fact the mean of the standard deviations calculated on a particle basis is smaller than
the standard deviation calculated for the entire swarm which reveals a certain
deviation from the assumption of ergodicity.

If we note ~vy, —vj, —v3, the log—mean of the velocity in the three directions,
and —v, the equivalent log—mean velocity across the domain derived from the mean
travel—time of the particules, then the mean values of the distributions used for the

random walk are:
—~ti=—veVi/ve i=123 [1.55]

where v, is the equivalent velocity for the porous medium calculated from the
effective conductivity Ke, the effective porosity f, and the hydraulic gradient. The
values of the velocity used in the random walk (Eq. [1.55]) are slightly modified if the
second approach is used to calculate the statistics of the velocity distribution. We
refer to the paper by Schwartz and Smith (}}985) for more details. -

In order to check the methods, the continuum approach is applied to the
domain used to derive the velocity. The random walk method with velocities
calculated by the second approach restitutes very closely the breakthrough curve
calculated with the particule tracking technique. Particularly, the long tails that can
develop in such media are well reproduced, Fig 1.5. As well, the beginning of the
breakthrough is perfectly restituted which is not the case for the random walk
simulations using the velocity determined from global statistics, Fig. 1.6. In
consequence, if the subdomain used to calibrate the random walk algorithm is
representative of the entire domain, the movement of the particules can be simulated
with a very rapid algorithm and overall does not require a geometrical description of
the fractured media. In fact, the procedure developed above allows to pass from a
local level of simulation requiring a detailed description of the media to a macroscopic
scale since in the random walk method all that matters is a velocity in the three

directions.
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1.3.3 CONCLUSIONS
o ~ Several approaches have been proposed to simulate saturated water flows in
heterogeneous media. They range from the equivalent porous medium concept to
more sophisticated multi—continuum approaches. It is now recognized that in most of
natural conditions the equivalent porous continuum approach leads to poor results
and is unlikely to provide a useful frame to take up this problem.

Double porosity models have been introduced to account for physical
situations where two fluid phases with very different characteristics are interacting.
Namely, one fluid phase with high velocity and small capacity and the other wit
high capacity and very small velocity. In these models there is implicitely a phase
playing the role of a vector and a phase used for storage. This partionning of the roles
will be perhaps too strict for situations where the ietero eneities does not closely
verify the conditions mentioned before (strict separation of tie roles).

Among all double porosity models, one can distinguish between two kind of
approaches.  First the models trying to ignore the precise geometry of the
discontinuities and the flow in the porous blocks. The interphase transport rate is
then modeled by a first—order process. In this case the parameter controling the
transport rate integrates at the same time the geometrical characteristics of the media
and its transport characteristics. @ This type of approach has been initially
developeded by Barenblatt et al. (1960). The other way to define a coupling term
between the two phases, Duguid and Lee (1977), Narasimhan (1982a,b,c,d}(, Huyakorn
(1983a), is to assume that the microporosity 13 made up of porous blocks having a
simple geometrical shape and consequently to solve Richards' equation in these
domains. This approach leads to various coupling terms according to the geometry
retained. For these simple geometries, analytical solutions can %)e obtained since
Richards' equation reduces to Laplace equation for saturated flows. Making use of
Duhamel's theorem, the coupling terms take the form of convolution integrals. A
gartia:l differential equation is used in addition to model the flow in the macroporosity

omain.

The other possible approach needs a precise description of the cracks network
but there is no restriction on the geometry of the porous blocks. In this approach
developed by Narasimhan (1982a,b,c,d), the transport rates between the two phases
and the pressure head distribution in each phase are explicitly calculated. The IFDM
numerical method developed by Narasimhan and Witherspoon (1976, 1977, 1978)
allows to handle any type of fracture networks.

Long et al. (1982) have provided a useful study and methodology to decide if
the macroporosity continuum in a fissured medium can be approximated, for
saturated water flow modeling, by an equivalent porous medium or what is equivalent
if an analog to Darcy's law can be used at a sufficiently large scale. Similarly, in
order to study the dispersion properties of a cracks network, Smith and Schwartz have
developed a model based on Monte—Carlo simulations and randomly generated
networks to simulate the movement of a swarm of particules. In these models the
macroscopic dispersivity of the medium is shown up by using a particle tracking
technique simulation and by explicitly calculating potential and flux distributions in
the network. No exchanges between micro and macro porosities are accounted for.
Their studies restricted to sets of orthogonal fractures, but varying a lot of
parameters characteristic of the geometry, show that such a medium is unlikely to
behave like a homogeneous porous media from the point of view of dispersivity

properties.
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2. WATER TRANSFER IN SATURATED-UNSATURATED MEDIA.

2.1 INTRODUCTION '

It is now well recognized that a sufficiently precise modeling of the different
chemical and physical processes occurring within the unsaturated zone is absolutely
necessary in order to provide reliable predictions and risk assessments for all the
environmental and agricultural problems we are facing. Water table recharge,
leaching of fertilizers, accidental or continuous pollution by Nitrates, heavy metals or
other substances (bacteria, virus), are now recognized as very dependent on all the
transport phenomena occurring through the unsaturated zone. During the transport
through the unsaturated zone, water fluxes and water content are two fundamental
parameters directly controlling the movement of solute species, convection and
diffusion, and indirectly the biological and chemical processes (aerations, reaction
sites,...) in which they are involved.. Thus an understanding and a prediction as
precise as possible of saturated—unsaturated water flow through the vadose zone is
required.

For many years, Richards' equation based on Darcy's law has been widely
used to build up models in order to study water table recharge, to provide fluxes for
solute transport models or to predict infiltration and runoff, Usually, good
agreements are obtained between simulation and laboratory experiments. Applying
these models to field situations many deviations are recorded between calculated and
observed data, if not a complete unability of the model to provide reasonable results.
Consequently, it is clear that using these models in uncontrolled conditions may
sometimes lead to a very bad estimation and description of water fluxes. If we are
interested not only in water distribution but also in dissolved substances behavior, it
is clear that very poor predictions may result.

In fact, looking for explanations, people have rediscovered the importance of
preferential pathways such as, cracks, wormholes, structural porosity, moles and ants
holes, dead roots, etc... on water flow. The role played by macropores on water
circulation in the soil is not a recent discovery. More than one hundred years ago,
Schumacher (1864) wrote: .

"..the permeability o If a soil during infiliration is mainly controlled by big pores,
in which the water is not held under the influence of capillary forces”.

Some years later, Lawes et al. (1882) reported: .

"The drainage water of a sosl may thus be of two kinds: it may consist (1) of
rainwater that has passed with but little change in composition down the open channels
ofthe soil; or (2) of the water discharged from the pores o f a saturated soil”.

Finally, Hursh (1944) noted:

"Here porosity is not & factor of individual soil particle size but rather of
structure determined by soil aggregates which form & three—dimensional lattice pattern.
This structure is permeated throughout by biological channels which themselves also
function as hydraulic pathways. A single dead=-root channel, worm—hole or insect
b;zrr}cowfmagl/ govern both the draining of water and escape of air through a considerable
block of soul.”

In the last years an increased interest for water flow modeling in
heterogeneous media appeared. At the same time many experimental works have
been done in order to better understand the basic physical processes involved in water
flow through soil heterogeneities. A useful survey has been given by Bouma (1981)
and Beven and German (1982).

Some of the published papers give experimental evidences of preferential flows,
Thomas and Phillips (1979), Kneale and White (1984). Nitrate and chloride are used
to show up the preferential flow of water in the heterogeneities, Quisenberry and
Phillips (1976). Guennelon et al. (1981) have illustrated the importance of convective
unsaturated flows taking place in the structural porosity. In their experiments, a
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combined utilization of Phosphorus and Nitrate was very clearly showing the presence
of two interacting flow processes. Due to precipitation in the calcareous clay soil on
which the experiments were conducted and to its very low diffusion coefficient, the
phosphorus was dying the convective pathways. Soil samples revealed the presence of
very sparse convective paths and the arrival of the phosphorus_at large depths (1 m).
Inversely, the relative homogeneity of nitrate distributions in the soil profile were
clearly illustrating the importance of the diffusion from the structural porosity into
the porous matrix. Dying techniques are also largely used, associated with
micromorphological observations in order to define where water is flowing, Ritchie et
al. (1972), Bouma et al. (1977), Bouma and Wosten (1979), Bouma (1981), Bouma et
al. (1982), Bouma and Wosten (1984).

any measurement techniques have been developed. Topp et al. (1981) have
applied the time—domain reflectometry technique to detect the occurrence of water
flow in cracks. Bouma et al. (1977) have used dying techniques associated with image
analysis to characterize the role played by different type of macropores. Estimations
of the area developed by the cracks were also derived under controlled conditions.
Field measurement techniques for saturated conductivity have also been proposed by
Bouma (1980). An extension to measurement of the unsaturated conductivity in the
vicinity of the saturation is also given. Morphological methods have been developed
to characterize the macrostructure of the soil. Jarvis et al. (1987), presented a simple
infiltrometer to apply water at low potentials (¥ between —0.5 and —9 cm) at the soi
surface and used it to estimate unsaturated infiltration rates in a cracked clay soil.
Germann and Beven (1981a) also presented a device to follow the drainage of initially
saturated undisturbed soil samples.

For modeling purposes, many useful indications concerning the physic of the
flow in macropores of different afeomet;ries can be obtained from these studies. Using
dying techniques and image analysis, Bouma et al. (1977) distinguished between three
types of macropores: cylindrical, planar and intermediate. They observed that under
saturated conditions at the soil surface, they were equally used as preferential
pathways. One important observation was that under these conditions, only a small
part of the surface offered by the macroporosity was marked by the flow. It is clear
that the amount of water reaching a given depth is among other parameters a
function of the exchange surface between the porous matrix and the macroporosity,
developed by the flow. Thus, this percentage is clearly an important parameter for
any model. Bouma (1980) and Bouma and Dekker (1978), also reported the fact that
in their experiments the preferential flow was not occuring on all the surface offered
by the cracks. They remarked that the flow took place along narrow bands and that
the number of these bands depended on the rain intensity and duration. The same
results are reported by Kneale et al (1984). For sprinkling intensities varying from 1
to 10 they recorded an outflow ranging from 0 to 60 per cent of the input. The
absorption rate of the matrix was then multiplied by 5. They concluded to the
increase of absorption areas with the intensity of the input. Usually this increase in
the contact area i3 said to be related to an increase in the number of pathways and
probably not to an increase of the width of the stripes. This is a very important
affirmation. From this affirmation it immediately appears that a two—dimensiona]
simulation of the phenomena in a single crack or pore will be theoretically impossible.
The phenomena is completely thr imensional.

Most of the time the heterogeneities of the porous medium are due to swelling
and shrinking properties of the material. These modifications of the geometry and
thus of the hydraulic properties of the medium result in experimental and modeling
problems. Many observations are reported in the literature regarding the difficulty
there is to measure a saturated hydraulic conductivity for a swelling soil or to use the
same sample for several infiltration trials. For the modeler the problem is to relate
swelling or shrinking to a quantitative modification of the hydraulic characteristics of
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the macropores and likely also of the porous matrix. Bouma et al. (1977) have

- studied the effects of swelling on water flow for four different macrostructures of the
peds. They distinguished between structures where the prisms had rough irregular
vertical faces and peds with smooth faces. Three of their samples had linear extension
coefficients at saturation equal to .138. The last had a coefficient of .092. The linear
extension coefficient at saturation is defined by:

LE,, = [(V,/V-1]'/3 [L.1]

where, V; is the volume at saturation and Vg is the stove dry volume. They showed
that re§a.rding flow characteristics a consistent difference existed between the two
types of structure for a same linear extension coefficient. The peds having smooih
faces exhibited a strong diminution of the crack surface used by the flow after
swelling. The peds with rough faces had the opposite behavior. They explained that
by the fact that upon swelling the smooth faces offer a better contact and thus more

ectively close the cracks. With rough faces the contact is not so good and an
important- percentage of cracks surface remains available for preferential flows. In an
other paper, Bouma and Wosten (1979) have studied for two types of macrostructure
and upon continuous swelling, the evolutions of the saturated conductivity and
chloride breakthrough curves. Their samples had identical linear extension
coefficients. The faces of the peds were rough for the first set and smooth for the
second set. After five months of swelling they found a very small decrease in the
saturated conductivity for the first set and a strong diminution for the second set.
Here also, the smooth faces provided a better contact between the peds. Correlated
with this swelling pbenomena, a gradual modification in the shape of the
breakthrough curves was noted for the second set of samples. Longer tails and slower
variations of the concentration at the beginning of the breakthrough are explained by
a modification of the pores radius distribution.

Thus, one can see that for modeling purpose, and if we want to account for
effects of swelling or shrinking on the flow, some indications on the morphology of the
medium. are required. In this case classical physical characterizations alone are
probably not sufficient.

%,evera.l approaches can be outlined among the models proposed for
saturated—unsaturated water flow modeling in heterogeneous media. First the models
simulatin'% water flow in a single crack or pore and diffusion in the surrounding
matrix. They are based on Richards' equation for the porous matrix. This problem
does not require any equation to describe the flow in the macroporosity although a
model -due to Yeh and Luxmoore (1982) uses one. This last characteristic is very
important since the derivation of an equation modeling the flow in the macroporosity
is actually a fundamental problem. An attempt to %eneralize this type of model to a
entire soil profile by including an equation for the flow in the macropore continuum
has been made by Jarvis et al. (1987a,b). A complete different approach based on the
kinematic wave theory has been proposed to model the flow in the macroporosity
continuum. In that case a simple couplin% term is accounting for the interactions
between macro— and microporosity flows. By analogy with the models presented for
saturated flows in fractured media, these last two models will be called

double—porosity models.

2.2 FLOW IN A SINGLE CRACK OR PORE.

Edwards et al. (1979) proposed a model for transient infiltration in a pore. A
very similar approach was developed by Nieber (1981) for the same problem with a
plane crack instead of a pore. For infiltration from saturated cracks two models have
been proposed by Davidson (1984, 1985a). One use a Green—Ampt approach and the
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other a ﬁﬁité difference based numerical solution. An extension to a one—dimensional
Green—Ampt approach to asymptotic infiltration in a cracked profile has also been
proposed by Davidson (1985b,1987)

Edwards Model (1979 -

This model considers a single vertical pore of length L, surrounded by a porous
matrix. The symmetry is thus cylindrical and Richards' equation will be solved in a
radial plane. -This implicitly assumes that all the surface of the cylindrical macropore
is used by the flow when the rain intensity exceeds the porous matrix infiltrability
and water starts entering the macropore. If we note R the radius of the soil column
and H its height, the flow equation in Q = [0,R]x[0,H] is in cylindrical coordinates:

o=t 9 (I [2.9]

where H is the total head (cm), z is depth oriented downwards, r is radial distance, ¢
i3 the water content of the porous matrix, and t is the time. Initially, a flux boundary
condition is imposed at the surface of the soil. As long as the porous matrix
infiltrability through the column surface is greater than the rain intensity no flow
occurs along the macropore walls. As soon as saturation occurs at the top of the
column the water may enter the macropore. Let us note t; this time. Thus the
boundary conditions at the soil surface (af Fig 2.1 are given by:

—Kg%=F for t <t H=0 for t>t. (2.3]

On the boundaries (b), (c), (d), no—flux boundary conditions are imposed. The
algorithm used to handle the runoff along the macropore wall is similar to the one
used by Brandt et al. (1971) to calculate the extension of the saturated zone under
trickle irrigation. As long as there is no runoff (t < t1), a nullflux condition is used

on (e):
—xr =0 [2.4]

where rp is the pore radius. When water flows along the macropore walls the
algorithm used is as follow:

— Calculate the flow rate entering the pore

~ If z is the depth of the wet zone along the pore wall, apply a Dirichlet
condition corresponding to saturation and calculate the flux through this zone using

an approximation of the hydraulic gradient.
— If all the flux entering the macropore doesn't completely diffuse through the

wet zone then increase z;, else go to next time step.

If we note t; the time at which water reaches the bottom of the macropore
the boundary conditions corresponding to this physical situation, holding for t € [Sl,tzj
are:

H =2z 0 S Z S Zy
JH _ .

Kr gr=1| talt<ty [2= g [2.5]
0 _

—Krha?-—o Zt SZ<L
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If the rain lasts long enough, the water accumulating at the bottom of the hole may
reach the surface of the soil at a time we note t3. During the time interval [ta,ts] the
boundary conditions along (e) are: :

H=—2 ]tzStSts[OSZSW [2.6]
H=—-W W<z< L

where W is the depth of the water table below the soil surface. Once the water table
in the hole has reached the soil surface the boundary condition becomes:

H=0 for t>tgand 0<z<L [2.7]

and the runoff at the soil surface starts. The finite difference based numerical
solution of this set of equations was carried out using the CSMP package. This model
was used by Edwards et al. (1979) to study the effects on runoff time of start and
intensity of depth, radius, and number of holes by unit area.

Beside the fact that all the surface of the hole is used which seems to be in
contradiction with observations, the main critic which can be done is that the
algorithm used to estimate the amount of water diffusing radially from the macropore
wall into the porous matrix is very badly suited for this physical situation. This
algorithm has already been discussed by Lafolie et al. (19882l and shown to give bad
estimations in many cases for trickle irrigation. Concerning the problem of evaluation
of fluxes at a boundary, see also the remarks by Huyakorn et al. (1983a). In this case
we are typically facing a situation where very large gradients of potential exist all
along the macropore wall, which is the worst possible configuration. Furthermore, in
clay soil the diffusivity is very weak and thus, only the immediate vicinity of the pore
will be wetted. Therefore, very small spatial steps must be used if we want to
correctly estimate radial fluxes. In their calculations, Edwards et al. (1979) used a
step of 5. cm_which is obviously too large and probably leading to large errors in
cumulative infiltration estimations. Reasonable steps should be of some millimeters
near the macropore wall. Finally, in the cases studied by Edwards et al. (1979)
infiltration lasts approximately half an hour, and it is precisely at the beginning of the
process that estimation errors mentioned before are the largest. Typically, for high
intensity short storm simulations, which is the case reported by Edwards et al.
(1979), the model will probably give poor estimations of runoff starting time and
intensity.
%},oncerning the utilization of the model to evaluate the global infiltrability of
the soil and the runoff, an important problem is the choice of the area which
contributes to the flow in the macropore. Since the runoff at the soil surface is largely
conditioned by the microtopography, one can expect certain holes to be bypassed and
others to receive a much more important contribution than the one evaluate from a
simple ponderation of the area of the field. Hence, it is difficult to extrapolate the
results obtained for one macropore or crack to a much larger area. In addition,
remark that the percentage of the surface of the cracks used by the flow is also
certainly related to the runoff pattern at the soil surface.

The model developed by Nieber (1981) for infiltration into cracks is very
similar to the one proposed by Edwards et al. (1979). It resolves Richards' equation
with the same boundary conditions with a finite element method. The algorithm
handling the runoff along the crack wall is identical with the one used by Edwards et
al. (1979) and thus suffers from the same defaults. Thus, we are not going to further
develop this model. The main difference between the two models is that Nieber
8981) has tried to incorporate in his model the banding effect reported by Bouma et

ekker (1978). As remarked by the author the simulation is then theoretically
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three—dimensional. The way the banding is introduced is in fact not very clear. For
the same reasons as for Edwards' model the conclusions derived from the simulations

are not very reliable.

Model of Yeh and Luzmoore

Yeh and Luxmoore (1982) proposed a different model for the same problem.
Instead of assuming that the flow in the macropore is controled by the uptake rate
from the walls of the macropore, they used the following equations to model the flow

in the macropore
po=vk¥z) [2.8]

when the pore is saturated, and

90423,k [2.9]
when the pore is unsaturated. /' is the modified compressibility of water; K is the

equivalent hydraulic conductivity in the pore; ¥,¢, and  are the pressure head, total
head (p=1+32), and water content, respectively, in the pore. ¢is the distance from a

reference point along the longitudinal direction of the pore indicated by the vector & ¢

If we note R the radius of the macropore and R—r the thickness of the liquid film,
then, the water content and hydraulic conductivity of the pore are

. § = 1-r2/R2 [2.10]
an
K(0) = [gRY/ (BuI[L + 3(1-0)2 — 4(1~0) + 4(1-0p&0(1/yT=F),  [211]

respectively, where 4 is the viscosity of water, p the density, and ithe gravity
acceleration. Similarly, if we note W the aperture of a plane crack and w the
thickness of the film of water, the water content and the hydraulic conductivity are

8 = 2w/W [2.12]
K(6) = [ogW2/(120)] %, [2.13]

respectively. Darcy's law is used to model the flow in the porous matrix, and
continuity of the pressure head is imposed across the interface macropore
microporosity. Boundary conditions must be suppied either in terms of water content
if the pore is unsaturated. When the pore is completely saturated the boundary
condition at the soil surface is ¥=0. Applied to the simulation of simultaneous
infiltration from the soil surface and macropore walls, the model gives essentially the
same results as earlier obtained by Edwards et al. (1979).

Davidson Model The Green—Ampt approach

For the infiltration from a saturated crack, Davidson (1984,1985a) proposed
two solutions for the problem, respectively based on a Green—Ampt model and a
finite difference solution of Richards' equation.
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The Green—Ampt model assumes that water advances in a sharp wetting front

- at which water potential is constant and behind which hydraulic conductivity and

moisture content are also constant. This concept has been largely used to model
classical one—dimensional infiltration.

Let us consider a two—dimensional representation of a soil profile (Fig. 2.2)
containing regularly spaced vertical cracks. The length of each crack is ¢ and the
spacing between two cracks, b. The initial moisture content is assumed uniform, and
at t=0 the saturation is assumed over all the crack wall and at the surface of the soil.
No—flux boundary conditions are imposed everywhere else.  The constant
conductivity in the wet zone is noted K, and ¢ the total pressure head is given by ¢ =
Y+z, where 9 is the matrix potential. Assuming Darcy's law in the wet region the
flow velocity u is given by:

u=-KV . [2.14]

Combining with the continuity equation, Laplace's equation is obtained in the wet
Zone:

V=0 inR. [2.15]

The potential at the front is given by: ¢ = 9o — 2z, where ¢ is negative and can take

an arbitrary value. The boundary conditions are, Fig 2.2:
$=0;z=0 x€/0,}
¢=0;x=0 ze€[0,q [2.16]

%:0;x=0,z2a andx=5,z>0 .

Let us note C the wetting front and N the normal to C. Then any point (x,z) on C
moves according to the kinematic equations:

% = —Un sin y g% = Un cos x [2.17]

where x is the angle between N and the z axis, and U, the velocity normal to the
wetting front given by:

U, = (—K% — Kocosy)/ f [2.18]

Ko is the conductivity ahead the front and f the difference in moisture contents
between the wet and dry zones. As K is usually very small in a initially dry soil, Uy

is simplified to
K '

The first stage of the solution is to transform the physical domain where
Dirichlet conditions are imposed on two orthogonal boundaries in a domain where
only one boundary has a Dirichlet condition. This is done using a conformal
transform. If Q = x + iz is the physical complex plane Fig 2.2, and w=p+iq the
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Fig. 2.2 Schematic representation of the physical
domain, 2, containing regularly spaced cracks with
depth ¢ and spacing 2b. Dashed lines are symmetry
axis for the flow [after Davidson 1984]

Fig. 2.3 Schematic representation of the transformed
domain, w, containing regularly spaced cracks with
depth ¢ and spacing 2b. Dashed lines are symmetry
axis for the flow [after Davidson 1984)
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transformed complex plane Fig 2.3, the conformal transform mapping w in Q is given
 by: ‘

q=ib { log [cos Tw/2d) | (1 _sin?(rw/2d) )1/2]

siniw sin®(7/2d)

_ tw/2d)  _sin®(xw/2d) s/
oe [ et~ (1~ S ) 220

where d is defined by: sin( W{I2d) = tanh(7ra/2b). With this transformation, the
boundary sections A'-B', B'—H', H'-D', D'-E' in the plane w are mapped into A—B,
B-H, H-D, D-E in the plane . If we note R' the wet region and C' the front in the
w plane, the flow equation remains:

V% =0inR' [2.21]

with ¢=00nq=0. [2.22]
The other boundary conditions are :

$ = ¥c—2z(p,q) on C' [2.23]

%=0 forp=0orp=d. [2.24]

For a conformal mapping, the normal derivatives are related by:

%218

iy _ d0 _id, |d0
e —a-me /|M

[2.25]

where n is the outward normal to C' and w the angle between n and the positive q
axis. Thus the kinematic conditions {2.17] becomes:

dp/dt =-U_sin ¢ dq/dt = U_ cos § [2.26]
where
2
- dQ| _ -K dQ
Un—Un/I?m _—].%/laE . [2.27]
The second staie of the solution is to calculate in the w—plane the movement of the
wettin%l front. Let us define ¢y = ¥ — tc, S0 that ¢; equals zero on the wetting front.
Note that ¢y satisfies equations [2.15] or [2.21]. We note G(P;Q) a Green's function

with field and source points P and Q respectively. A Green's function satisfying:

VG = §(p—£)d(a—) 2.2
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in the semi—infinite stripe 0 < p ; 0 < q; §<d; n<w, together with the homogeneous
boundary conditions [2.22] and [2.24] is given by: '

G(p,4i¢,1) = 1 Log] cosh 7 (q—7) — cos T (p-+¢)][cosh 7 (a=n) — cos 7 (p—¢)]

— 77 log[ cosh 3 (q-+1) — cos 2 (0+8)][cosh § (q+7) — cos T (p—¢)] . [2.29]

To solve the kinematic equations we need U, and thus ap1/0n. An expression for
01/ on is derived using Green's theorem: '

[ are-crpia= [ 006 Briwq. 2.0
! a [ '
Applying formula [2.30], together with [2.21], [2.22], [2.23], [2.24], [2.28], gives:
d
08 =~ e + [ (hn@i), e pa
C' 0

This expression is transformed by Davidson (1984), and the final integral equation
giving &/ dn is:

220871 (1-00505(Q) —a = cost(?) o) — v/ -
C|
+ Jr [cosa(Q)a%,T - cosa(P)%]Gds(Q) [2.32]

for P lying on C'. When C' is a single—valued function q(p,t), its motion can be
expressed by

8q/d = Ugcosd . [2.33).

The aim is then to numerically follow the movement of the front, solving equations
[1?.32] and [2.33]. The solution is sought along equally spaced lines p = p; j=1,...,N.

ime integration is performed by a Adams—Bashforth—Moulton scheme, and the
quadrature of integrals in [2.32] by Simpson's rule. A cubic spline is used to calculate
the slopes of C'. The solution in the physical Q1—plane is obtained by mapping C'into
C through [2.20].

Davidson Model The finite di fference solution.

Davidson (1985) has also provided a finite difference based numerical solution
for the same problem.” Using Kirchoff transformation, the equations of the problem

are:
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V2V = 0 in the saturated zone and

g\;gt! -V — g% in the unsaturated zone (v < 0)

where V i3 defined by:

¥
V(y) = [ K(¥) dy.

0

The physical boundary conditions are the same as for the Gre

[2.34]

en—Ampt model and

easily transformed for the new variable, V. The Laplace operator and the first
derivative dK/dz are approximated by three points and two points centered formula,
respectively. A fully implicit scheme is used to advance in time. This results in the

following system of non—linear equations:

Vn:l —oyn+ +Vn+1' Vn+1+ —gyn+l L ynst

i1, isj i-1, + ijT1 iy i,j-1 =0 for Vn+1>0
(Ax)? (Az)? 1h]
+1 n+l n+1 n+1
+y VT ily K —K
N i § ] isit1 i, imt . +1
where:
déd gt —6% +1
=_d>i i 01 n
(av)i,j n+1 _yn if Vl 1 J *v
vart e
193] 11}
dédy _db ~m . n+1 _ vn
(HV)i,j =qv (Vi’j) if Vi i Vi’j . [2.36]
This system is written in the form:
* = + + + + dgynt
V =yn l=f(vnl yeTl  ynTi L ynT!
isj iyj it i-ni’ i, T i, irj’
n+1 n+1 n+1
Ki »jt1? Ki vj1’ Vi ’j ) [2:37]
and solved with a sur—relaxation iterative scheme:
x*
vatio yatty (v _yety [2.38]
15 1 :j 1y} 1)}

Davidson (1985) uses a correction technique due to Hirt and Harlow (1967) to prevent

accumulation of iteration errors with time.

Both models have been used to test the effects of different geometrical
parameters such that cracks spacing and cracks depth. Changes due to variations in




Horizontal distance {cm)

Fig. 2.4 Moisture distribution in a clay soil after a
90 mm rain. Shaded area indicates the part of the profile
that appears to have been moistened [after Lewis 1977]
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t.he'hydra.ulic characteristics have been estimated with the numerical model. Water

content profiles, cumulative infiltrations and infiltration rates, functions of time are

" given in Davidson (1984, 1985a) for different configurations of the cracks. The

different results agree well with those of Edwards (1979) and those of Nieber (1981).
The Green—Ampt model fails to provide results for b/a lower than .5, which is the
case of a set of relatively close cracks. In this case as soon as the wetted zone
developing at the bottom of the crack touches the symmetry axis, the numerical

-calculation breaks down. So the occurrence of a dry zone surrounded by a wet zone

between two cracks is never shown up. With the numerical model the calculus is

possible and a dry zone appears. For illustration purpose an experimental water

%ontent distribution drawn from Lewis (1977) and illustrating this phenomena is given
ig 2.4

Asymptotic Behaviour.

The aim of this study, Davidson (1985b,1987), was to derive a
one—dimensijonal Green—Ampt model for infiltration in a soil containing cracks or
holes.  As presented before, Davidson (1984) has derived a two—dimensional
Green—Ampt model for infiltration from a single saturated crack, whose solution
process involved a conformal transform. In this case the conformal transform is not
necessary. The Green function (Eq. [2.29]) is used again and the problem is then

-defined by:
V2 =0in R VG = §(x-€)6(zn)
&/ox =0  x=0, z>a; x=b, 2>0 dG/ dx = 0 x=0, x=b, z>0
¢ =0 2z=0, xea,b], x=0,2€[0,a] |G = 0 z=0, x€ [0,b] .

Applying Green's theorem to functions ¢ and G the following expression is obtained:

Wxz) = 2(89/ 22)yp, + [ (G 8/08) ¢_q d [2.39]
0

since G — — z/b when 7 — o with z finite. For (x,z) belonging to the crack, this
expression reduces to:

~2(0/ 2y, = [ g (2,m)8H(0,m)/0¢ dn [2.40]
where °

8.(z7) = G(0,2,0,7) . [2.41]

Another relationship connecting the gradients of potential on the front to those along

the crack can be obtained by applying Green's theorem to the function zV2p — ¢V2z.
Then we have:

(8/02) 1, = L (5[ 200(02)/0x dz + 9, — L) [2.42]
0
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where L is the depth of the wetting front assumed .to be horizontal. L is supposed to

. be large enough so that 8p/dz ca.n%)e taken constant along the front. One can expect
the gradients to decrease when L increases. Thus we can express these gradients in
series of negative powers of L

(0h/02); = a0 + al™! + 2L 2 + .....
[2.43]
a(0,z)/0x = Qo(z) + Qi(z)L™ + Qa(z)L2 + ... '

Using these expressions in equations [2.40] and [2.42], and equating the terms of like
order, we get:

a9 =-—1 [2.44]
at = ¥ + [ 2Qo(2) dz [2.45)
0
an = j; 2.Qua(z) dz (n>2) [2.46]
—anZ = fgc(z,ﬂ)Qn(ﬂ) dp . [2-47]
0

Multiplying [2.47] by Qo(z) and integrating gives:

2 f2Qo(z) dz = f Qu(n) f ge(z,7)Qo(z) dzdy . [2.48]
0 0 0

The integral on the left hand side can be evaluated using [2.45], and the integral on
the right by [2.47] with n=0. Thus [2.48] becomes:

—ap (a1 — Ye)b = f 7Qn(n) dn [2.49]

0
and hence, using [2.46] we have:
a = (Ye—at)an n>1. [2.50]

Defining Ly = % — a; we have the following relation:

an=—Lo (Lo—%) n>1. [2.51]

Summing [2.43a) gives:
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(89/2)p, = f—fff,—‘ [2.52]

which is a one—dimensional Green—Ampt form for an infiltration from a supply
surface located at Lo below the surface. Ly is given by:

a
Lo=— [2Qu(z) dz . [2.53]
0
In the case of a cylindrical hole a different Green's function is needed
satisfying the equation:
' i s 1
VG, =18 (rg"%)_ + ath = 5k 8(r—p) Hz—1) . [2.54]

This function is given by Davidson (1985b):

Gy (rz30,1) = 2%,;12 (lz=1] — z-+n)

I VN Jo(Anr) Jo(ep)
Y [exp(—Aalz—n)-exp(~Anlz+1)] T [2.55]

n=1

where the A, are the roots of: Jj(Aar1) = 0. Jg and J; are Bessel functions of first
kind. Applying the same reasoning as for the case of a crack, an expression is derived
for Lo and it is shown that a one dimensional Green—Ampt formulation can be
derived. In this case Ly is given by:

a
Lo = — 21 f zQo(z) dz [2.56]
r2
1 O
where:
a
27Ty fgh(z,n)Qo(n) dn=z 0<z<a. [2.57]
0

The calculation of Lo is performed by standard techniques, quadrature of the integral
and collocation to obtain a set of linear z;ljgebra.ic equations. The following
transformation is applied before numerical calculations to avoid any difficulties
associated with the logarithmic singularity of g:

S zmQu(ndr = [eEm(Qo(n—Qo()dn + [gzn)dy [2.58]
0 0 0
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Some results are presented by Davidson (1985b) comparing infiltration rates
calculated by the two—dimensional model and the present approach. For large times
the two models give the same results. To apply this approach one have to wait for
the front to be quite horizontal, namely for the infiltration front to be well below the
crack depth. It is obvious that this can only occur if the flooding of the surface Jasts
sufficiently, which is as outlined in his conclusion by Davidson (1985b), unlikely to
occur in natural conditions. L, the virtual null potential surface ordinate, is always
lower than ¢ the depth of the crack, and i3 only related to the geometry of the system.
Tabulated values of Lo/a function of b/a are given by Davidson (1985b), where b is
the half crack spacing. For cylindrical holes, Lo/a depends on the ratios ri/a and
I1/1o, where ry is the radius of the soil column associated with the macropore and r,
the radius of the hole.

As said at the beginning these models are restricted to infiltrations from
saturated cracks instantaneously filled by a storm and hence are not really applicable
to field situations. In fact it seems that all the authors who worked on this problem
have always assumed that it was necessary to have a high input rate at the soil
surface (storm or flooding) to have a flow in the macroporosity.(cf the different
hypothesis of Davidson). articularly, all the range of rain intensities progressively
filling the cracks or even just involving some runoff along their walls cannot be
simufa.ted with this model. Another restriction comes from the hypothesis of an
initially ver%/ dry soil, thus eliminating all the Physical situations resulting from a
succession of infiltrations and redistributions. How the wetting front develops under
more wet initial conditions ? Is the mushrooming effect more or less important ? For
what configuration an enclosed relatively dry pocket appears ? What are the effects
on infiltration rates ? All these questions cannot be taken up by these two models.

The models of Edwards et al. ﬁ1977), Nieber (1981), Davidson (1984—1985) are
all restricted to a single crack or cylindrical macropore, and extensions needed for
infiltration simulations in a heterogeneous profiles. Some attempts have been made
by Hoogmoed et al. (1980), Bouma et al. (1982), Bouma and Wosten (1984) to extend
these modeling approaches to field situations and to compare calculated and measured
water content distributions. The most interesting work lately proposed, is a model by
Jarvis and Leeds—Harrison (1987a) to simulate water flow in & structured and drained

clay soil.
2.3 A DOUBLE POROSITY MODEL

This model comes naturally as an extension of the various approaches
developed for flows in single cracks or pores. To be able to use an approach
simulating at the same time the flow in the cracks and water uptake by the peds the
authors assume that the soil is made up of cubic porous blocks of known size Sd)
separated by a network of plane cracks with width (w). This assumption enalbles
them to calculate a structural porosity (et) and a crack surface per unit of soil volume
(A). In addition they distinguish between a dynamic structural porosity (eq) and a
stable structural porosity (es). The stable structural porosity is related to the volume
of cracks remaining in a fully swollen material; this is a parameter to be fixed by the
user. The dynamic structural porosity is related to the volume of cracks disappearing
upon swelling of the peds. Thus, the total structural porosity at any time is given by
e = e + ed. According to the authors, eq = f; — 6, where 0s is the water content at
field capacity and # the initial water content. Assuming isotropy of shrinkage and
swelling properties the volume of vertical cracks and their area, per unit of soil volume
are defined by ey = 2e¢/3 = 2w/d and A, = 2A/3 = 4/d, respectively. Hallaire
(1987) gave evidences that isotropy of shrinkage and swelling are reasonable
hypothesis for aggregates isolated from their environment, but that for a layer of soil
the process is certainly more complicated. However, even if it is in a relatively crude
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way, the model of Jarvis et al. (1987a) is at our knowledge the the first to introduce
the processes of srinkage and swelling in a water flow model.
Water uptake by the peds and at the surface of the soil is in their model

controled by the sorptivity. Thus assuming that the gravitational component of the
flow is negligible in the peds, the water uptake rate at the soil surface is given by

I, = S/2/8  [2.59]

As in previous models, the flow is assumed to start in the cracks when ponding occurs
at the soil surface. According to the equation above, the ponding time tp is given by

tp = (S/2R)? [2.60]

where R is the rain intensity assumed constant over the period of application. The
input rate into the cracks is then defined by: I = R — I,. As soon as the rain stops
the input rate into the cracks goes to 0.

To simulate horizontal adsorption by the peds, the soil profile is discretized
into n layers with width (Az), each characterized by a surface of cracks per unit
volume of soil, Ay,;. According to the experimental results reported in previous
paragraphs, it is assumed ‘that water uptake by the peds occurs through a fraction
only of the total surface offered by the cracks. Thus, a paremeter ¢; is introduced to
account for this phenomena. In consequence, the global horizontal water uptake rate

for the whole profile is

n
I = Z(fiAz)(a'iAv,i)(Si/2)ﬁ [2.61]
i=1

where f; is the fractional wetted depth for the layer i, S; is its sorptivity and t; the
time at wich water reached that layer. Remark that f; is equal to 1 for all the layers
between the soil surface and the wetting front, has a value between 1 and 0 for the
layer in which is located the front, and is equal to zero for all the layers below.
Normally, a nonlinear relationship holds between the sorptivity and the water
content. In the model a linear relationship is assumed with a sorptivity equal to 0 at
field capacity. The initial sorptivity must be supplied by the user.

The flow in the cracks is based on the cubic law presented before. For a
laminar flow in a completely filled crack the flux q is, q = (pg/12n)w3V¢p, where g is
the acceleration due to gravity, Vi is the hydraulic gradient and p and n are the
density and viscosity of water respectively. Since the model is applied to a drained

rofile the hydraulic gradient is taken equal to 1. The flux q* per unit volume of soil
g)r the orthogonal network of cracks is then

q* = (pg/12n)we, [2.62]
since the distance between two cracks is d. To reflect factors such that pore

connectivity, roughness, tortuosity, and account for the degree of saturation of the
cracks, Eq. [2.62] giving the flux q* is modified as follows

q* = (pg/12n)w2,S." [2.63]

where S is the degree of saturation of the craks and n is an empirical exponent. The
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O\

authors assume that water flowing in a crack which is not full does so by "bridging"
over the crack. With this assumption it follows that S¢,; = «. Hence, there is now a
way to couple the flux in the cracks, Eq. [2.63], to the uptake of water by the peds,

“Eq. [2.61]. In the following, (§2.5), is proposed by Germann and Beven derivation

of a law q* = bSca, thus in fact identical to [2.63], and based on the assumption that
the flow takes place under the form of thin liquid films on each faces of the cracks.

In their aptproach, the authors assume that the degree of sturation in the
cracks is the same for all the layers participating in the flow. Thus, if L is the depth
of the wetting front, the amount of water stored in the cracks above the water table is

C = SceyL. [2.64]

The coﬁpling between the two flows is provided by the following mass balance
equation

t t

fkm;fhm+c [2.65]

tp tp

Assuming that the wetting front is located in the layer j, an iterative procedure is
used that adjusts the value of S and update fj according to

fj(t) =f;(t — At) + (Atg*/Az) [2.66]

The height of the water table in the crack is controled by a mass balance equation.
During a time step At, the variation AH of the height of the water table is given by

AH = (I — Q —L))At fes [2.67]

where Q is the rate of loss to the drain and ef = e — (eySe).

- Remark that the structural porosity, ey, and the crack width, w, of the layer
in which is located the wetting front control the flow rate in the cracks, It is also
assumed that for the layers below the water table, @ is equal to 1. For the layers in
the saturated zone, the flow of water from the crffaks into the peds is assumed to
occur through all the surface offered by the cracks. Thus, A, is replaced by A.
Identically, all the structural porosity is assumed occupied in the saturated zone.
This is important since it controls the raise of the water table. It is also assumed that
no vertical flow occurs between the peds, except if they are at field capacity, in which
case the excedent of water is instantaneously transferred vertica,l%\‘into the layer

A9

below.
In the model the rate of loss to the drains is assumed to be Q = 8E/D? where
D is the drain spacing and E is

Zy 4] AR
E= f Ki(Hz;2)dz + f Ky(H,—2)dz +...+ f Kk(H,—z)dz [2.68]
] z Zk-1
In this equation, K; is the effective conductivity of the ith layer above the drain; layer

one being the layer just above the drain. Z; refers to the height of the top of each
layer above the %a.in and H; is the height of the water table in the crack.
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Fig. 2.5 Examples of model outputs. (a) wet initial situation,
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~

~ - In their paper the authors present the results of a simulation involving a 4
mm/h rain lasting 6 h and applied to a dry (6=.4) and wet (#=.46) initial situation,
respectively. The water content at field capacity was .47, the water table was

" assumed to be at 75 cm depth and the drains were at 50 cm depth with a 2m spacing.

importance of the horizontal absorption by the porous matfik from the cracks. The

Other characteristics of interest are in table 2.1. The results clearly illustrate the
in time of some variables of interest is plotted fm?g o different initial water

!)"w content, Fig. 2.5. The amount of water stored in the Irst 25 cm was chosen as

variable of interest for the sensitivity analysis. Fig 2.6 shows the sensitivity of that
variable to variation of n, the rainfall intensity and the crack spacin;, respectively. ¢/
The total structural porosity was assumed to remain the same during these
calculations. Hence, the diminution of distance between the cracks resulte at the
same time, in an increase of the exchange area per unit of soil volume and in a
dec11'lea.se otl'( the width of the cracks which in addition led to a lower value of the flux
in the cracks.

Value

Parameter . Dry soil Wet soil
Soil water content #(m’m"3) 0.40 0.46
SWC al field capacity A, (m3m"?) 0.47 0.47
Dynamic crack porosity e,(m*m™3%) 0.07 ) 0.0t
Stable crack porosity e, (m’m"3) 0.02 0.02
Total crack porosity e,(m*m™?) 0.09 0.03
Crack spacing d (mm) 100 100
Crackwidth w{mm) k] I
Sorplivity S(mmhk-'?) 14 0.2
Effeclive hydraulic conductivity K(mmh-") 150 50

—

Tab. 2.1 Characteristics of the runs for g dry and wet
initial situation, respectively.

2.4 APPLICATION TO EXPERIMENTS ANALYSIS.

As a matter of fact, except for the model lately proposed by Jarvis et al.
(1987a,b), no general simulation model is actually available for infiltration into a
cracked soil. éve first analyse an application of the mode] presented by Jarvis and
' Leeds—Harrison (1987b) to an experiment conducted on 4 lysimeter. Many other field
or laboratory experiments anterior to this work can be found in the literature. Since
these works correspond to less %fneral physical situations and problems, and also lead
to less interesting conclusions, t ey will be reported more briefly.

Jarvis and Leeds—Harrison (1987b) applied their model to analyse a series of
irrigations conducted on clay soil (Evesham clay). The soil profile was 1 m depth and
drained at 50 cm depth with a drain spacing of 2m. Four neutron access tubes were
used to obtain volumetric water content profiles. As the model also predicts the
drainage, this one was recorded. The lysimeter on which the experiments were
conducted is 2 by 2 m large and was 2—3 years old by the time of the experiment.
Since the water table was always between 0.5 and 1 m depth and since the saturated
conductivity of large soil samples continuously saturated was of about .4 mm/h, it
was assumed that over small period of time the flux of water at the bottom of the

lysimeter was negligible.
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soil water recharge profiles [after Jarvis and Lee

Harrison 1987)

Paramcter Value
No. layers 10
Layer thickness Nnim
Time interval 0lh
Drain depth 0.5m
Drain spacing 20m
Tortuosity factor 1.9

Tab. 2.2 Parameters with a
fixed value for each irriga—
tion [after Jarvis and Leeds—
Harrison 1987

depth to
Irrigation nmount  Irrigntion intensily waler (nble
Date (mm) (mmh-" {mm)
10/04/85 242 ar’ 500
06/08/RS 44 X 999
18/09/88 9.4 28 999
22/10/85 8.2 19 150
Jo/1o/8s 14.8 4.5 750
12712/85 28.8 1.2 SN0
17/03/86 234 9 500
21/01/86 12.5 16 500

Tab. 2.3 Irrigations intensities and amounts of water applied.
(after Jarvis and Leeds—Harrison 1987)
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Before each .irri%a‘,,tion, the initial water content profile was obtained by means
of the neutron probe. Water content profiles for comparison with model predictions
were also obtained with the neutron probe.

Regarding the parameters needed by the model, all were measured but the
tortuosity factor, n, which was fitted. A value of 1.9 gave the best fit for the rain
event considered. The stable structural porosity, es, and the water content at field
capacity, #, were measured for ten distinct layers. The size of the peds was also
given to the model for each layers. The conductivities required to evaluate, the
drainage rate were obtained from anterior experiments which yielded a linear relation
between the flow in the drain and the hydraulic condeutivity. The sorptivity of the
porous matrix was assumed to depend lingarily on the water content. A value of 0
was assumed at field capacity. For a low initial water content, the sorptivity is
estimated from infiltration rates measured with an infiltrometer allowing to supply
water at negative pressure heads, thus excluding the role of possible macropores. For

an initial water content of .29, a value of 3.2 mm/y/h was obtained for the sorptivity
with a standard error of .3. Re arding the width of the cracks, it is assumed that a
constant crack spacing holds all along the experiments. Thus, any variation in
structural porosity is entirely transmited to the width of the cracks. This assumption
was used to calculate the width of the cracks at the start of each experiment. An
experiment with a green dye, (Powdered Lissamine) allowed to estimate, a, the
percentage of crack surface involved in the flow. This experiment yielded a value of
about 20% . Some other fixed parameters of the simulations are given Tab. 2.2 .

Initial water content profiles and water content distibutions after the
irrigations were obtained with the neutron probe. Eight irrigations with various
intensities and durations, Tab. 2.3, have been applied over a period of almost 1 year.
A relatively broad range of initial sitiations correspond to these irrigations. However,
the presence of the water table at a shallow depth prevent from obtaining very
contrasted initial situations.

Calculated drainage hydrographs compare quite well with that measured.
However, from the strict point of view of water flow modeling, it is much more
enlightening to compare the water content profiles which reflect more precisely the
capabilities of the model. Comparison on drainage hydrographs is not so interstin
because too many processes are integrated and interact. Calculated and observeg
water content variations for the first 5 irrigations are plotted, Fig. 2.7. One can
observe a quite close agreement, with some evidence of overestimation of the amount
of water stored in the first layer and at the same time an underestimation of the
recharge of deep layers. A characteristic of these irrigations is that the amount of

0\ water applied i3 always but one case la.r%er thaj\the amount of water stored in all the
profile. ' Thus, it is difficult to judge of the quality of the transport model for the
macropore phase. Remark that for the 3rd irrigation, corresponding to a relatively
dry initial situation and deep water table (1 m), and where a small amount of water
was applied, the simulated water content profile largely underestimates the
penetration of the wetting front. Remark also that when 1ar§e amounts of water are
applied and whatever are the initial conditions, the flow will reach the water table
and hence large errors which would appear on a deeper profile are less easy to detect
or less apparent. A limiting case beeing an irrigation lasting long enough to
completely recharge the profile, in which case any model gives good predictions
regarding the final situation. Thus, disregarding the prediction of drainage, and in
order to evaluate more com pletely the capacity of the model with respect to
unsaturated water flow modeling, more contrasted initial situations should be used
with irrigations doses and intensities allowing to evaluate in particular the part of the
model dealing with the macropore continuum. In this regard, an hydrograph more
direct than a drain output rate would be of a great help.
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- All the calculations and comparisons with field data reported hereafter have
been conducted in very particular situations. Models used for these comaparisons
were all very dependent upon characteristics of the flow measured at the experiment
location. For example none of the hereafter presented works use an algorithm to
calculate the runoff along the crack walls. All need in—situ measured physical
quantities determining the boundary conditions at the extremities of the soil column.
Thus, the models used in what follows to analyse experiments are quite for from the
theoretical works of Edwards et al. (1979) and Nieber (1981).

Hoogmoed et al. (1980) have compared simulated and measured drainage rates
for a 20 cm long column and very high intensity application rates. The model
simulates vertical infiltration with the foﬁowing boundary conditions:

-K.H/0z =R 0 < T < T(P)
z=0 |0 <H <. w T(P) < T < T(C) [2.69]

H=w T(C) < T
z2=20 -K.0H/dz = cte

where, R is rainfall intensity, w a threshold value for surface ponding depth (.2cm),
T(P) is ponding time ,T(C) is the time at which the flow starts in cracks when
ponding reaches the threshold w, and H is the total pressure head. The model used is
a reservoir one, and Darcy's law is applied to calculate the fluxes. In fact as the
rainfall intensities used in the calculations are very high, respectively 22cm/day and
77 cm/day, the authors assume that as soon as the runoff starts all the length of the
crack is used for horizontal absorption. The length of the soil column, 20 cm, is also
one of the characteristics allowing this simplification. One can see that the physical
system is quite simplified compared to the studies presented before. The horizontal
infiltration in the pedons is modeled by:

H
3,; [D(6) a—aff] = a_at [2.70]
subject to boundary conditions:

x=0 %_o 157100
[2.71]
x2x P=0 T>7()

where x; is the horizontal penetration of the wetting front at time t. When the flow
rate into the cracks exceeds horizontal infiltrability, the drainage starts at the bottom
of the soil column. Therefore, no water accumulation is allowed in the cracks. To
account for the banding effect, a function S(T) describing the increase of the contact
area with time is included in the model. This function has been estimated according
to in—situ observations using different stained water application rates and different
durations, Bouma and Dekker (1978). Model predictions are compared to measured
drainage rates for two rainfall intensities, 22 and 77 cm/day and two initial moisture
contents correspondingto a water pressure heads of .1 bar and 15. bars, respectively.
Drainage rates are very high. Expressed in percentage of the application rate they are
usually over 90% for the highest application rate and over 97% in the case of a
initially wet soil. For the lowest application rate and for a initially dry soil, measured
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and predicted values are respectively of 88% and 79%. Due to incertitudes in S(T), to

- all the simplifications made in the modeling, to the characteristics of the numerical
solution employed, to the high application rates, to the length of the column, and to
all the interactions between the different parameters it is difficult to say if the
agreement between calculated and measured drainage rates is good or not, and what
are the origins of the discrepancies. :

Another experimental study has been reported by Bouma and Wosten (1984).
The same soil was used. Two samples were carved out in—situ. A first estimation of
the structural porosity used by the flow was given by measuring the amount of water
necessary to instantaneously filled up the cracks. This volume is noted V;. Then, a
flux noted q; was monitored so as to just keep the cracks filled and the surface of the
sample slightly flooded. This flux, which corresponds to the uptake of water by the
peds and the subsoil, reaches a constant value very quickly. After this steady—state
has been reached, gypsum is poured into the cracks and the sample removed to
measure the infiltration rate of the subsoil. This flux is noted q. The block is then
sectioned and the pattern of the cracks stained by the gypsum recorded. The area of
the cracks used by the flow, A, and the length of these cracks, L, are obtained by
image analysis. The authors found a good agreement between the volume V; and the
quantity AxH, where H is the height of the sample. Equations [2.70] and [2.71} are
used to simulate horizontal infiltration. Using LxH+S where S is the sample surface,
an estimation of the total amount of water diffusing into the peds is obtained at the
end of the experiment. The amount of water lost in the subsoil can be estimated
according to qz. So a comparison is possible between the amount of water given by
the model and a good estimation of the amount of water really stored in the
microporosity. Starting with a dry soil, 15 bars, a very good agreement is found by
the authors.

The last experiment we want to report has been conducted by Bouma et al.
(1982), in order to study the infiltration through and from worm holes. In this
experiment, tensiometers are installed in the soil columns five centimeters below the
infiltration surface. Two cup sizes were used. The experiment consist in filling up
the worm hole and applying two centimeters of water at the surface. The
redistribution is followed. The simulation model account for the infiltration through
the surface but not for the horizontal infiltration from the wall of the hole. The
amount of water flowing through the worm hole is accounted for assuming a given
value for the flow rate. This value is obtained from experiments where infiltrations
are monitored through single macropores. The main result of this study is that large
cup tensiometers lead to erroneous values, as there is a high probability for they
intercept preferential pathways where free water is available. A relatively good
agreement is founded between calculated potentials and values given by small cup
tensiometers.

One interesting and important problem when simulating water flow and
solutes transfer in heterogeneous media is to obtain or assess the contact area,
macropore—porous matrix, developed by the flow taking place in the macropore
continuum. Until now this has only been done by measuring in—situ stained surfaces.
Another possible way would be to determine the area of interest as solutions of an
inverse problem. In this approach a numerical model, to be developed, would be used
to simulate the drainage rates for different initial water contents, different rainfall
intensities, and different durations. Then, an objective function to be minimized
could be as for solutes transport the sum of the squares of the differences between
observed and calculated outflow rates. In this case the minimization problem has
only one unknown if we assume that the exchange surface per unit of soil volume is
independent of the depth. Otherwise, the minimization problem corresponds to the
estimation of a distributed parameter. This approach has obviously many advantages
when compared to the measurement techniques usually employed. However, some



difficulties exist which must not be ignored. First, from an experimental point of
- view, it will be difficult to obtain a uniform water content distribution inside the soil
samples. ~This problem is already present in all the experimental studies presented
before. Another problem would be to obtain in—itu hydrographs. From a theoretical
point of view, the uniqueness of the solution of the inverse problem has to be studied.
The "breakthrough" curves are certainly not sufficient alone if we assume a
distributed parameter. Another problem arising is the influence of errors in soil
characteristics and numerical calculations. The great advantage of the inverse
problem approach is that it allows to numerically study the influence of errors in
different parameters as for example, non uniform initial water content, sensibility to
hydraulic characteristics, etc... Therefore, best experimental conditions, water
content, rainfall intensity, duration, etc.., can be selected. Experimental results of
Bouma and Wosten (1984) are encouraging in this regard. Let us remark that the
knolwlivled e of this surface would be very helpful for solutes transport simulation in
such media.

Many modeling approaches have been developed for saturated water transfer
in media where two porosity systems can be shown up. Probably most of these
approaches could be used for unsaturated water transfer modeling. In particular it
should be possible to adapt the different double porosity models developed by Duguid
and Lee (1974), Huyakorn (1983a) and Narasimhan (1982ab,c,d). The main
difficulty as for the precedent inverse problem is certainly the derivation of an
equation modeling the flow through the macroporosity. A possibility would be to use
a kinematic wave approach such that developed by Germann and Beven (see §2.5).
Oncie; (tihis done, the different geometries and coupling approaches could be readily
applied.

Based on the double porosity concept a new approach using a kinematic waves
equation for the flow in the macroporosity and a simple coupling term between the
two porosity systems has been proposed to model infiltration in a heterogeneous
profile. This approach is developed in the following paragraph.

2.5 KINEMATIC WAVE APPROACH

A Double Porosity Model.
In a set of papers, German and Beven (1981a,b), Beven and Germann (1981)

have presented various laboratory experiments carried out on large undisturbed soil
cores and demonstrating the effects of different macropore structures on water flow
through a soil profile. At the same time they developed a double porosity model in
which water flow through the macroporosity is modeled by a kinematic wave
equation. The model assumes that two interacting continuums correSponding
respectively to the macroporosity and the microporosity are superposed. Richards
equation is classically used to model the flow in the microporosity continuum:

Chni Qg% = % (K(0ni) Qgg—i) + S [2.72]

where @ is the total water potential, # i3 the water content, K is the conductivity, C
is the capillary capacity, z is the depth, t is the time and S is the coupling term with
the macroporosity flow. The subscript m; stands for microporosity. Let us
immediately remark that the flow in the microporosity is modeled in the vertical
direction, which means that the "constraints" are applied at the surface and not at
the interface with the macroporosity. This approach is therefore quite different as
compared to the models presented for saturated flow or to the model of Jarvis and
Leeds—Harrison (1987a). For the flow in the macropore continuum a continuity

equation can be written:



§2..5,. :Kinematic Wave Model —44—

e — - 9 (Qua) -5 [2.73]

where 0n, is the water content in the macroporosity and Qpa the volume flux densit;
(cm/s) in the macropore. As for equation [)2.72] the coupling term S appears in the
right hand side but with a minus sign. Two relations are needed now to complete the
model. First an expression linking fOns and Qma, and second a physically acceptable
formulation for S.

Beven and Germann (1981) assume that the flux in the macropore continuun
is related to the thickness of the film of water. An extension of the cubic law for the
cracks and an extension of Poiseuille law for cylindrical pores are used:

4
q, = gﬁg( %— + % r* —r’R? + r*InR — r¥lnr) [2.74]

q,=3L i [2.75]

where in the case of the pore (index p), R is the radius of the pore, r the thickness oi
the water film, x the dynamic viscosity, p the density of water; and in the case of the
crack (index ci, L is the length of the crack, and d the thickness of the film of water.
If D is the crack aperture the classical formula is founded for d = D/2. The author:
assume that the pore size distribution is made up of a set of N class sizes of circulas
pores containing each n; pores of average radius R;, and M class sizes of cracks
containing each m; cracks of average width D; and length L;. For a macropore
continuum as described above, we have the two following expressions giving the flu»
and the water content:

N nj M m;
=k Yo+, B 2o
i=1j=1 i=1j=1
N nj M m;
=k [0 N+ R my| e
i=1j=1 i=1j=1

Different theoretical systems made up of parallel cracks and pores with different
width and radius were used in calculations carried out with Eq. [2.76] and [2.77). The
results suggested that a power function can be used to relate flux and water content
in the macropore continuum. Beven and Germann (1981) have proposed the

following expression:
Q = a(6us)? [2.78]
If Qsat is the fully saturated flow predicted from [2.76], and Kna the saturatec

conductivity, then the flux in the macropore, Qmna, is obtained by applying the
following scaling relation:

Qna = Kna 8 [2.79]

sat
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The continuity equation [2.73] can be written:

gz e = Nma_ [2.80)

and we have:

592 = blKna 2] /0 Qg 11/0 [2.81]

sat

Thus the equation for the flow in the macropore continuum takes the following form:

Bna — _%ma . g [2.82]

The coupling term S is defined by:
AT
S = - K(omi) TX [283]

where AWV i3 the difference of potential between. the two phases, and Ay is an average
distance between two distinct macropores. Equation [2.82] is a non—linear hyperbolic
equation requiring a careful control of integration. It is in essence very different from
the usual non—linear parabolic Richards' equation.

Obviously in this formulation the term Ay is very ill defined. Identically, the
signification of K(6n;) is not consistent as very large horizontal water content
gradients can appear at a given depth in the microporosity continuum during an
infiltration. In fact, even if it is not said, this approach assumes that in response to a
solicitation, at the surface or due to S, an immediate pressure head equilibrium is
obtained in the microporosity. Obviously, this assumption is violated ag it can be
shown with numerical calculations or experimentally. It is highly probable that this
formulation of the interphase exhange process will give a very gad estimation of what
is the real amount of water diffusing in the microporosity. This approach can be
related to that called "Quasi —Steady flow model” by Huyakorn et al. (1983a) for
saturated flows. The parameter Ay is certainly a function of z and play the role of a
matching factor in this model since it controls the gradient between the two phases.

In the algorithm proposed by Beven and Germann (1981), the flow starts in
the macropores as soon as the rain intensity exceeds the soil infiltrability. The
boundary condition at the surface for the kinematic equation is then the flux
corresponding to this difference. The model controls the level of the water table in
the macropore system, and S is hence calculated according to:

A‘I’/Ax =0 ’ 0ma. = o [] 0mi S omi,sat
AV/Ax = (U(0n1)—0)/Ax ,0 < Ona < Onassat [2.84]
AT/Ax = ((bni)—dw) /Ax , Ona = Onaysat

where dy i3 the depth below the water table. In their calculations Beven and
Germann (1981) used a Ay of 10.4 cm, for the simulation of a rain lasting 266 s. This
value for can be compared to the various experimental results of Bouma et al.

resented betore and to the numerical simulations of Edwards et al. (1979) and Nieber
?1981). In all these studies the water front penetration from a INacropore was never
greater than two or three centimeters during the period the flow was effectively
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taking place in the macroporosity. This means that for all the duration of the rain,
the term S is probably largely underestimated. Of course water redistribution in the
microporosity is not accounted for in the model of Beven and Germann (1981). The
consequences on the water distribution in the profile are clear. Different runs were
made in which the hydrodynamic characteristics of the soil varied, but no study of the
sensibility of the results to Ay variations was presented by the authors.

As a matter of fact, Ay which is presented as a measure of the average
distance between the macropores, should be rather considered as the distance between
the wetting front in the microporosity and the macropore, for the term S has a more
phtysica.l signification. This means that Ay would not only be a function of z but also
a function of the time. We are there very close to a Green—Ampt model. In fact
unless making assumptions on the geometry of the media as done by Huyakorn et al.
(1983a) in the case of saturated media transfers there is no way to relate Ay to the
time. Assuming a geometry could lead to an estimation of A x(t) via a resolution of
Richards' equation. _

To close this paragraph, let us underline some differences existing between the
double porosity models developed for saturated flows in the engineering and
petroleum literature, and this double porosity approach. In models such those of
Narasimhan, Huyakorn,... the ”constraints” applied at the domain boundaries are
transmitted to the micropore phase through the macropore continuum and the flow
equation for the microporosity continuum is only solved at a local level, essentially in
order to furnish the fluxes between the two phases. This is possible because hydraulic
conductivities in both phases are expected to be very different and the physical
connections between porous blocks negligible. The roles played by the two
continuums are completely dissociated. One plays the role of a vector and the other
the role of a storage. For physical situations where one cannot ignore the
microporosity flow induced by external constraints, the modeling problem is more
complicated. Both flow phases must be superposed over all the domain. The problem
is then to define a coupling term. It clearly appears an inconsistency between a
mono—dimensional approach to microporosity flow and the multi—dimensionality of
the physical process. It seems obvious that if we stand at a one—dimensional
simulation level for the microporosity flow, it will be difficult to introduce a coupling
approach related to geometrical considerations, and simulating necessarily
multidimensijonal water diffusion from the cracks into the porous matrix. This leads
to the question: is it possible to apply a fully dissociated approach as those defined
before, that is to say, can we release or reasonably ignore the microporosity flow
induced by external constraints? For example in the case of a heterogeneous profile,
this means: can we consider that no vertical flow occurs in the microporosity? As a
matter of fact, in structured soils for example, it is quite impossible to ignore the
connections existing between the different porous blocks, and allowing the
microporosity flow to occur throughout the domain. In addition the distribution of
pore radius probably do not allow to distinguish between two porosity domains
playing very different roles. The problem of the influence of the boundary conditions
applieg at the surface of the soil has not been considered either. It is highly probable
that for this kind of porous media the constraints applied at the boundaries, in
addition to the intrinsic charcateristics of the media, largely determine the type of
flow. However, physical situations exist, crusted surface, clay soils with a very low
conductivity, strongly defined structure, compacted profiles, where necessary
hypothesis to the application of a model with two very well defined phases are quite
well approximated. In these cases, coupling terms as those based on geometrical
considerations, for example average shape of the porous blocks, can be defined. For
physical situations where this is not the case, the right model to apply is probably
strongly dependent on parameters such that, boundary conditions (rain intensity,
duration) or initial conditions.
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A Kinematic Wave Model with a Sink Term.

A simplified approach to water flow modeling in structured media is to ignore
the flow in the microporosity and to define the sink term S in equation [2.82] as a
function of the water content variation in the macropore continuum only. This has
been developed in a set of papers by Germann (1985), Germann and Beven (1985),
and Beven and Germann (1985). In this case equation r2.48] becomes:

gftl+ g+ crf =0 [2.85]

where q is the volume flux density (m/s), ¢ the kinematic wave velocity (m/s), 0 the
water content in the macropore continuum, and r the term describing the losses in the
matrix (1/s). Equation P.?S] i3 assumed to hold between # and q. Thus the

kinematic wave velocity ¢ defined by ¢ = dq/d# can also be written:

c=dq/df= abl/2 q(a—l)/a = apgle1) [2.86]

The sorbance function is defined, Germann and Beven (1985), by:
r=——21-99_ _1/6aq) dq/dt [2.87]
=g a =~ /() da -

This simple formulation of the problem allows to obtain analytical solutions from the
theory ofp characteristics. As a solution of the kinematic wave equation can be readily
obtained for a pulse of given duration and constant intensity, the main idea is to
approximate the input signal, usually the rain intensity, as series of constant intensity
pulses. Then a procedure to handle the interferences which can occur between several
pulses allows to calculate the behaviour of any input signal. Let us first derive the
solution for a square pulse when r=0.

Case without matriz absorption

This is the case of a quasi—saturated matrix, and hence the sink term r is
equal to 0. The conditions at the surface are defined by:

q=qs t€[0,tg]

[2.88]

We note zwg.t? the location of the wettin%lfront defined by a discontinuity in the water
content proiile in the macroporosity. The water content is constant and equal to 4,
behind the wetting front and equal to 0 in front of it. So the water content profile is

defined by:
Hz,t) = Oy 0<z<zy(t);t €[04
Oz,t) =0  z2z4(t) ;te 0ty
If we note cy the velocity of the wetting front, which is constant since r=0, we have

zw(t) = cwt . The velocity ¢y, is defined ty: ¢w = dq/d @ which is equal to qs/fy. Using
[2.78] we obtain the following expression for the velocity of the wetting front:

[2.89]
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Cw = q§1_1/a bl/a [290]
When the input stops (t2ts), the water content at the surface drops to zero and a

draining front develops. We note cq its velocity, and z4(t) its position. These two
quantities are related by:

z4(t) = ca(t—ts) [2-91]

At the level of the draining front we have q=qs=b#,®. For any value 61' g
between #y and O the corresponding depth is given by: z(w) = c(w)(t—ts), where

¢(w)= dq/dw . But we have also: ¢(w) = z(w)/(t—ts) and c(w) = dq/dw = a.b.*L.
Thus combining these two expressions the following equation is obtained which relies
the water content to the depth:

0 = 21/ (1) [ap(t—tg) 1/ (1-2) [2.92]
Combining [2.91] and [2.92] we get the water content at the draining front:

8 = cgl/ (1) p)1/(1-0) [2.93]

But as at the draining front we have gs = b.f,> we obtain :

as = beg® (@D pj/ (1-2) [2.94]
from which comes the speed of the draining front:

cd = qsl_l/a pl/2s = acy [2.95]

As the parameter a is greater than 1, we can see from [2.95] that the draining front
moves faster than the wetting front. The interception time is easily obtained from
the equations of the movement:

ti = atg/(a—1) [2.96]
and the depth at which interception occurs is easily derived:
2 = a‘_ir qs(a.—l)/a bl/a te [2.97]

After the draining front overlapped the wetting front, a peak with decreasing velocity
and water content moves through the domain. The characteristics of its movement
are determined introducing the mass balance expression:

zp(t)
f 6(z,t) dz = qsts [2.98]

0

As expression [2.92] giving f(z,t) still holds, integrating by parts [2.98] gives:
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20(t) = asteg2] /2 [ab(t—0)] /2 [299]

The water content at the peak and its velocity are then readily obtained:
B(t) = [aste] /2 [(a—1)(t—te)b] /2 [2.100]
cp(t) = (t—te) /2 L) abl/2 [qe. a1y (1-1/2) [2.101)

Case with matriz absorption. Infiltration of a square pulse.

Now, if we consider the case with absorption by the porous matrix, it is
obvious that the wave velocity and the water content profile will not be constant, but
that we have a water content profile and a flux distribution both decreasing with
depth between the soil surface and the wetting front. For a square pulse, the flux
profile is obtained by combining [2.84(]1, [2.78], [2.87], and integrating with respect to
the following boundary and initial conditions:

t<0 0<¢z<w q(zt) =0

The flux profile obtained behind the front for the first stage, (t < t;), is:
a(z) = qd[1-rz(a-1)/csf*/ (371) [2.103]

where ¢ = abl/ a._qs(a.—l)/ a

It exists a depth z* under which no macropore flow will ever occur due to complete
sorbance of the input by the soil matrix. This depth is, according to [2.103],:

z = cs/[r(a1)] [2.104]
Thus, the flux profile can be written:
a(z) = as(12/2 )/ @) [2.105

Using the relation q=b#* and setting qs=b0s® the water content profile is obtained
from [2.105]: ;

0(z) = B(1—z/z )1/ (1) [2.106]

The front velocity is given by cw=q/fy. Using [2.105] and [2.106] the following
expression is derived :
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cw(2) = Coll—zw/z |/2 = dzw/ds [2.107]

Hence, integrating [2.1071] subject t0 zyw(0)=0, we obtain the equation of the
movement for the wetting front:

%
Zw(t) = z [1—exp(—tr(a—1)/a] [2.108]
During the second stage, as for the case without matrix absorption, the water content

at the surface drops to zero as soon as the input stops and a draining front moves
through the domain. The velocity of this front is noted cg and is given by:

%
cd = Cg(1-2z/z ) = dzq/dt [2.109]
Note that here, as for the case without matrix absorption, ¢y and cq are also related

by: ¢4 = a ¢y . Then proceeding as for the wetting front, the equation of the
movement is readily derived:

%*
zd(t) = z [1—exp(—(t—ts)r(a—1))] [2.110]
The time at which the two fronts overlap is given by ’1[2.96 since the velocities verify
the same relation as in the case without absorption. The depth corresponding to this
time is derived combining [2.96] and one of the movement equations. We obtain:
z; = z*[1—exp(—tsr)] [2.111]

The flux profile behind the draining front is obtained combining equations, [2.110]
and [2.69]. The final expression is:

af(a—1)
a(zt) = [a(a-1)/[p'/* 2 exp(~{t—ts)r(a—1))]] [2.112]
Case with matriz absorption. Movement of two square pulses.
Let us consider now the following boundary conditions:
t<0  q(0,t)=0; t1<t<ts  q(0,t)=qa
' [2.113]
t<tl  q(0,t)=qy; ts<t  q(0,t)=0

where qg is greater than q;. The second wave starts to move with a speed:

¢j(0,t1) = [ar—a1]/[8(q2)—0(a1)] [2.114]
The velocity profile is obtained combining [2.114], [2.103] and [2.78].

¢i(2) = [/ 3(qul@1)/2 _ 5p)a/(a—1)_ o (a-1)/a _ )2 (1)

with p = r(a—l)/(abl/ 3). An expression for cj(t) is obtained combining [2.114] and
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[2.87).
¢j(t) = ¢j(0,ta)exp(—r(a~1)(t—t1)) [2.116]

Because cj(t) = dzj/dt, the characteristic of the second wave is obtained upon
integrating [2.116] with respect to time,

24(t) = ¢5(0,t1)/ [r(a—1)](1—exp(—r(a—1)(t—t1)) [2.117)

As the second wave moves faster than the first one, interception will occur at a time
t1,2 and depth z;,5. Germann and Beven have not found a general analytical
procedure to solve either for time or depth of interception. Numerical procedures
have to be applied. In the case of a two step input with qy lower than q1, the second
wave follows a draining front and equations like those derived for the second stage of
the single square pulse must be obtained.

For the case of a monotonically increasing input rate at the surface, this one is
decomposed in a series of square pulses which intensities are given by:

kAt
q = l/Atf gs(t) dt k=1,N [2.118]
(k—1)At
where qg is defined by:
%
as(t) =q —(SyE + A) [2.119]

S is the sorptivity, A is the final infiltration rate, and q* is the rain intensity. The
characteristics of the different jumps initiated by the increasing intensity pulses at the
surface are calculated according to equations 2.1141] to [2.117].

As it can be seen, the derivation of the solution is not easy in a general case
with time dependent input rates. In addition, the theoretical calculations of Germann
and Beven are restricted to monotonically increasing input rates. Furthermore, in
order to derive their analytical solutions a simple expression for the absorption rate
by the matrix has been chosen. A numerical solution of this convection equation
would allow to handle any input rate function, and to use in the model a great variety
of adsorption terms. A sink term calculated from a solution of Richards' equation

would be possible.
Parameters Estimation

In this approach, as for the double porosity model developed by Germann and
Beven (1981? (cf.§ 2.4 "A double porosity model’) parameters a and b are unknown,
and r as well as Ay in the former double porosity model are fitting parameters. It is
experimentally difficult to obtain a good estimation of ¢ and 5. Ehlers (1975),
Germann and Beven (1981), Smettem and Collis—George(1985a) report some
experiments and data analysis trying to fprovide estimations for these two parameters.
According to the different authors, a is found between 2 and 4.5. Therefore, the only
remaining way to asses a and b i3 to use a non—linear estimation method. Two
studies are reported, Germann and Beven (1985) and Germann (1985).

Germann (1985) was working with a saturated block of polyester consolidated
sand. Hence, r was equal to zero and @ and b only had to be estimated. Experiments
consisted in several runs with different sprinkling intensities and durations.
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1895
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Tab. 2.4 Data and fitted parameters for foar infiltration—sprinkling
experiments [after Germann 1985)].
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. Parameters @ and b were adjusted so as calculated and observed drainage rates fit as
~ closely as possible. In that case the solution for the case without matrix absorption is
used. The different values obtained for ¢ and b are reported Tab. 2.4, with runs
characteristics. ‘An example of observed and fitted outflow curves is given Fig. 2.8.
Several remarks can be made. First, it appears that a and b are strongly dependent
on "external constraints" for a given and fixed heterogeneity pattern. This means for
example that no unique value of a and b can be found and used for a same
experimental plot with different input rates or initial conditions. This seems to be
somewhat in contradiction with the assumption implicitely made by Jarvis and
Leeds—Harrison (1987). In their model ¢ and b are taken constant whatever are the
initial conditions and the input rates. Hence, it is for now difficult to say if @ and b
can be considered as intrinsic properties of the medium. The sensibility to variations
in e—values has been tested for the cumulative drainage. Variations of approximately
10% are recorded for a ranging from 2 to 4 which indicates a relative insensitivity of
the model to a. However, the simulated cumulative drainage is always but one case
underestimated compared to the measured one. Remark also, Fig. 2.5, that the
physical dispersion is not accounted for by the model and that the areas under the

simulated and recorded outflow curves are slightly different.
In the other experiment, Germann a.ng Beven (1985), a .1x.3x.9 m undisturbed

unsaturated soil sample was used. The sprinkling rate was 2.92 10®° m/s and was
lasting 5040 s. The drainage hydrograph was recorded by continuously weighting the
output. As the infiltration occurs also through the surface of the block the
parameters A and S (equation [2.119]) must be estimated together with a,b and r.
Observed and modeled drainage hydrographs obtained by Germann and Beven (1985)
are given Fig. 2.9. As it can be seen the agreement is fairly good. However, one can
remark that the long tail of the observed hydrograph is not restituted by the model
and that the drainage peak is not as closely approached as in the precedent case.
Germann and Beven (1985), explain the discrepancies observed on the tail of the
bydrograph by the fact that no dispersion is included in the model. One can remark
that for the precedent fitting case the tail was perfectly reproduced. Therefore, one
;:a.n th(ilnk that the lack of dispersion is perhaps not the only explanation to be put
orward.

The authors observed that a uniform macropore system with unique flow
characteristics was implicitly assumed in their model. In fact the multitude of the
different possible pathways is not accounted for. A more realistic approach including
this notion needed to be developed. A distributed channeling flow model has been
proposed by Beven and Germann (1985). This approach will be presented later.
Notice also that due to interaction between vertical infiltration from the surface of the
soil and horizontal diffusion from the macropore, the parameters S and A fitted to
determine the amount of water entering the macropore continuum are not the
sorptivity and saturated hydraulic conductivity, respectively.

A sensitivity analysis has been done by Germann and Beven (1985). The
sensitivity to variations in g¢,b and r values of, the time of the initial breakthrough,
the time of the maximum discharge rate (peak), and the volume flux density at the
peak, have been estimated. It appears that in the case studied, the three
characteristic of the flow retained for sensitivity analysis are very little sensitive to
variations of . The first two are absolutely not sensitive to r and the last one has a
variation of 4% when r is multiplied by 3. The characterictics of the flow are more
sensitive to parameters a and b, the largest sensitivity being obtained for variations of
a. Table 2.5 taken from (Germann and Beven 1985) presents the different values

obtained.
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Time of .:"Tlme Relative

Hydrograph to Volume
b, ’ r, Beginning, Peak, Flux Density
a m/s 1/ ] [ at Peak Comment
220 0.06 40 x 10-° 1396 5513 1.0 Table 1
1.10 0.06 40 x 1073 98 5067 1.04 sensitivity of a
1.65 s13 5233 1.03
278 2607 5819 0.956
3.30 4031 6070 0.907
2.20 0.03 40 x 10-* 1827 3691 0.985 sensitivity of b
0.045 1559 5580 0.9%4
0.075 1284 5467 1.003 i
0.090 1197 5433 1.007
220 0.06 20x 10°8 1388 3511 1.021 sensitivity of r
30x10°? 1392 5512 1.01}
50x10°3 1400 5515 0.989

6.0 x 10~ 1404 55167 0.979

Table 2.5 Results of the sensitivity analysis.

A Distributed Channeling Flow Model Based on the Kinematic Wave Approach.

In the previous approaches a unique relation was assumed to hold between the
flux and the water content in the macropore system: q = b wa. In the following
approach the flow is assumed to take place through a multitude of pathways with
different geometric characteristics. In each of them the previous power law is
assumed to hold with a different value for . The objective is then to estimate the
distribution of the parameter b One more time this is done by comparing observed
and calculated drainage hydrographs. Before describing the algorithm and. the results
obtained by Beven and Germann (1985), let us derive the relations we need. The flow
equation is still

-g% + cgy =8 [2.120]
where, c=dq/d#d, and s is the term describing the losses in the matrix. In this case s is
defined by:

§ =—rf [2.121]

Notice that the sink term depends linearly on the water content in the macropore
continuum. It has been shown, [2.104], [2.105], [2.106], that the water content at the
wetting front was:

by = 0 [1-r(a—1)z/c |/ (3~1) [2.122]

1 _
where #* is the macropore water content at the surface (6*=(q*/b) / a), cr=appe(1) ,
and g* in the input rate into the macropore continuum. Integrating the wetting front
movement equation: dzy/dt = b2, gives:
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Fig. 2.10 Observed drainage rate and best fit as calculated
with the channeling flow model. [after Beven and Germann 1985)
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2(t) = iyl — exp(ELY) [2.123]

In order to estimate the distribution of the values of b the following algorithm was set
up by the authors. The hypothesis are: .

1) that the same input rate is applied to all the pores.

2) the values of @ and r are the same for all the paths. The value ¢=2 was
chosen. .
The idea of Beven and Germann is to calculate the coefficients b
corresponding to the times t; of the observed drainage hydrograph. The values of b;

are calculated inverting equation [2.123]. The following expression is obtained:

b= ¢ ) [ar(gly1-exp (@Dt [2.124

where, d is the length of the soil column, and t; the i*® time sampling point on the
breakthrough curve. The probability weighting p(b;) is calculated by equating the
observed incremental drainage flux between two consecutive times to the calculated

one given by:
. . ~
a(bs) = q (1—r(a-1)d/c")?/ (@=D) [2.125]
The value of ris adjusted until one obtains:

Ep(bs) =1 [2.126]

One can remark that this way to calculate b; implicitly assumes that several
wetting fronts corresponding to different pathways are travelling through the
medium, and that an increment in the output flux is due to the arrival of a new front
at the bottom of the soil column. Using formula [2.123] to calculate b implicitly
assumes that the beginnin% of the breakthrough for a pathways occurs at the level of
the front and consequently that the dispersion will be only a consequence of the
spreading of b. Thus it i3 evident that in this approach the part of the drainage
hydrograph after the peak can't be used to fit 5. The part of the hydrograph up to
the peak only can be used

For values of & varying between 1.5 and 2.5 the distribution function for & is
shifted by one to two powers of ten towards higher values. Comparing adjusted and
observed drainage hydrographs (Fig. 2.10) a large underestimation of the beginning
breakthrough time appears. In the previous fitting procedure with a model employing
a unique value for b it was the inverse; the early part of the breakthrough curve was
not simulated correctly. In the present case, the curve seems to be quite correctly
reproduced for the larger times, which may indicate that the parameter r describing
the losses in the matrix has a correct value, However, no simulation or experimental
results are presented for an input shape such that used in the previous model. So, one
cannot say if an improvement is obtained for the simulation of the tail of the
breakthrough curve after the input stops. It is quite difficult to find explanations to
the relative bad agreement observed at the early times. Too many assumptions are
made regarding the physics of the flow, the uniqueness of @ for each path, the
uniqueness of the input rate for each path, the evaluation of the input through the
surface of the soil, the law modeling the uptake of water by the porous matrix.
Perhaps a numerical study on networks of macropores without absorption by the
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matrix could bring some elucidations.

~To close this- paragraph on the kinematic wave approach applied to water flow
modeling in macropores, a global remark .must be done. One must keep in mind that
all the developments presented before (§ 2.4) rely on two main hypothesis. First, that

the relation q=b#? holds at any time and everywhere in the macropore continuum,
and secondly that interactions between ‘both flow phases can be modeled by a simple
relation. The difficultieg encountered to adjust the parameters a, b and r and their
dependence on experimental conditions, suggest that the kinematic approach in its

Let us mention to end, two papers, Smith (1983) and Charbeneay (1984), in
which the main ideas used by Germann and Beven to solve the hyperbolic equation
are yet present. These Papers were not specifically dealing with transport in
heterogeneous media, but aimed at providing a new way to take up the problems of
water flow and solute transport modeling in soils. In both papers an hyperbolic
equation is substituted to Richards equation to model water flow. As such, these
works were already providing a new approach to transport simulation in
non—necessarily homogeneous soils.

2.6 EXTENSION TO NON-RIGID MEDIA

The precedent paragraphs cope with water movement in heterogeneous media,
assuming that both porous matrix and heterogeneity pattern are not subject to
deformations, except for the model of Jarvis and Leeds—Harrison (1987a$. As
underlined before, hetero eneity sources are numerous; soil physical properties (clay
content and clay minear ogy), biological activity, old roots, etc ... Among these
different kinds of preferential pathways those resulting from biological activity f(worm
holes, old root channels,..) are expected to remain unchanged for large periods of time.
Inversely, those resulting from material intrinsic physical properties may be expected
to undergo numerous and more or less rapid changes, (Il))attern, width,..). These
heterogeneities constitute probably the "main part" of the Structural porosity (surface
and volume) and that particularly in rooting and tilled zones, Jarvis and
Leeds—Harrison (1987a). Crack patterns resulting from wetting—drying cycles occur
in many situations, even if percentage of clay is not very high. Hence, as soon as we
want to deal with transport problems in heterogeneous media, it i3 in many cases
difficult if not impossible to ignore soil deformations occurring with water content

variations

doesn't affect saturated conductivity value. It is also evident that the time is an
important factor. Ignoring time soil deformations is possible for example if one is
only interested in very short term simulations, such as infiltration during a storm, or
if swelling kinetic is very slow. However, for some s0ils such as vertisoils for example,
swelling properties are such that cracks closing may occur so quickly that the models
presented before are useless. Inversely, if we are interested in long term simulations,
characterized by several wetting drying cycles, and various boundary conditions,
accounting for deformation processes seems inevitable.

Swelling and shrinking basically modify hydrodynamics properties in two
possible ways. ~First, occur modifications for the volume and the shape of the porous
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matrix blocks delimited by the crack -lattice. This change in volume, related t
wetting or drying kinetics, induces a modification of the structural porosity pattern
From a modeling point of view, this three—dimensional lattice can be characterized by
different parameters, its volume, the width of the cracks and others voids, it:
exchange surface with the porous matrix, its connectivity, etc.... As noted before, ¢
modification of the volume of the porous blocks is not necessarily related to a drastic
change in hydrodynamic characteristics, saturated conductivity in particular. So.
even if we can readily include in a simulation program an algorithm to account for
textural porosity modifications related to water movement, it appears difficult to
handle the modifications induced for the macroporosity system and what's more its
hydrodynamic properties variations.

However, if we restrict ourselves to simple cases, considering a single crack
and assuming some swelling or shrinking kinetics, numerical simulations are possible.
Probably, some interesting results. can be obtained concerning the competition
between swelling kinetic and rain intensity. Particularly, one can expect some
conclusions opposite to those obtained in the case where no deformations were
allowed. * Amount of water infiltrating, runoff starting time, and other interesting
variables are in certain cases probably very dependent not only on rain intensity but
also on swelling kinetic.

Some modeling approaches to water flow in swelling soils have been given by
Smiles and Rosenthal (1968), Philip (1968,1969), Smiles (1974). In all these studies
the soil is assumed homogeneous and & diffusion equation analogous to the
Fokker—Planck equation is derived. Although this topic is not really in the frame of
this report we give below some of the relations derived by Philip, which can be ugeful
when accounting for swelling in numerical models such as those proposed before.

Some relations for swelling soils hydrodynamics

In case of an horizontal flow and for a two phases system (soil-water) the
diffusion equation is:

ad a
Eae =9 [Dma%] [2.127]
where Dy the diffusion coefficient efined by:

Dy = D(1+e) ™3 [2.128]
where, e = n/(1—n) and n is the porosity. m is the material coordinate defined by:
dm/dx = 1/(1+e) [2.129]

For a three—phases system (Water—Solid—Air), diffusion equation and diffusion
coefficient are respectively:

v _ 0 av _ D(14+e — vde/dv) 9.130
-9 [Dvm] and Dv e [2.130]

where v i3 the saturation index.
If one considers the case of a system where the gravity cannot be neglected,
the total water potential is now defined by:

d=T—z+0 [2.131]
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where (2 is the overburden potential, defined by:
! = P(z)de/dv [2.132]

and P(z) is the total vertical stress. Noting 7 the solid density, the wet specific
gravity 7 is defined by:

7= (v+ 7)/(1+e) [2.133)

and then P(z) is given by:

P(z) = P(0) + [ z'y-dz [2.134)
‘ 0

symbolng the equilibrium equation: ¢ = cte , a differential equation relating z and v is
obtained

dz/dv = — M(v) — N(v)z [2.135]
where M(v) and N(v) are given by:

gg g-\g - (Z+‘Il)g-2-$ 20/ 2
M) = —ge—o  N(v) =4 efdv [2.136]
av[“fav—lf av[”farlf

It follows that three types of moisture equilibrium profiles can be distinguished in a
swelling soil. Noting v, the moisture ratio at the surface, we have:

1- Forv0>vp; v>v anddv/dz<0 forz>0

p
2— Forv0=vp; v=v, anddv/dz=0 forz>0
3— Forv0<vp; Vv, and dv/dz > 0 forz> 0

Combining [2.131] and v, = —KV¢ which is a more general form of Darcy' law, an
expression is obtained for steady vertical flows. A second order differential equation

is derived:
d%z/dv? = — My(v) — Ny(v)dz/dv [2.137]

Philip (1969) %}i‘}/es a relatively lengthy discussion of the different possible
configurations. We refer the reader to this paper for more details. For unsteady
flows, combining equations [2.131], [2.132], [2.134] and the continuity equation, the
following relation is derived:
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&_d [ K ,dv d%v, dv
B = T (e + P OFH
2 2 "
—-ga[K{l — /R - LAV )i %}} [2.138]
0

If the terms gf order m™ are neglected, a diffusion equation is obtained with diffusion
coefficient D :

* 2
D" = Tf—e[ v, P(O)gvg] [2.139]

2.7 CONCLUSIONS

A natural and physically realistic approach to unsaturated water flow
modeling in heterogeneous media has been to introduce the concept of 'double
porosity’ in order to separate the behavior of two water phases obviously undergoing
very different processes. However, in this frame it appeared difficult to set up the
equations modeling the flow in the macroporosity continuum. The other main
approach developed, not attenp ting to handle the problem in his full generality, has
been to consider infiltration througi and from single macropores and cracks. These
different ways to take up the problem have %)een reviewed in the precedent
paragraphs.

Models based on the double porosity concept for unsaturated flows are not as
developed as for saturated flows. All proposed double porosity models are in essence
mono—dimensional, as they use a one—dimension equation for the macropore flow.
This choice compared to two or three—dimensional models used in saturated flow
studies leads to important limitations. One of these is of course that no physical
problem needing a two—dimensional representation can be treated. However, this
limitation shoufd not preclude from using geometrically based expressions for the
coupling term. Until now, only rough expressions have been used to describe the
interaction between the two flow phases. Hypothesis included in these approaches,
implicitly make irreal assumptions on the physics of the flow. A good example being
the formulation used by Beven and Germann (1981) which implicitly assumes the
establishment of an instantaneous equilibrium for the water content field inside the
porous blocks over distances larger than 10 cm. Obviously, to assume that there is no
pressure head gradients at a given level in the microporosity can only lead to some
very bad estimations of the water fluxes from one phase to the other. This is a
typical example of the kind of perturbini term which precludes for example from
obtaining meaningful transfer parameters t rough ﬁttin% procedures.

. Assuming some simple shapes for the porous blocks, the simulation of the
interaction between the two phases could be made in 2 more realistic way and
wouldn't need irreal hypothesis. The only unknown parameters would then be those
characterizing the geometry. These parameters can be more or less numerous or
complicated accordini to the type of geometrical representation chosen. Therefore, in
a given case defined by initial and boundary conditions, the only parameters which
would have to be fitted are those corresponding to geometrical assumptions. These
parameters account in fact for the characteristics of the system such that, exchange
surface, shape of porous blocks,etc... One important property of these parameters is
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that they probably would not be so dependent upon initial conditions or boundary
conditions as it is the case for the parameters defined by Beven and Ger ]

The main difficulty is the derivation of a two—dimensional equation modeling
the flow in the macropore continuum. The hyperbolic equation derived by Germann
and Beven is based on a power law function linking the flux and the macropore water
content.. A representation of the structural porosity with vertical pores and cracks
was used in conjunction with an extension of Poiseuille law to derive the relation
Q( 6?. In the case of a two or three dimensional flow, expressions [2.76] and [2.77] are
no longer acceptable. If we consider Q not only as a function of the vertical
coordinate but also as a function de ending on all space coordinates, one can expect,
since the flow is induced by gravity forces, a strong anisotropy of Q(x,y,z&. Maximum
values can be expected for orientations defined by vector (0,0,z), and pro ably a value
equal to 0 for orientations (x,y,0). As already indicated in the text, deterministic
simulations on networks could help to set up a useful relation between the flux Q, the
direction considered and the water content, according to the geometrical
characteristics of the network.

The different models developed for single pore or crack have the advantage of
being more physically rigorous. However their usefulness is restricted to some
particular studies, such that: influence of macropores on global infiltrability or on
runoff intensity and starting time. As mentioned in the precedent paragraph they
will certainly provide a useful way to test swelling influence on macropore continuum
hydrodynamic characteristics modifications.

: Let us define the problem in the following way. What are we able to do
(modeling) and what kind of measurements do we need to simulate water flow in
structured soils ? Actually, the only modeling approach which can be applied to field
situations is the double porosity approach. In this frame one have the choice between
two possible strategies. The first one is to use the model of Germann and Beven
which provides an approach for macropore flow, but a very poor modeling for flow
phases interaction in its actual formulation. The other possible direction is to use a
model based on single crack approach, that is to Say a model explicitly accounting for
wall runoff and thus providing a physical simulation of phases fiow interaction.
Remark that the model of Jarvis and Leeds—Harrison (1987a) provides a combination
of these two approaches

For the first choice a discussion of the meaning, fitting and robustness of the
parameters has already been given. Needed dats only consist in this case in a
breakthrough curve. "One have remarked that fitted parameters a and b are
dependent on experimental conditions (initial and boundary conditions), and are also
certainly dependent on interaction term formulation. For example in the double
porosity model of Germann and Beven, a dependence on A X can be expected. One
have to be conscious that even if the formulation seems to account for all physical
phenomena, the coupling term used, leads in fact to consider the profile as a big black
box. The fitted parameters are in fact integrating the geometrical characteristics of
the macroporosity for all the profile together with other flow parameters. This
approach is conceptually not very far from the transfer function model prposed by
Jury (1982) for solute transport. In this modeling frame, a classical hydraulic
characterization of the soil profile is also required; ¥(6) and K(4) relationships.

" In order to use the second possibility, a more detaileddescription of profile
characteristics is required. Some examples of how useful can be an estimation of
crack length, width, etc... obtained by image analysis, have been given in the
precedent paragraphs. In this modeling frame a classical hydraulic characterization is
also required. For this approach, it appears that the only parameter to be fitted will
be the area used by the convective flow, expressed as a surface per unit volume of soil.
The agreement between experimental and simulated results can be assessed by
comparing outflow curves. A verification of the results should also be carried out by
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comparing the water content profiles. If the comparison is made only on outflow
curves one can expect the same kind of indeterminations and incertitudes on water
content profiles a3 it is the case for the kinematic wave approach. Now if we consider
the area which can be used by the convective flow not as a constant but as a function
of depth one can perhaps expect a more reliable estimation of water distribution in
the profile. Unfortunately it seems that an estimation of this area can only be
obtained a—posteriori. However, if we accept to assume a direct relation between
structural porosity and this area, the calculation is possible without to many data
required and without disturbing the experimental site. We have to keep in mind that
o direct relation between structural porosity and exchange surface will depend on
experirlnental site, flow rate at the surface, and will not hold for swelling conditions in
general.

The question arising in both gimulation frames is then: do we have a correct or
useful water fluxes estimation in order t0 predict solute movements ? Actually it is
difficult to answer this question, although the answer ig probably, no. This point will
be discussed later, but let us already 8ay that estimations of the exchange areas are of
prime importance in solute transport gimulation through structured soils. Thus, it
appears that the second modeling approach proposed is perhaps better suited than the
first one, at least in its actual form. Here it clearly appears that if a model with
geometrically based coupling terms could be developed our ability to simulate solute
transport in heterogeneous media would be largely improved.

Water movement gimulation in str ctured media appears to be a difficult task
to achieve. Even in the case of rigid media it is difficult to derive a mathematical
model. In fact the problem seems to be that we are unable, from a transport point of
view, t0 physically characterize the medium as it was done for homogeneous porous
media. The other problem i8 that we have not identify transport laws in such media
or at least we have not express them in a convenient way. For example we don't have
a MAacroscopic transport law for the macropore continuum, and what's more it has
been shown that & law similar to Darcy's law can't be derive in all the cases. Another
example being the empirical power law proposed by German and Beven linking flux
and water content in the structural porosity. Structured media do not behave as
homogeneous media. In other words the problem s not only a scale change problem
as it has been shown in the works of Long et al. (1982) and Schwartz and Smith
(1984, 1985) for saturated conditions. Following these authors, an important work
should be done on theoretical networks in order t0 better understand the phenomena

and show up the important parameters controlling the flow in a structured media.




§'3.'I ‘Introduction —61—

3. SOLUTE TRANSPORT IN HETEROGENEOUS SYSTEMS.

- 3.1 INTRODUCTION AND BASIC CONCEPTS

It was recognized some years ago by some scientists, see for example
Nielsen and Biggar (1961), Coat et Smith (1964), Philip (1968), Passioura (1971),
Passioura and Rose (1971), Van Genuchten and Wierenga (1976, 1977a,b),
Gaudet (1978), working on what is considered as a homogeneous media
(laboratory columns with sandy materials), that a certain percentage of the water
was immobile during saturated—unsaturated flows. This stagnant water was
related to the thin liquid films surrounding the particles, to the dead—end pores,
to intraaggregate immobile water, or to relatively isolated regions associated with
unsaturated flows. Thus, it appeared that the simple CDE (Convection
Dispersion Equation) alone was not a fully appropriate tool to model solute
transport in porous media. Based on this concept of mobile and immobile water,
the concept of mobile and immobile solute concentrations was formulated, and
the interaction between the two domains first included in the transport models
under the form of a first order differential equation describing a non equilibrium
exchange process. This model is usually referred as "first—order phyical
noequiltbrium model® (FO). In this report it will also be referred, for reasons
later obvious, as the "Quasi—steady state model® (QSS). Beside, nonequilibrium
conditions of chemical origin can arise and require the same kind of treatment.

In the previous chapters it was shown that at least two water phases
should be considered when modeling water flow in heterogeneous porous media.
It is then obvious that when it comes to model solute transport under such
physical conditions the differentiation between two concentrations constitutes a
modeling base. In fact, in structured soils, the transport phenomena between the
two domains can barely be modeled by a simple first order differential equation.
Though, this approach may still be employed with some succes, it no longer gives
a realistic representation of the physical phenomena. In soils presenting well
defined heterogeneities, the space dimension can no longer be ignored when
modeling the exchange process from one liquid phase to the other, and the so
called immobile concentration is not homogeneous at a given level. Therefore, an
explicit simulation of the diffusion process occuring in the porous matrix is
needed. Based on various conceptualizations of the heterogeneities, a certain
number of models including this process appeared in the past few years. In the
following these models will be referred as "diffusional models" or "geometrically
based models". These different approaches will be reviewed in the following
paragraphs, together with their solutions and applications.

In fact, these models provide usefull tools to optimize leaching strategies,
and improve our understanding of the physical phenomena. Unfortunately, due
to various assumptions and simplifications involved in the reduction of the
system to a simple geometry and tractable mathematical form, they do not reall
constitute predictive tools and are not easily applied to field situations.
unifying concept appeared two or three years ago, Barker (1985a,b), named the
block geometry function (BGF), and allowing to express the equations in a
unique form wathever is the geometry. In fact it will be shown that by means of
the BGF, any geometrical conceptualization of the physical system is readily
included and more, that the geometrical constraint can be released. The other
advantage is that the model applied to a given soil profile is no longer restricted
to a given unique aggregate shape. It is possible through the BGF to account for
any mixture of aggregates having various shapes and sizes. Though this is not
explicitely expressed in the literature, the BGF could be used as a fitting
parameter fully accounting for the geometry of the aggregates and only for their
geometry. The BGF'S theory will be presented as a unifying concept allowing to



§3.1 :Introduction —62—

integrate in a single frame models based on geometrical conceptualization of the
porous media as well as more simple ones such as the well known first—order
physical non—equilibrium model, the local equilibrium model or models including
skin effects.

An actual trend in solute transport modeling research is to seek for
relations between diffusional models and more simpler ones such as the FO model
or CDE-based models which can be considered as more macroscopic as they
lump into a first—order process and a dispersion coefficient respectively, a
physical phenomena in fact obeying a diffusion equation. Several studies have
been lately dedicated to this task. Conditions where macroscopic models can be
used in place of geometrically based models have been derived but at the same
time the relative crude nature of these macroscopic approaches appear clearly
together with their limitations.

Before really starting the description of the different equations available
for solute transfer modeling in heterogeneous media we have thought it would be
useful and may be necessary to first recall some basic results. We would like to
amphasize on (1) the notions of volume—average and fluz—average concentrations,
(2) the problems of approprieted boundary conditions and their relations with the
evaluation of breakthrough curves, (3) the different types of adsorption
isotherms, resulting retardation factors and adsorption models.

Volume—average and Fluz—average concentrations.
The simple convection—dispersion equation is the base of solute transport
modeling in homogeneous porous media. Expressed in normalized variables this

one is,

aC _18C_4C
RBT‘FEP ~Tx [3.1]

where R is called the retardation factor and P is the Peclet number defined by:
P=vL/D. When applied to reacting solute transport modeling this equation is
often referred as the LEA (Local Equilibrium Assumption) model. Classicaly the
concentration appearing in this equation is assumed to correspond to the average
concentration over a small representative elementary volume. As shown by Kreft
and Zuber (1978), van Genuchten and Paker 2'1984) and Parker and van
Genuchten (1984), it is also possible to define a flux ‘averaged concentration,
corresponding to the mean value of the flux distribution over the column section.

This one is given by:
Ce¢= Cr—(D/v)(8C:/ %) [3.2]

where C, denotes the volume-average concentration also called resident

concentration. If this transformation is applied to the CDE [3.1], strictly the

same equation results, van Genuchten and Parker (1984). The differences appear

when specifying the boundary conditions. From Eq. [3.2], one see that if we

apply a third type boundary condition at the surface in terms of resident
concentration, this one corresponds to a first—type condition in terms of

flux—averaged concentration. Identically, when a semi—infinite profile is modeled

by the congition:

(8C:/8%)(L,t)= 0. [3.3]

this one corresponds to a first—~type condition in terms of flux—averaged
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concentration. In fact this notion of volume—averaged or flux—averaged
concentration is closely related to the problem of imposing the right boundary
conditions at both extremities of the flow domain.

Boundary conditions.
Let us first consider a semi—infinite system. The mass—conservation

across the inlet boundary requires, van Genuchten and Paker (1984),
[-D(8C,/ 8x) + vC,]Ix=0+ = vCp . [3.4]

This condition is valid for a system not physically connected to the soil column,
as it is for example the case when the solution is trickled at the surface. This
condition is also valid when the reservoir is connected to the soil, but perfectly
mixed. For a semi—infinite system the boundary condition at the outlet is:

(3C+/ x)(at) = 0. 3.5

It i3 pointed out, van Genuchten and Parker (1984), that with these boundary
conditions, Eq. [3.4] and [3.5], the analytical solution derived for equation [3.1]
by Lindstrom and Narasimham (1967),

Cr(xt) 1 Rx - vt | vig ng—vt;)l/2

2(DRt)1/2]

1 VX,V 2t] [vx' Rx + vt
3 [1 +D_+DR_ exp Tj erfc[ 2(DRt)1 2] [3.6]
satisfies the mass—balance requirement:

@
vCot =R [ Ce(x,t)dx. [3.7]
0

Inversely, it is shown that for the same problem the analytical solution obtained
by Lapidus and Amundson (1952),

Ce(x,t) _ 1 Rx -vt 1 VX Rx + vt
—é——'—l’ = 5 erfc + 5 exp erfc[ ] 3.8
s 2 [2(DRt)172] 2 [_D] 2(DRt)172 138

with a first—type boundary condition at the inlet, Dirichlet—type condition, does
not verify the mass—balance equation. The mass—balance error is shown to be
quite large when dispersive transport is important compared to convective
transport and/or when the solute is strongly adsorbed by the porous matrix, case
of large retardation factors, R.

Now, considering a finite length soil column, appears the problem of the
choice of the correct boundary condition to be imposed at the outlet. Continuity
of the flux of solute across the lower boundary is a requirement that must always
be satisfied. Mathematically, this is expressed by, Brenner (1962), Gaudet
(1978), van Genuchten and Parker (1984),
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[-D(8C:/ &%) + v |y, = vCe 3.9

where C, is the concentration of the solution immediatly outside the flow
domain. This condition assumes that the reservoir collecting the solution at the
exit i3 not directly connected to the liquid phase of tl%e column, or that
diffusion—convection effects in this reservoir are negligible. Unfortunately, this
condition introduces an additional unknown, Ce, and an other equation is now
required to solve the problem. Usually, one requires the continuity of the
concentration across the boundary, which after combination with [3.9]leads to:

(0Ce/3x)(L,t) = 0. [3.10]
One must realize that this condition is in contradiction with the third—type
boundry condition applied at the surface. It assumes the macroscopic continuity
of the concentration at the outlet, Danckwerts (1953), Pearson (1959). However,

if we accept this condition, the solution with a third—type boundary condition at
the surface is given by Brenner (1962),

%w=l_i%£ﬂm [ﬂm oos(%'zl) +%]I)‘-sin(é'["15)]
= R R N Ry

vx _v2t fB.Dt
exp [m IDR L2R ] [3.11]

where the coefficients gy are the positive roots of
B cot(fn) — (ﬁ:D/vL) + (vL/4D) = 0. [3.12]

The breakthrough curve resulting from the evaluation of the solution at (x=L) is,

© : P _PT _ B2T
&é%)_ 1 Z ZﬁmSln(ﬂ;i+e:12)-[ :_ iR ‘g'R— ] [3_13]
. m=1 n T T

where the fy are the roots of,

Pfucot(Ba) — B + 2 = 0

T=vt/L. P=vL/D.

It i3 shown that this solution verifies the mass—balance requirement. The
breakthrough curve can be obtained by combining the solution of Lindstrom and
Narasimham (1967) given above (Eq. [3.6]), and the relation [3.9]. Then, the
following expression is obtained:



RELATIVE CONCENTRATION, C,/C.

PORE VOLUMES, T

Fig. 3.1 Relative effluent concentration profiles
calculated with the solutions of LA (Lapidus and
Amundson 1952), CA (Cleary and Adrian 1973), LB
(lindstrom et al. 1967) and BR (Brenner 1962). The
curves are plotted for three different values of the
column Peclet number [after van Genuchten et al. 1984).
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CegL,t)=1érfc[ RL -vt]+1ex vL erfc[ RL +vt] -
0o 2 2(DRt)12f " 2 p[_U] 2(DRt)1/? 214

which is in fact the solution of Lapidus and Amundson (1952) (eq. [3.8])
evaluated at (x=L). If now we consider the CDE expressed in terms of
flux—averaged concentration, we immediatly see that the solution of Lapidus and
Amundson (1952) (Eq. [3.8]) predicts the breakthrough curve in terms of
flux—averaged concentration. Given the relation [3.9] and the boundary
condition used at the outlet, Eq. [3.10], it is obvious that the breakthrough
curves derived from the solution of Brenner (1962) are the same either expressed
in terms of volume—averaged or flux—averaged concentrations. However,
concentration profiles can be quite different. Figure 3.1 taken from
van—Genuchten and Paker (1984), presents the breakthrough curves obtained
with four different analytical solutions. It can be seen that they drastically differ
at low Peclet numbers, but that they converge to a unique curve when the Peclet
number increases. This means that when the convection term is predominent, all

the solutions are very close and the effects of boundary conditions are damped
out.

In conclusion, when a volume—averaged based expression of the CDE is
used with a first—type boundary condition at the inlet, the solution (Eq. [3.8]) of
Lapidus and Amundson (1952) should be used to calculated breakthrough curves,
and the solution (Eq. [3.6]) of Lindstrom and Narasimham (1967) obtained with a
third—type boundary condition should be used to evaluated resident
concentration profiles. An important point to keep in mind is that the
transformation to a flux—averaged formulation is not always possible, especially
when dealilﬁ with complicated systems. In these cases, the breakthrough curves
should be calculated by applying equation [3.9] to the volume—averaged solution.

Adsorption Isotherms Retardation Factors and Adsorption Models

In the classical CDE equation given above appears a parameter noted R
and called retardation factor. This factor is equal to one if there is no physical or
chemical interactions between the applied solute and already present chemical
species. This assumption is usually made when dealing whith tracers such that
chloride or nitrate and when at the same time all soil water ig supposed to be
mobile. When chemical reactions, ions exhange processes, or isotopic exchanges
occur between the applied tracer and the solid phase or the resident liquid phase,
some other differential equations describing these processes must be added to the
simple CDE modeling the transport phenomena. In fact many complex processes
can be involved such that precipitation, dissolution, isotopic exchange, etc...As
well, it might then become necessary to model the behavior of different chemical
species involved in the different reactions and transported by the flow.

Let us for now consider the case of a single chemical product reacting with
the solid phase of the porous media. Inclusion of this process in the transport
model have been done by several ways. The simplest one is usually denoted
(LEA) for local equilibrium assumption. This approach is based on the
hypothesis of local reversible sorption reactions and thus of local chemical
equilibrium. This notion of equilibrium is in fact not absolute but relative to the
flow process. Valocchi (1985) expressed that by: "..if the microscopic processes
are 'fast enough’ with respect to the bulk fluid flow rate then, reversible .." This
means that experimental conditions are not too different from batch ones.

If nonequilibrium conditions exist, a LEA based model will exhibit less
dispersion than the real process and a breakthrough occuring too late. The
problem of dealing with nonequilibrium conditions is not restricted to reactive
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tracers. - When two distinct water phases are present, one mobile and the other
immobile, nonequilibrium conditjons correspond to the fact that equilibrium
between both phases is not instantaneous. The incapacity of the LEA model to
reproduce long tailings with nonreactive tacers is a manifestation of physical
nonequilibrium conditions.

Making use of the LEA results in considerable simplifications. In
particular adsorption isotherms can be determined from batch experiments, and
one does not need to describe the microscopic pathways towards reaction Sites,
This is to say that a geometrical conceptualization of the sorbent or 2
two—regions model are not required. Usually, batch experiments are fitted to a
non—linear Freundlich isotherm,

S=kCN | [3.15]

where S is the concentration of the adsorbed phase expressed in (ug/gsoil), C the
concentration of the solution, k is the adsorption constant and N a constant.
When adsorption on the solid phase is accounted for, the transport phenomena is
modeled by the following equation:

8,0 _H8C _aC
Deriving equation [3.15] we obtain,
| 8 _ 1\ ~N-18C
Gt =kNGN I [3.17)
Using [3.16] in [3.17), equation [3.1] is obtained where the retardation factor R,is
given by:
R=1+kNCN /g . [3.18]

Most of the time N is taken equal to one and thus a linear isotherm results, with
R given by: R =1 + pk/6. :

As remarked by Valocchi (1985), very few works are concerned with the
validity of the LEA. James and Rubin (1979%, performed laboratory experiments
at different flow rates and found that the LEA failed at the higher fluxes. Using
a model, they derived the rather qualitative conclusion that the LEA is valid
when the ratio of the hydrodynamic dispersion coefficient to the diffusion
coefficient is close to one. As Valocchi (1985) pointed out, the LEA proved to be
valid for experimental conditions where the hydrodynamic dispersion was
significantly éreater than the diffusion coefficient. However, in many recent

apers, van Genuchten et al. (1974), Rao et al. (1979), Nkeddi—Kizza et al.
1983), Schulin et al. (1987), Selim et al. (1987), Southworth et al. (1987),
non—equilibrium conditions "have been noticed 'at high velocities. These
nonequilibrium conditions of physical origin imply that adsorption and
equilibrium constants determined from batc experiments .are not applicable
within the LEA model. This appears very clearly when comparing the
retardation factors obtained from batch experiments (Eq. [3.17]), with those
obtained from the fitting of calculated breakthrough curves on experimental ones,
Southworth et al. (1987). The same phenomena is reported by Jardine et al. .
(1988) for transport of several anions and cations through undisturbed soil
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columns. Valocchi (1985), comparing the first moments of the breakthrough
curves obtained with different models, analysed and quantified the conditions
under which the LEA is valid. We shall expose later the results he obtained. Let
us say for now that his conclusions aggree with the rather qualitative statements
exposed above involving the respective chemical reaction and flow rates.

Most of the time, in order to obtain analytical solutions, the non—linear
Freundlich isotherm is approximated by a linear isotherm by assuming N=1.
Numerical solutions can be carried out for non—linear isotherms, Lai and Jurinak
(1972), van Genuchten et al. (1974), van Genuchten and Wierenga (1976), Selim
et al. (1981'?. An other limitation to the utilization of analytical solutions is that
not only N can be different from one but that isotherm parameters can be
different for adsorption and desorption processes. For a pesticide, 2,4,5—T
(2,4,5—trichlorophenoxyacetic acid), van Genuchten and Wierenga (1977b)
reported a Nags/Nges ratio of 2.3, desorption constants ranging from 1.3 to 2.03,
and an adsorption constant of .616. However, he found little differences between
the breakthrough curves obtained with a numerical model accounting for
irreversibility and non—linearity of the adsorption process, and the breakthrough
curves calculated with his analytical solution assuming local equilibrium (LEA).

Beside the model resultinﬁ from the LEA, several other adsorption models
have been proposed to deal with nonequilibrium conditions of chemical origin.
Three different are reviewed by van—Genuchten et al. (1974) for pesticide
movement simulation. Beside the LEA model used with a non—linear Freundlich
isotherm, the two following expressions are also proposed.

-gsf = [ ko exp(bS)][ ]1:—; exp(—2bS)0—g— - ] [3.19]
Ber[10" ] =

where S is the concentration of the adsorbed phase, C the concentration of the
solution, and ki and ks are the forward and backward adsorption constants, gnot
the same in both expressions), respectively. The second expression is often
referred as the kinetic chemical non—equilibrium model. It has been used by
Lapidus and Amundson (1952), Ogata(1964), Oddson et al. (1970), Lindstrom
and Narasimham (1973), van—Genuchten et al. (1974), Rao et al. (1979),
Rasmuson (1981b, 1985a,b), Southworth et al. (1987).

However, it was remarked by many people that owing to the flow pattern
and to the various kind of reaction sites available in the profile, adsorption
phenomena could certainly not be modeled using only one isotherm and
adsorption model. A first step toward a better representation of the reality has
been to distinguish between two kind of adsorption sites. One type where the
chemical equilibrium assumption (LEA) is assumed valid and a second type
where adsorption is assumed to be controled by a kinetic non—equilibrium model
such as described by Eq. 3.201], Cameron and Klute (1977), Rao et al. (1979),
Nkeddi—Kizza et al. (1984 hese models are usually called two—sites models.
Combining these two adsorption models, and still assuming that at equilibrium
the relation between adsorbed and in solution concentrations is linear, 8S/dt is as

follows

s _ Sy _ .0 8 6C
y, il . klz Ce— koS + ks/—l _HTS [3.22]
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where ki and -k are respectively the adsorption and desorption rates often

- referred as forward and backward rates, and k3 is the equilibrium constant. This
adsorption model has been used by Selim et al. (1976), and Rao et al. (1979).
Cameron and Klute (1977), appfied this model to pesticide and phosphorus
transport. A very good agreement was obtained in both cases.

3.2 MODELING THE TRANSPORT PROCESS IN STRUCTURED MEDIA

3.2.1 INTRODUCTION

Natural soil aggregates and peds occur in a wide range of sizes and shapes.
Brewer (1964) proposed a schema for classifying the geometrical shapes of the
aggregates based on the relative length of their three principal axis. Modeling
solute diffusion in natural aggregates is difficult if not impossible due to their
irregular shapes. Though the gﬁ%xsion equation can be solved in any geometrical
domain, using some powerfull numerical technique, it is of little interest to do so
and the first step of the modeling work is to choose a geometrical form allowing
to solve the mathematical problem without too many difficulties and being also
reasonabely close to natural aggregate shapes. From the modeling point of view,
the natural question arising is then: can any natural atggregate be replaced by a
geometrically simple aggregate and if yes how ? The following natural question
to answer to being: what happen when the soil profile is composed of a mixure of
aggregates having different shapes and sizes? These questions will be addressed
further in this report. We present first the modeling approach and its solutions
for media made up of uniform and regularly shaped aggregates, prisms, cylinders
and spheres respectively. An approximation of this problem, spherical particles,
has been considered and treated at the begenning of the fifties in the chemical
engineering literature. These results have only recently been improved and
ap;lﬂied to the field of solute transport modeling in heterogeneous or structured
soils.

3.2.2 GOVERNING EQUATIONS
First—Order Physical Nonequilibrium Model

One of the ways to derive the equations for solute transport modeling in a
media made up of regularly shaped aggregates is to use those of the two—regions
model also known as physical non—equilibrium model formulated by van
Genuchten and Wierenga (1976). Let us first recall why these equations were
introduced, how they are obtained and then how they are modified when applied
to media made up of regular aggregates.

Extensive tailings were noticed on breakthrough curves obtained with
unsaturated materials, Turner (1958), Nielsen and Biggar (1961), Deans (1963),
Coats and Smith (1964), and this phenomena was related to an increase of the
proportion of regions isolated from the flow, immobile water, and which rely on a
diffusive process to reach equilibrium. Extensive tailing were also recorded in
aggregated media, Biggar and Nielsen £1962), Green et al. (1972), McMahon and
Thomas (1974). Several experiments, Biggar and Nielsen (1962), Villermaux and
van Swaay (1969), Skopp and Warrick (1974), indicated that the tailing was also
more important when the pore—water velocity was decreasing. The concept of
mobile—immobile water and diffusional -exchange between these two phases was
then proposed to explain this tailing phenomena, and was modeled by a
first—order rate process, Deans 51963), oats and Smith (1964).

Let us note 6y and #n, the mobile and immobile water contents,
respectively. Associated with these two phases are the two concentrations
respectively noted, Cn and Cjp. We also assume that adsorption on the solid
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phase occur for the two phases, and we note S, and Si, the two adsorbed
concentrations. It appears here that we need to partition the solid phase into a
dynamic region associated with the mobile water phase and a static region
associated with the immobile water phase. As the amount of solute sorbed is
dependent on the area offered by the solid phase, this partitionnement should be
based on estimations of the solid areas assossiated with the two flow domains.
However, some problems appear. First, this estimation is not easy to obtain.
Secondly, most of the time the bigger pores corresponding to the mobile water
phase are coated with highly reactive materials, such that hydroxydes or
aluminium, thus preventing from considering both regions as having the same
adsorption capacity. A partition coefficient based on mass considerations has
been proposed by van—Genuchten et al. (1984). Given these difficulties, this
coefficient noted, f is most of the time adjusted or taken close to the partition
coefficient used for the water content. '

It i3 assumed that the flow in the mobile phase is characterized by a
velocity, Vi, and a dispersion coefficient, Dy, Assuming that the transport can
be modeled by a convection—dispersion equation, the following formulation
results after application of the continuity equation:

)

8 (0uCn) + Fe(B1aCin) + T ($5a) + & (10810 =

9 (0uDn 21) _ 84, VC) . [3.23]

Assuming that the water content in the two phases is constant in time and space,
that the velocity, the dispersion coefficient and falso are constant, the following
equation is derived:

. s 2
bag + bl + fp B (1p), Bin_ gp, e g2 (324

At this point, if instantaneous local equilibrium and non—linear Freundlich
adsorption isotherms are assumed for both phases, replacing the time derivatives
of Sy and Sip in [3.24] leads to,

(8 + 1N ™) Z00 4 [0y + (1-)pkNCN 1) Poim

vy Eon [3.25]

The first—order equation modeling the diffusional exchange process
between the two phases is,

00 %510 1 (1pp Bin = o(C, - 1) [3.26]
which, using the Freundlich isotherm, results in

[0 + (1-pokNCYZ &in = (C, - i) [3.27]
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where « is a first—order coefficient controling the transport rate. Note that the

dimension of « is that of the inverse of a time. Remark also that thq'tota.l_ water
content of the media is given by: 8§ = fp+6in. Defining the dimensionless

variables,
T =vtdp/L
X = z/L¢/
$= On/ 0 [3.28]
= vgL/D

w=oL/(vnbn)

the following set of equations results,

A im 1 §? m m
Ra 990 + (1-4)Rin J0i0 = L Zz(; — % [3.29]

(1-9)Rin Z5i2 = w(Cn — Cin) 3:30

where the retardation factors Ry and Rjy are given by

N-1 N-1
NC 1-f)kNC
m=1+&g—mm Rim=1+E'(—9)_im Lo [3.31]
At this point, if a linear adsorption isotherm is assumed, (N=1), equations [3.29]

and [3.30] are as follows:

) 2
m 32 + (- Jie =  £Ca_ 400 2.32
(1-B)R a—gz—m = W(Cn — Cin) [3-33]

where f = OyRy/0R and [3.31] evaluated with (N=1). A third—type boundary
conditions is imposed at the surface and a semi—infinite media is assumed. In
dimensionless variables, and for a square pulse, these conditions are expressed by:

i (G0 1 % 1 0<T<T, -
im —_ ) = .3
w0+ POy pyp

lim [Ca(x,T)] = 0 3.35]

X=

Assuming uniform initial conditions Cp(0,x)=Cin(0,x)=0, an analytical solution
for equations [3.32], [3.331, [3.34] and [3.35] was derived by van—Genuchten and
Wierenga (1976). This solution in given in annex, (A1).

Dealing with tracers reacting with the porous matrix, an other possible
approach proposed in the litterature has been to consider that all the water was
mobile and to assume that regarding adsorption two types of adsorption sites
could be distinguished. (cf. 3.1 Adsorption Isotherms and Retardation Factors).
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These models are called two—site chemical nonequilibrium models. Nkedi—Kizza
et al (1984) proved that the above two—regions model in which linear Freundlich
isotherms are assumed was mathematically equivalent to the two—sites chemical
nonequilibrium model. Thus, the two—region model can be viewed as a model
where local equilibrium assumption is valid in both phases, but where
accessibility of certain sorption sites is diffusion controled.

On a physical basis, if we accept the presence of two water phases it would
be more logical to associate with the mobile phase a kinetic adsorption model
since the instantaneous equilibrium assumption is likely to be violated in this
zone, while the hypothesis of local equilibrium at least do not suffer from physical
limitations in the immobile zone.

The problem arising when using the two—regions model is the complex
dependency of a upon physical conditions such that, shape of immobile regions,
flow velocity, diffusion coefficient, etc... This problem can be overcame by
assuming that immobile water i3 located inside geometrically well defined regions
delimitated by the macroporosity. Spherical porous blocks or aggregates are one
of the most commonly used geometrical conceptualization of the media.

Eztension to spherical aggreqates

Considering a media made up of uniform spherical aggregates containing
the immobile water, the immobile concentration is the average concentration in
the aggregates and is given by:

a
Cin(z,t) = 33 f 12Ca(z,1,t) dr [3.36]
a
0

where a is the radius of the aggregates, and C, is called the local or
intraaggregate concentration. Solute transfer inside the aggregates i3 governed
by the diffusion equation expressed in spherical coordinates,

Rin Joa=D3 802 8Ca) ¢ (g [3.37]

where D, is the diffusion coefficient inside the aggregate (e.g. the diffusion
coefficient of the soil matrix). At this point equation [3.30] is no longer needed
to couple the two phases. The coupling will now occur through the natural
boundary conditions arising from this geometrical conceptualization of the
medjum, for example continuity of the concentration at the interface aggregate—
macroporosity.  Equations [3.32], [3.36] and [3.37] constitute the transport
equations for the spherical aggregates model. is approach could be repeated
for any aggre%aete with a simple geometrical shape. "However, a set of general
equations can be derived without assuming any special aggregate shapes and then
adapted to particular cases.

Derivation of equations for the general case

The sets of equations presented aboved and derived from the two—region
physical non—equilibrium model can also be obtained by a straightforward
analysis of the physical system. Let us consider a media characterized by a
macroporosity, em, also called fracture porosity or structural porosity. In our case
€m represents the percentage of the total porosity where the convective transport
takes place. We define in addition ¢p, the porosity of the immobile zone. €p Can
be viewed as the aggregate or porous blocks porosity. Therefore the total
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~ porosity of the system is given by:
€= €+ (-l_fm)fp . (3.38]

Let us remark that these porosities can be function of depth and will probably for
a soil profile depend on parameters such that, flow pattern, water content, etc...
The transport equation in the macro—porosity can be written:

2
& 901 = ;D aaC: — a¥n 998 & eI — AenCa 13.39]
Z

where Dy is the dispersion coefficient and I' a source/sink term modeling the
exchanges between the two phases. I' is expressed in mass of solute per unit time
per unt volume of flowing fluid. .\ is-a decay constant for radionuclides
transport. Let us assume we have a media made up of arbitrarily shaped porous
blocks delimitated by a network of "macropores". The term "macropore" is
intentionally vague and in fact stands for any kind of void where the convective
flow occurs. In addition the size of the porous block is assumed to be small
g(')(m ared to the overall flow domain. We define two functions noted S(z) and

z).
S(z) is defined as 'the surfuce area of porous mairiz involved in the
ezchange process per unit volume of macroporosity at a given depth, z'.

S'(z) is defined as 'the surface area ofy porous matriz involved in the
ezchange process per unit volume of porous matriz at o given depth 7.

Let us remark that while Séz depends for a given aggregate shape on the
arrangement of these aggregates, 5'(z) is a more intrensic property only related
to the shape and volume of the aggregates. Let <VCp> denote the average
gradient at the interface macro— micro—porosity at a depth z. Then if, D, is the
diffusion coefficient of the porous blocks and Cp the concentration profile in the
porous matrix, the sink term, T', is given by

I'= S(Z)prp<VCp> . [3.40]

The problem when using this expression and some geometrical shape for the
aggregates is that the function S(z) which depends upon their arrangement is not
easily evaluated. The idea is to use S'(z) which is more intrinsically related to
the shape of the porous blocks and therefore easily evaluated. Let us consider a
unit volume of porous matrix noted, Q. Inside this block, solute movement is
controlled by the diffusion equation written:

ép 9CP = div(e,Dp grad Cp) . [3.41]

Let Tp denotes the average concentration inside the porous blocks at the depth z.
Integrating each sides of the previous equation over Q and applying the
divergence theorem give,

-+ = - =
€p -gg” = f F.n dy= S'(z)<F.n> [3.42]
N
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where F is the flux defined along 89 by:

-5

—
F = ¢D,VC [3.43]
pYpyvp a0

-+ - -
and <F.n> is the average value of the scalar product F.n over 9. With the
assumption that the porous blocks are small compared to the macropore flow
characteristic length, F is taken constant over a matrix block. So we obtain,

Kr _ §'a)||F "
& g7 = S'(2)|F(z)]]. (3.44]
- - -
assuming that F and n are colinear. We have already derived the following
expression for I,

-
I' = 8(z)||F(z)|| [3.45]

therefore combining with equation [3.4!} we obtain,
r= S%[ep 9. [3.46]

Let us consider the ratio S(z)/S'(z). Considering a volume V., of the overall flow
domain at the depth z, we can write

() Sm ' — Sm
where Sy, is the exchange surface associated to the volume of macropore Vy and

r the volume of the porous block associated with S,. Therefore, S(z)/S'(z) =
V:/Vn which can also be written

5(2)/8'(z) = (Ve=Vn)/Va = 1/en — 1. [3.48]

Hence, the following expression is derived for T,

r=l-ta, %o [3.49]

€m

Combining this expression with equation [3.39], the following form for the
transport equation in the macroporosity is obtained,

8*C aC
az; - mem az_m - /\fmCm . [3-50]

€mn é“t—Jnl + (l—fm)fp éwT'P = mem

Remark that (1—eq)ep is in fact the porosity of the immobile phase as defined by
van Genuchten and Wierenga f1976). Thus, this formulation (Eq. [3.39]) and the
one presented before, Eq. [3.32], are equivalent.
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The formulation explicitely involving the fluxes at the interface to express
the exchange term, has the advantage to be closer to the physics of the
phenomena and may be more immediately understood than the one using the
average concentration in the porous blocks. On an other hand, as remarked by
Huyakorn et al. (1983b), when numerical solutions are required by the
complexity of the problem, gradients evaluation at the boundary of the porous
blocks introduces some errors. This does not constitute a problem when
analytical solutions are sought. We must also remark that for the cases of a
single fracture or macropore in a semi—infinite medium, it is impossible to define
a function S'(z). S(z) only can be defined. The formulation presented before, eq.
[3.32], and resulting from the application of the divergence theorem has the
advantage to define the sink term as the time derivative of an integral which can

AWéselfy'evaluated and which gives a value very close to the true one since the
g *fomerical schema solving the diffusion equation can be expected to globaly
conserve the mass.

In opposition to the two-region physical non—equilibrium model where
the retardation factor is defined on a mass basis, &eq. [3.24]), it can now for the
mobile phase be defined as a "face retardation factor", accounting for solute
adsorption on the interface micro— macroporosity. Assuming linear reversible
and instantaneous equilibrium, the time derivative of the adsorption term can be
written,

% = KeS() P [3.51]

where Sy is defined as a mass of solute per unit area. Therefore, the retardation
factor is given by,

R = en + S(2)Kr = e + 2 S'(2)K [3.52]

where Ky is the surface equilibrium constant. The same approach to define the
retardation factor was used by Tang et al. (1981), Sudicky and Frind (1982),
Neretnieks et al. (1982) for plane symmetry problems (transport in pane cracks),
Hodgkinson and Lever (1983) for a problem with cylindrical symmetry,
Rasmuson (1984), Neretmeks and Rasmuson (1984), Moreno and Rasmuson
1986) for spherical symmetry problems (transport around spherical particles).
owever it seems that nonequilibrium conditions will prevail most of the time in
the mobile phase. Therefore, adsorption at the interface should probably be
modeled by a kinetic equation. By analogy with {3.20} one could define the
following adsorption model

éagm = a[Kme - Sm]

Inside the immobile zone, intraaggregate water, the assumption of local
equilibrium is probably valid and a linear or nonlinear isotherm derived from
batch experiments can be used. A linear or nonlinear retardation factor will
result for the immobile region.

During derivation of equation [3.50], no assumptions have been made
regarding the geometry of the porous blocks. However, in the following and in,
order to solve the diffusion equation [3.41], the regions where water is supposed
to be immobile are given a geometrically simple shape. Usually, rectangular
aggregates, cylindrical aggregates, and spherical aggregates are considered,
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leading to ﬁespectively the plane, cylindrical and spherical symmetries for the
_ gl;:ffusion phenomena inside the aggregates. The diffusion equation [3.41] can now
- be written

€p éa(t—jp = - % (riprp éagp) [3.53]

!

where i = 0,1,2 for, the plane, cylindrical and spherical symmetries, respectively.
The average concentration over the porous blocks will then be defined according
to the symmetry of the blocks. If adsorption on the solid phase occurs, the
retardation factor, Rp, will be defined in the usual way (bulk density basis),
assuming a linear isotﬁerm and instantaneous and reversible equilibrium.

Rp = €p + pme [3.54]

Direct coupling of both phases
As presented before for the case of spherical aggregates derived from the
two—reﬁion model, the coupling between equation [3.53] and equation [3.50(] can
be modeled by a Dirichlet condition simply stating the continuity of the
concentration at the interface, van Genuchten (1985a,b). However, an other
coupling approach assuming the presence of a liquid film surrounding the
articles and acting as an impedance or boundary layer is also possible,
&952). (See below, Another coupling approach).
- For the three kinds of aggregates referred above and assuming linear
(N=1) Freundlich adsorption isotherms, the set of equations in normalized

variables is as follows,

et 1-pREin 190y 30 7)) [3.55]
%C.& = %i -gﬁ(pi-g%) p€[0,1] [3.56]
1
G = (41 [ #Culr) 4 [3.57)
0

where i=0,1,2 for respectively plane, cylindrical and spherical aggregates. The
dimensionless parameters are as follows,

T = fVat z=2 [3.58a,b]
P =gt p=1 [3.59a,b]
=Dell 5 o hRe o _GR, [3.602,b]

8 a2 0,VoRin nln + GinRin ’

p="n R = ¢Rn + (1-0)Rin [3.60¢,d]
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where T is the number of pore volumes leached through a soil profile or soil
column of length L, P is a Peclet number, 8 is a dimensionless partitioning
coefficient, and R is the total retardation factor of the soil profile. Rp and Rjp
have already been defined, (eq.[3.31] with N=_1<%. All the concentrations are
assumed to be in dimensionless form: C = (C—C;)/(Co—C;), where Co and C;
respectively denote initial and input concentrations. @ alternatively denotes the
half width of rectangular aggregates, or the radius of spherical or cylindrical
aggregates. ‘Note that in order to be able to use a one—dimensional equation for
the diffusion inside the aggregates, one must assume that the bases of rectangular
and cylindrical aggregates are sealed and thus do not participate in the exchange
process. Remark also that the equations for rectangular aggregates and for a
single or a set of regularly spaced plane cracks are identicaig The formulation
derived above can also be used for solute transport modeling in cylindrical
macropores surrounded by a soil matrix of finite radius, van Genuchten et al.
(1984). In that case, the average concentration in the soil matrix is given by,

Cim =

pO
!
P 1

where po is the ratio between the radius of the soil column and the radius of the
macropore. All these equations and useful parameters are summarized in Tab.
3.1. Before giving the boundary conditions associated with these equations we
first present an other way to couple the respective transport equations for the
two regions.

An other way to couple macro— and micro—porosity.

The problem defined above first appeared in the chemical engineering
literature, Rosen (1952), under a slightly different form for transport modeling
through beds made up of spherical particles. In that work the dispersive term in
equation [3.55] was neglected, but the presence of a thin liquid film surrounding
the particles and acting as an impedance was accounted for. Later, Babcock et
al. (1966) gave a solution of the. problem including the dispersive term. This
formulation of the problem is also used by Rasmuson and Neretnieks (1980,
1981), Rasmuson (1981b, 1984, 1985a,b). Their set of equations is as follows:

fe+v -0 L= ay/o)m [3.62)
6,/ 8 = D (q;/&x2 + 2 6q./ ox) [3.63]

where m is given by m=¢/(1—¢), and e is the macroporosity, also referred in the
chemical engineering literature as the porosity of the particle bed. The local
concentration inside the particles is noted, qi, and the mean concentration is
noted q. Boundary and initial conditions are as follows,

C(2,0)=0 C(0,t)=C; Cot)=0 [3.64a,b,¢]
q;(r,2,0)=0 0a;/ |, g = 0 [3.65a,b]
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q(bz,t)=q(z,t) | [3.66]

and where b is the radius of the spheres, and qs(z,t) is given by:

% =3 (0 q/x). [3.67]

Equation E}.67] links the two transport equations and states that the rate
of variation of the mean concentration inside a particle is equal to the solute
transport rate through the liquid film surrounding that particle. In this equation,
K is an equilibrium constant and h is a parameter characterizing the average
diffusive property of the liquid film. In particular if the liquid film surrounding
each particle is not uniform, due to the flow pattern for example, the coefficient h
can be chosen such that the previous equation averages the phenomena over the
surface of the particle. The boundary layer introduced with this way to coupled
the two phases is probably more physically founded than the simple continuity of
the concentration which implicitely assumes that there are no cros—gradients of
concentration in the macropore continnum. One can certainly hypothezise by
analogy with the case of a single pore that there is a radial velocity gradient in
the convective flow and that due to various physical and/or chemical phenomena,
it exists a thin film of water surrounding any aggregate through which solute
must travel by diffusion before reaching the porous matrix.

It is also well known that in aggregated or fractured media, regarding
either water or solute transport, the sur%gce of the macroporosity may have, due
to physical alteration or coating with highly reactive materials, transport
properties quite different from the rest of the porous matrix. This differentiation
leads in hydrogeological models to the introduction of a thin layer known as
"fracture skin". Retardation effects in transport from the cracks to the porous
matrix due to this layer are known as "skin effects". These effects are usually
modeled by a first order equation. Equation [3.67] can be viewed as one of these.
Relevant litterature for skin effects have been recently surveyed by Moench

1984).

( ) So, the main difference with the previous model assuming the continuity
of the concentration at the interface is the way both transport equations are
coupled. Remark that no retardation factors are included in these equdtions.
This last approach certainly more closely approximates the reality and might be
offering a little more flexibility but has the disadvantage to introduce a
parameter, h, which can probably not be independantly estimated or measured.
Solutions of this last system can be obtained analytically or by numerical

techniques.

Boundary Conditions
Boundary and initial conditions are now required for equations [3.55] and

[3.56). Let's first consider the CDE, Eq. [3.55]. Many papers deal with the type
of boundary conditions to be imposed at the top or at the bottom of a soil column
when modeling solute transport. Usually one have the choice between a Dirichlet
and a third type condition. This problem has already been adressed in the
previous paragraph. For a contaminant transport simulation model a comparison
between the (%fferent porous matrix concentration profiles resulting from using a
first—type or a third—type boundary condition is given by Moreno and Rasmuson
(1986). As previously pointed out, it is now accepted that for the formulation
using a volume—averaged concentration, the boundary condition really modeling
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. the physical phenomena at the top of the profile is one of the third—type, Parker
and van Genuchten (1984), van Genuchten and Parker (1984). Expressed in the
original variables this boundary condition is:

_ Dy 8Cy

In normalized variables the following expression is derived:
Cal0,T) — = G720.T) = 1. [3.69]

The boundary condition imposed at the bottom of the profile is often that
corresponding to a semi—infinite profile:

Cnfoo,T) =0 [3.70]

When dealing with finite lenght column, the following boundary condition is
imposed,

9Cn =0.. 3.71
gy [3.71]

This condition comes from the equilibrium equation relating the fluxes inside and
outside the column at the outlet. Derivation of this condition has been already
discussed. See also Gaudet (1981) for a derivation of this condition. The initial
condition for equation [3.55] is:

Cu(0,2) =0. Z€[0,1]. [3.72]

The boundary conditions for the diffusion equation [3.56] modeling the transport
inside the aggregates are:

Ca(Z,1,T) = Cu(Z,T)  Z€[0,1] [3.73]

which expresses that there is continuity of the concentration at the interface
mobile—immobile water, van Genuchten et al. (1984), van Genuchten (1985a,b),
and

_a__aca =0. 3.74
P |p=0 .

expressing that the diffusion process inside the aggregates is symmetrical with
respect to center (sphere), axis (cylinder) or symmetry plane (parallelepiped) of
the aggregates. The initial condition for the concentration inside the aggregates
is also assumed to be: :

Ca(Z,p,0) = 0. [3.75]

which leads in addition to C;in(Z,0)=0. We have now the system of equations
3.55], [3.56], [3.57], with the boundary conditions [3.69], [3.70] or [3.71], [3.73],
3.74], and the two initial conditions, [3.72} and [3.75].

In the following we present the different analytical solutions proposed in
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the literature for the problems described above. Numerical solutions have also

- been proposed. Huyakorn et al. (1983b), developed a combined finite element,

finite difference numerical schema for different geometries of the porous blocks,
g(liabs and spheres), while Rasmuson et al. (1982) used the TRUMP code of

wards (1969) implementing the IFD method, already described in the first part
of this report dealing with water flow. More references and details on these
numerical solutions are provided in annex, (A2). The popularity of analytical
solutions comes from the fact that as long as we are restricted to simple systems,
with simple initial and boundary conditions, (typically those of laboratory
experiments), they provide the best tool to analyse the physical assumptions at
the base of models. Inversely, as soon as it comes to handle complex physical
systems with arbitrary boundary and initial conditions, transient flow conditions,
or presenting complex chemical processes, numerical approaches constitute the
only really available answers. An other problem is the fact that analytical
solutions are rapidly reaching a high degree of complexity when including extra
processes, like decaying phenomena, or dealing with multi—dimensional problems,
thus becoming less easy to handle, to evaluate and to use.
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3.3 ANALYTICAL SOLUTIONS

3.3.1 CASE OF SPHERICAL AGGREGATES

We first present the solutions for the case where the particles are assumed
to be surrounded by a liquid film, ( cf.An other way to couple macro— and
micro—porosity). Analytical solutions derived for the other coupling approach
are presented after.

lution of Babcock et al. (1966
This solution is expressed in the form of an infinite integral and
corresponds to the problem defined by equations [3.62]—[3.67). A solution for the
same system of equations, but without dispersive term in equation [3.62] was
previously given by Rosen (1952). Conditions under which a numerical
evaluation of this integral is possible are discussed below.

w

zD 2 2
u(z,0) = 5+ 2 f exp—{ s + —{o?x4 + 200_Hay (3 - HY)]}.
0 v m

zD 2
sin{ 00N —xHp + —= (222 My, 2H1H272)} Q- [3.79)
m m m?

where Hy and H, are given by:
Hy(Ap) = Hdas + v(H3, + H)
(14+vHq;)2 + (vHgp)?

Hgo
(1+VHd1)2 + (I/Hdz)2

Hy(A,v) =

and Hqy and Hys are defined by:

_ sinh 2X\ + sin 2
Hoy = [’\(cosh X — cos 2V ‘1J

_ y¢8inh 2X — sin 2\
Haz = MGsh A —cos 2N

7, 0, o, v and x are given by:

7= 8DK/b? d=t—z/v

o= 2D /b? v=1b/3h X =z/mv

and the solution u(z,6) is the normalized concentration (C—Cyo) { (Ci—Co).
This integral is the product of an decaying exponential with a oscillating
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function (sin). Thus, the accuracy of the integration is strongly related to the

" rate of convergence of the integrand to zero and to the period of the oscillating
term. The leading term in the exponential is yx, and mainly controls the rate of
convergence to zero.

Solution of Rasmuson et Neretnieks §1980[
: An other solution for the same problem has been proposed by Rasmusson
and Neretnieks (1980), under a slighly different form. The set of equations is
strictly identical to the one given before, Eq. [3.62], [3.63], [3.64], (3.65], [3.66],
[3.67). The solution of Babcocok et al. (1966) was found to be limiting for low
values of the dispersion coefficient, and to lead to a poor solution at ear y times.
The following solution has served as a basis for subsequent studies.

C(Z,t)/COz%_'_%fmexp[-\Q/_IzE_z x'(,\)2+j,_2|-(A)2 + xl(/\)].
0

sin[ o\ —z x'(z\)2+}'_;('A)2 — XI(A)J % [3.77]

where

V2
x'(\) = + —g— H,
4D, ? mUL

2
y'(A) = a;\‘ + ESIH2

and where Hy and H3 are as previously given by:

Hi(Aw) = Hay + v(HY; + H3,)
(14+vHq1)? + (vHgy)?

Hgo

H2(/\,V) =
(14+vHq1)? + (vHgo)?

and Hgy and Hgs by:

_ [,sinh 2) + sin 2)
Hat = [)‘(cosh TX — cos 2\ ‘1]

_ y¢8inh 2)X — 8in 2)
Hgo = '\(cosh 29X — cos 2N\

The parameters o, 7, #, and v are the same as in the solution of Babcock
et al. (1966). Rasmuson and Neretnieks (1980) showed that for high values of the
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Peclet number (P=2zV/D) and disregarding the term of order 1/P? and less the
solution of Babcock et al. (1966) was obtained. The solution of Rosen (1952)
(D=0) could be obtained from this approximation by letting P + . A complete
derivation of the solution is also given by Rasmuson and Neretnieks (1980).

Solution of Rasmuson (1981

Following the solution proposed before for a system where no adsorption
occurs, Rasmuson (1981), gave the solution for the following system of equations,
now accounting for adsorption of the tracer on the solid phase inside the
aggegates. The system of equations is as follows,

% v D.g:—‘j = —{(8a/ét)/m [3.78]
ep0Cp/ 3% + 8Cs/Ot= D (&Cp/ 012 + 2 3G,/ ) [3.79]
905 = Kads (Cp— Co/ka) [3.80]
F=%e-c ) [3.81]

Boundary and initial conditions are as for the previous case, without adsorption,
equations [3.64} to [3.66]. It is important to remark that the adsorption rate, eq.
[3.80], is modeled by a first—order kinetic process analog to equation [3.20], and
therefore that instantaneous local equilibrium (LEA) is not assumed. The
analytical solution is as follows,

C(z,t)/Cy = 5+ 2 fmexp[ -\2/—6;—2 XW%W £ X)),
0
Sin[%i“j_s"%‘z XAV - X'(A)] QD ey

* 2

where

V2
x'(A) = + —g——H1
) 4D, UL

2
y'(A) = ‘%ﬁg—+ mB; B

and where Hy and H, are as previously given by:
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Hi(\v) = Hgy + _V(Hal + Hi)
(1+I/Hd1)2 + (VHd2)2

Has
(1+vH41)? + (vHao)?

Hz(/\,ll) =

Hgq; and Hgy are given by:

_ [Assinh 2)y + Agsin 23
Hay = [ cosh 2X3 — cos 2X; IJ

Hoy = =A18inh 29 + Agsin 2)
€2 = cosh 2Xy — cos 2X;

y=-[5E
Jo == [
1=J_m

=b2kads /\4

6P 1+ A¢

— b2kags ka _A* |2
4= gl 1+ )

where

c

A straitghforward extension of this solution to radionuclides transport,
with decaying constant, A4, is §iven by Rasmuson (1981). Given the properties
of Laplace transform, and if the input boundary condition is C(0,t) =

Ciexp(—Agt), it comes,
(C/Co)l/\d>0 = e—Adt(C/Co)lAd=0 [3.83]

A different solution is obtained by Rasmuson (1984) if a first—type input
boundary condition is used, C(t,0) = C;

Eztension to a two—dimensional system.

Assuming axi—cylindrical symmetry of the solute transport process, a disk
surface source of finite radius & with a first—type boundary condition, and
spherical particles, the following system of equations is obtained:

2
%, % _p, gz—f—m%%(r %0y = —(5q/t)/m [3.84
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8;/ 9t = Dy(Pa;/ x2 + 2 aq,/ ) [3.85]

with initial and boundary conditions ag follows,
C(r,0t) =Cyp r<a
C(r0t)=0 r>a
C(rym,t) = 0
aC(0,2,t)/0r = 0
Cleoyz,t) = 0
C(r,z,0) =0
qi(b,r,2,t) = qg(r,2,t)
5= C-%)
qi(x,r,z,0) = 0.
Remark that in this formulation one have qi

that a Linear Freundlich adsorption isotherm is used
assumed. The analytical solution is as follows

= ¢pCp + Cs. Remark also
and that local equilibrium is

C(a,t)/C, = é—exp[ }2’{%] f

O“exp[ [+ Do )i/2] 3o ) ag +

4D D 1 a2

o 38, | 2 [ once ([

0

mexp[-z[(x'(/\,f)2+j’_2'_(/\)2)1/2 £ X040

sin [a,\zt_z[(x'(A,s)2+y'(A);)l/2 _ x'(/\,f)]l/zJ %}

[3.86]
) V? D¢ ;2
with x'(\,€) = *+—3-H1(/\) +—=Lt ¢
4D,2 MY D a?

V() = % + g Ho()

Hy()) = Hay + »(H3, + H3y)
(1+vHa1)? + (vHgy)?
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Hgo

H2(’\7V) =
(1+VH'd1)2 + (VHd2)2

and Hgs and Hgs are given by:

—y |sinh 2) + sin 2A]
Har = A [cosh 9% — cos 2,\J L

42 = 4 |cosh 21 = cos 2A

Jo and J; are Bessel functions of first kind and of order 0 and 1
respectively. Remark that the numerical evaluation of the solution requires to
calculate a double integral whose integrand is a oscillatory function. When the
parameters are such that the period of the integrand is short, classical numerical
methods to evaluate this integral fail to give an accurate solution. In that case a
special integration algorithm must be used. This one is given later. When facing
such problems and given the difficulty there is to handle such complicated
analytical solutions, numerical inversion techniques for Laplace transforms may
appear more appropriated.

Solution of van Genuchten (1985a)

Previously given solutions are for a Dirichlet condition at the inlet, which
means according to the remarks previously made that corresponding solutions
may be used to calculate breakthrough curves but does not give the concentration
profiles in terms of volume—averaged concentration. We now consider the
problem defined by equations [3.55], [3.56], [3.571 where (i=2), with the boundary
conditions [3.69], [3.70], [3.73], [3.74], and initial conditions [3.72], [3.75]. Let us
recall some of the important hypothesis included.

(1) A third type input boundary condition and a semi infinite profile are
the boundary conditions for {3.55],
(2) There is continuity of the concentration at the interface micro—

macro—porosity,
§3) Local equilibrium is assumed when modeling the sorption process.

n analytical solution giving the volume—averaged concentration profile
in_the mobile phase was derived by van Genuchten (1985a). The solution is as

follows,

[(-1; + zp) sin(29A°T —_ Z)

0 PZ
1, 9p [ &xp(Eg—2,7)
Cm(Z,T) = 2'+ f
0

Ty (G e

— 2,008(27\°T —_7)] & [3.87]

where
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2, = ly(r, + )/ 2 = [3(r, = ]2

— (02 1 o2\1/2
r,= (Q1 +Q2)

_p? _ _ 2 _
Q1 =7+ P(1 ﬂ)R\II1 92 = 29PfRA* + 7P(1 ﬁ)R\II2

¥ = 3A(sinh 2X + sin 2)) —3
1~ cosh 21 — cos 2X

U = 3A(sinh 2X — sin 2))
2 cosh 2A — cos 2

In his paper, van Genuchten (1985a) remarked that if one is interested in
predicting the effluent concentration for finite lenght columns (Z=1), the
following expression giving the flux—average concentration at the outlet should be
used.

00
Co(T) =3+2 f exp(s ) sin(29 0T — 2, ) da [3.88]
0

which is the solution of Rasmuson and Neretnieks (1980) evaluated at (Z=1).
Notice also that if R = Ry = Rin = 1, then we have the solution for a

non—reactive tracer.

The concentration profile in the immobile phase can be obtained by first

calculating the concentration profiles inside the aggregates, and then evaluating
equation [3.57). Analytical solutions for the diffusion equation applied to
aggregates of different shapes are readily available for constant boundary
conditions. For time dependant boundary conditions, in our case given by the
concentration in the mobile phase, Duhamel’s theorem can be applied, and we

have, Rosen (1952),

Ca(p2,T) = f Ca(z,%) JrH(p,T-2) dA [3.89]
0

where H(r,t) is the solution of the diffusion problem for a boundary condition,
Ca(0,2,T) = 1 and a initial condition, Ca(p,z,0) = 0. For spherical aggregates,
H(p,t) is as follows,

a0
—1)+l
H(pT)=1-2) (—a)p— sin(onp) exp(~Dsa?T) 13.90]
n=1

where op=nr/a and in fact o, = nr since in that case a = 1. The derivative
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JH/dt is calculated from equation [3.90], and used in [3.89], thus giving,

© T
Ca(p,z,T)=2DsZ(—1)n+lon§i£(%3)- f Cu(z,\)exp[Dso2(T-A)]dA  [3.91]
= 0

This expression i8 used in equation 13 .57] to evaluate the concentration in the
immobile phase. After integration it tollows,

w T
Cim(z,T) = 6D52f Cu(2,A) exp[—Dso2(T—A)]dA [3.92]

n=1 0

The concentration of the adsorbed phase is easily obtained using adsorption

isotherms.
Though, previous solutions are given for a constant input rate, solutions

can easily be derived for a finite length pulse input. In this case inlet boundary
conditions are, either

C(0t)=1 for 0< t <to

Firgt—Type:
[C(O,t) =0 for to <t

Third=Type (Cn 1 6Cm) 1 0<t<ty
P 0 t2to

Given the properties of the Laplace transform, the solution for a square pulse is,
Ct(z,t) = C(z,t) — C(z,t—to)H(t—to) (3.93]

where H is the Heaviside's step function, C the solution for constant input rate,
and Cr the solution for the finite lenght square pulse. Notice that in fact Cg
represents either a flux—averaged concentration (first—type boundar condition),
or a volume—averaged concentration (third—type boundary condltxoni,

3.3.2 PLANAR VOIDS AND RECTANGULAR AGGREGATES

The case of planar voids received a great deal of attention in the
literature. Contamination risk assessment for nuclear wastes repositories in
fractured rocks, induced the first studies and numerical models, Grisak and
Pickens (1980), Grisak et al. gi)so Tang et al. (1981), Sudicky and Frind
1982), Neretnieks et al. (1982), Rasmuson et al. (1982), Huyakorn et al. (1983b),
odgkinson and Lever (1983), Neretnieks and Rasmuson 1984), Moreno et
(1985), Moreno and Rasmuson (1986). The fact that shrinking cracks in clay
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soils are geometrically more or less like planar voids, might also increase the
popularity of this approach in the field of soil physics. Rectangular aggregates
have been considered by van Genuchten (1985a,b) in soil leaching models.
Numerical as well as analytical solutions have been derived for solute transport
through rectangular voids, usually planar cracks, or around rectangular
aggregates. Let us first consider the case of transport through planar cracks.

The set of equations modeling solute transport in a plane fissure with
simultaneous diffusion and adsorption in the porous matrix, is in fact constituted
by equations [3.39] where e, is taken equal to 1, equation [3.40] where S is easily
calculated to be 1/b if 2b is the aperture of the crack, and equation [3.41]
expressed in plane coordinates (1-D). The retardation factor accounting for
tracer adsorption at the surface of the crack is defined by equation E3.52a]. Inside
the porous matrix the retardation factor is defined by [3.541. Usually, continuity
of the concentration is assumed at the surface of the cracks, Tang et al. (181),
Sudicky and Frind (1982), Neretnicks and Rasmuson (1984), Moreno et al.

1985), Moreno and Rasmuson 31986). The skin effect could also be considered.

nalytical solutions have been derived for the case of a single crack, Tang et al.
(1981), and for a set of regularly spaced cracks, Sudicky and Frind (1982). In
both cases a first—type boundary conditions and a semi infinite profile are
assumeqgipoundary conditions for equation [3.39]. For the case of a single fracture
an infinite porous matrix is assumed, while a natural no—flux condition is
imposed halfway between two cracks for a set of regularly spaced cracks. Let us
remark in addition that the solutions given below correspond to transport
equations including a decaying term, A.

Plane Fracture in a semi~infinite medium. (Tang et al. 1981)
Concentration profile in the fracture.

C _ exp(vz) ? o V2?2 _
Co= xﬁ”zflexp[ & q—zfz]exp( )

{exp (/X Y] erfe [T‘If,—,/x T] + exp [VX Y]erfc [Q}Ii + VX T]} d¢ [3.94]

2 12,2
where =¥g27z
4A¢£?

V=v/2D;ﬂz=4RD/1)2;n=IB—%2

_ [ Rzz]1/2

t—m
A= bR
VIEPDP

where D is the dispersion coefficient in the fracture, R the face retardation factor,
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Dp the diffusion coefficient of the porous matrix, Rp the bulk retardation factor,
z the depth, t the time, and A the decay constant

Concentration profile in the porous matriz

The concentration profile in the porous matrix at a given depth z and time T is
then given by:

w

C' _exp(vz v2z2
Co=" 7 J; exp [—62—-;%2] exp(—nz?)

{exp (/X Y] erfe [!ZT— Jx T]' + exp [yX Y']erfc [;T + X T]} d¢ [3.95]

where Y' is then defined by:
4A§2
Other parameters, v,7, and T being already defined above.

Case without dispersion

A simplified solution, assuming no dispersion (D=0 in equation [3.39]); flow
dominated by convectlon, is as tollows for the concentration in the fracture, Tang

et al. 1981,

8 XP(__ [ exp( — %} erfc( WZZYT'_ JAT') +
exP(’@—) erfe( soxrt+ JXT')] T'>0 13.96]

1/2
where T' = [t - Ez—v] , and the concentration in the porous blocks is given by:

9 = Lexp(- 222 exp( ~x W) exte( Yooy +

exp(vX W) exfe( W+ JXT')] T'>0 (3.97)
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C'/Co=0 for T'<0, and W = Rz/(vA) + B(x—b). Remark that when no
di?persion i3 accounted for, no integral evaluation is required to calculated the
solution. '

the porous blocks. Remark that a steady—state solution can be derived because a
decay term, ), is included in the transport equation. Concentration profiles in
the fracture and in the matrix are respectively given by:

G- (o= [ #+8)")4

8; = exp { [ v— [ 7+ g} 1h]z} exp { - [I’}.Jl/Q(x—b)} [3.98]

1/2
where = A + mr))l)—

Regularly spaced fractures

Let us assume that we have a media made up of porous blocks with width
2B separated by cracks with aperture 2b. Equations for this system are quite the
same as for the previous case. The only difference is the boundary condition used
at r=B for the diffusion equation in the porous blocks. Instead of a semi—infinite
horizontal profile, we impose now, due to the symmetry of the problem, a
no—flux condition at r=B. Analytical solutions for this new set of equations were
given by, Sudicky and Frind (1982). .

Solution in the fracture, Sudicky and Frind (1982)

Concentration profile in the fracture.,

C _ 2 exp(vz) ’ v RAY (O
Co ™ (i)32 j;exp[ 3 j%? ID%ZJI A2j64/4eXp(€R)-
0

2 2
{exp(—AT) [5 sin(e)y 7 ~ /\cos(q)lT] + £sin(Q) + Acos(n)} de d¢ [3.99]

where =3 [D%]x/z

Rz?

T=t—m2
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Ye (sinh
0 =5 [ ssisd)]

_ _Ye [sinh(oe) — sin(ag)]
‘R [cosh(ae) + cos(oe)

¢ = 2t Ye [sinh(ac) + sin(ae)]
1~ 2 2 (cosh(ge) + cos(oe)

2
Y = % v=19/2D
k? = 4RD/#? A =—DbR
6/R7DT7

c=G(B-b) G=(R/D)/?

Concentration profile in the porous blocks.

The concentration profile in the porous matrix is also given by Sudicky
and Frind (1982).

exp!lfz!f exp _£2 %_%]f e exp(ep)-
0
e _1\n (2n+1) 7(B-x) exp(=AT)
E( 1)(n+1) cos[ 2(B-b) ]'[14(2n+1)4/1604 + et/
{Q [J——)—"z zj_’-l sm(cl)lT 5 sm(q)IT]
r(2n+1)? 2 r(2n+1)?
=\ [_(:_2':_1)_ cos(q)lT + 5— sm(q)IT] + exp [— _(z—':;)_t]
[I cos(Q2') + M sin(Q') + ﬁ(zn—"'l)—’\co sm(Q')]}

+ _4‘ﬁ-)_ f1-ex - M]}.{gzsin(n) + deos()] ded [3.100

72(2n+1)? 402
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2.2
where Q' is defined by, Q' = 0 + -Rz—;
8¢

Remark that these solutions are quite complicated and that their
evaluation requires to integrate a double integral with a oscillatory integrand.
Solutions for no dispersion and steady state are also given by Sudicky and Frind
(1982) and are somewhat simpler to use.

We present now the solution given by van Genuchten (1985a). The set of
equations has already been given in %ab. 3.1, and is only repeated here for user's
commodity. We have the following equations:

. ‘ 2
mgre+ (-orPja =3 50 - zepo)

dCs _ . 0%C
(1-B)Rzr2 = 7 e & p € [0,1]
1
Cim =f Ca(p) dp
0
and the dimensionless parameters are still defined by:

_ VL _T

F=Dn =g

=-DaflL  5_ Ry = R

8 3-20|nvaim ~ pRn + GipRin

where ¢ i3 now such that 2a is the distance between two cracks or the width of
rectangular aggregates. Remark that no reference is made to the aperture of the
crack or to the pattern of the macroporosity. In fact that one is lumped into the
parameter fn. The retardation factor associated with the mobile phase is
therefore defined on a mass basis and not as a face retardation factor. It is
important to note that a third—type input boundary condition and a semi—infinit
profile are assumed. No provision is made for inclusion of a decay process.
Given that the transport in the mobile phase is still modeled by equation [3.55]
the concentration profile is as for spherical aggregates given by:

Profile in the mobile phase.

PZ

2]
1, 2p ([ &P -z,Z) p .
C_(Z,T) = +—f (5 + z_) sin(29A°T —z__Z)
m 27 A [(_Eg’_’_ zp)2+zr?1] 27 % m
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-z, 008(27A*T —zZ)] Q:\Y [3.101]

where all the parameters are the same as for equation [3.87] except for the
followings,

U = _ A(sinh 2X — sin 2))
1 cosh 2A + cos 2X

g = A(sinh 2) + sin 2))
2~ cosh 2X + cos 2)

The concentration profile in the rectangular aggregates is then

Concentration profile in the aggregates

Co ™ 2 n-1

[Slsm(ZF_—) + Sacos(Z J‘&—_ ) + Sasm(,\T-—ZF) — S4cos(AT—Z J—6~— ] [3.102]

where S1,2,3,4 are defined by:

[+

' —1\n 3:( 2)

¢ 1+2E L exp(—7°T) cos n{1- +7f exp(—Q—PZ—Z +x)_
n=1

.- Chia 1(2n—1)3 1—0) 7

- z: (=1)"-(2n-1) (A—p) 1
S A i
2 =16 2n—1)4 160 cos[ - Jexp( —72T)

S8=Syr=g S4=Syp-

Yo = (2n—1 gwi

x= ;1;2+PRH1( 1-f) y = PRAA+PRH,(1-5)
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2
7

sinh[2A _ sin

= T
St S
[23

i
sinh —Zi + sin|=%
H, = '__;zx [ 7 7 ]
[2X 'EX
cosh«—7 + cos =5

6 = x24y?

3.3.3 SOILS CONTAINING CYLINDRICAL AGGREGATES

solutions are given by Pellet (1966) and van Genuchten (1985a). This case is also
considered by Rasmuson (1985a,b), in two studies of aggregate shape effects on
transport characteristics. We shall come back later on this problem. In order to
model the diffusion process inside the aggegates making use of the cylindrical
Symmetry, one must assume as for previous rectangular aggregates that the
extremities of the cylinders are sealed and thus do not participate in the
exchange process. This somewhat limits the usefulness of this approach. Once
this assumption made, the set of equations is as given in Tab. 3.1 and recalled
here for commodity,

The case of cylindrical a?gregates received less attention. Analytical’

. 2
pR gra+ (- T = 5 52895 2o
g1t = 2 4635 pelo]
1
Cin =2 f pCalp) dp
0

and the dimensionless parameters are still defined by:

_ VyL T
_ _DafL __ 6Ra __ _ 6Ra

8 a2 0V nRin = GuRn F GinRin
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where @ is now the radius of the cylindrical aggregates. The solution is very
similar to those derived before.

Analytical solution van Genuchten (1985a)
Profile in the mobile phase

® PZ
| 1, 2p [ &Pz -2,%) p 022
C (Z,T)=#5+ J‘ (& + z_) sin(29A*T —=_Z)

—zc08(27A°T —z 7)) 42 [3.103]

where all the parameters are the same as for equation [3.87] except for the
followings,

o  MEIBer(A)Ber' (A) + Bei(\)Bei'(A)]
1 Ber?()) + Bei2())

U = MB[Ber(A)Bei ' (1) - Bei(A)Ber'(A)]
2 Ber?(\) + Bei%())

where Ber and Bej are tabulated Bessel functions. See for example Spiegel (1968).

3.3.4 HOLLOW CYLINDRICAL MACROPORES

The case of solute transport in cylindrical macropore was first investigated
by Scotter (1978). He used an approximated numerical solution of the CDE in
the macropore and of the diffusion equation in the porous matrix to simulate
chloride and phosphorus transport through channels. An experimental work, de
Cockborne (1980), gave further insight on the influence of pore radius and flow
velocity on the amount of solute held in the microporosity.

The set of equations modeling the phenomena for a finite radius soil
column i given in Tab. 3.1, and repeated here for commodity,

. 2
rgge+ (1-pR e =L 8Ly s 7o

g5® = 2 5055 pelol
1
Cin = — 2 f pCal(p) dp

Po"lo
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~ and the dimensionless parameters are still defined by:

_ Vul _r _b
P =Dn r=3 % =3
Da 0L - 0mRm i 0mRm
- T thRn ¥ GinRin - R
8 a2 9nVaRin milm + GimRin

where ¢ is now the radius of the cylindrical pore and b the radius of the soil
column surrounding the macropore. The analytical solution given by van
Genuchten et al. (1984) is expressed in.a form similar to those proposed for other
geometries. '

Analytical solution van Genuchten et al. (1984)
Profile in the mobile phase (third—type B. C)

C,(2.T) =1 + &+ 2,) sin(29\T —,7)

Tl L5+ z) 427

— 2,008(27\°T 2, 7)] 93 [3.104]

where all the parameters are the same as for equation [3.87] except for the,
followings,

¥ = 2AINi(M;—Mas) + No (M;+M)]
! (0] = 1(N? + N?)

v = 2A[Ny(Mi+Mj) — N (M;-My)|
? (0} — D(N? + N2)

where M; and Nj are complicated expressions involving Bessel functions.

Mi=Beri(poA)Keri(A) — Beii(poA)Keis(A) ~ Kers(pod)Bery(A) + Keis(por)Beis())
May=Beri(poA)Keis () — Beii(poA)Kers(A) — Keri(pod)Beii(\) + Keij(poA)Ber;(A)
Ni = Beii(poA)Ker(A) — Beri(poA)Kei(A) — Keiy(poA)Ber(A) + Kery(poA)Bei(A)
N3 = Beis(poA)Kei()A) — Bery(poA)Ker(A) — Keiy(poA)Bei()) + Ker;(poA)Ber(A)
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Bery, Beiy, Kery, Keiy, are tabulated Bessel functions. See Spiegel (1968). The
analytical expression for the breakthrough curve is obtained accor ing to
equation [3.9]. This expression corresponds to the solution for a first—type input
condition evaluated at Z=1.

Profile in the mobile phase {first— BC

Ca(T) = 4 +2 f exp( Zg — 27 )sin(7AT — 2nZ) % [3.105]
0

The breakthrough curve is immediatly obtained by making (Z=1) in this

equation.

When a radially infinite system is assumed, the transport is best modeled
by eq. [3.39], where S(z) = 2/a , and equation [3.40] is expressed in cylindrical
coordinates. The solution for this problem with a first—type input boundary
condition is also given by van—Genuchten et al. (1984). ~ The concentration
profile in the macropore is given by:

Profile in the mobile phase with first type B.C. and redially infinit soil matriz

0
2
Cu(z,t) = % + %f exp(%’l")’—:— Zpz) sin(’\ ?;t — Znz) dj’\ [3.106]
0

where zy, zp and rp have allready been defined. (See solution for spherical
aggregates). Q and )y are given by:

2 0
— vm 203Da/\A1
0 = 2 + %a,szc f

0
02 — RmDa/\2 + 203D3,AA2
a?RaDp  a?Dpeg

and A{ , Aj are defined by
Af — _Ker(A)Ker'(A) + Kei(A)Kei'()),
Ker?(\) + Kei?())
Ag = Kei(A)Ker'(A) — Ker())Kei'()),
Ker?(\) + Kei%())

Assuming no dispersion in the ‘macropore, approximate solutions for the
radial concentration profile in the porous matrix are available for both radially
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finite and infinite gystems.

- Case of a radially infinite system.

Ca(r,z,t) =0 ¢t S t1

Ca(r,z,t) = J%_exp(— ﬁga—)erfc(—z—_) t1>0 [3.107]
azpm €t NN
where t1 =t — (zRn/vn)

For the case of a radially finite system the solution is obtained under
assumption that the concentration in the macropore remains constant after a
certain time. That assumption releases the coupling between solute transport in
the macropore and diffusion inside the porous matrix. Therefore the problem
reduces to the diffusion in a hollow cylinder with a fixed boundary condition.
The solution proposed by van Genuchten et al. (1984), is

Case of a radially finite system.

Ca(z,r,t) =0 t<ty

Ca(r,2,t) = C3(z,t)B(r,t1) t > t;

B(r,t1) =1- wzexp(—Daanztl/Ra)JF(anb)
n=1
[Jo(a’nr)YO(a’na) — Yo(anr)Jo(eqa) :l [3.108]
J1%(anb) — Jo?(ana)

and where the coefficients an are the roots of
Jo(a'na)Y1( arnb) - J1(anb)Yo( ana) =0

Examples of concentration profiles as calculated by [3.107] or [3.108] are ploted
Fig. 3.2.
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34 INFLUENCE OF PARTICLE SHAPE ON TRANSPORT KINETIC

Equations modeling reactive and non—reactive tracers movement in -
aggregated media made up of uniformely shaped and sized particles have been
derived, and corresponding analytical expressions for breakthrough curves and
solute distributions inside mobile and immobile water phases have been given.
Being able to model transport phenomena and to obtain the solutions in
geometrically simple media, the next natural step, when dea,lin% with materials
which as the.soil can be made up of mixtures of irregularly shaped and sized
aggregates, is to try to answer the two following questions; (1) can any aggregate
be approximate from the point of view of the diffusion process by a geometrically
simple one? and (2) how are solute distributions and breakthrough curves
modified in a media made up of a mixture of regular aggregates? These two
problems have been adressed for both batch and flowing systems, using either
experimental or modeling approaches. '

3.4.1 EFFECTS OF PARTICLE SHAPES: BATCH STUDY

We report here the main results and conclusions of a study conducted by
Rao et al. (1982), whose objectives were to determine whether or not uniform
spherical aggregates can be used (1) in place of a population of non uniform
spherical aggregates and (2) in place of a cubic aggregates. Experiments
consisted to immerse previously tracer saturated aggregates into a tracer free
solution and to regularly sample the concentration o% that solution. Equations
modeling this system for regular spherical aggregates with radius a are as follow

oC(5t) D[g& + %g%] [3.109]
C(r,0) = Co, Clat) = C(t) [3.110]
C(t) = (3/a3)f r’C(r,t) dr [3.111]

0

where C and C are respectively the local and average concentrations ingide the
aggregates, Cp is the concentration of the batch solution, assumed uniform and
equal to 0 at the beginning, and C, the initial concentration inside the
aggregates. Remark that the concentration of the batch solution is

Ch(t) = (f/8)[Co — T(t)]. [3.112]

where f, and #, are the volume of the batch solution and the volume of void
inside the aggregates, respectively. At equilibrium, the concentration is equal
inside and outside the aggregates and is given by

C_ = 6.Co/(0s+0b) [3.113]

An analytical solution giving the average concentration in the aggregates
and therefore the batch solution concentration is
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T = +(Coc ) 888 + 1) _Dgy’t 3.114
¥ “(Ow)Eg+9ﬂ.+qn2gzexp[ a?] 3-114]

where § = 0,/0, and the coefficients q, are the positive roots of: tan(q,) =
[3aa/(3 + Ban?)]. To use this solution for modeling diffusion from or into a

mixture of aggregates, one needs to calculate an "equivalent radius", @ for that
mixture.

Radius averaging procedures

Rao et al (1982) proposed two procedures to determine an equivalent

radius. First, remarking that diffusion kinetic depends upon D/a?, Eq. [3.114], it
seems reasonable to look for a weighted average value of that parameter. For a
radius class, an immediate weighting candidate coefficient is the ratio of the
volume of water contained in that class, noted Wj, to the total volume of water
contained in all the classes, noted Wy. Thus, the weighting coefficient, f;, for the
class of aggregates with radius g; is defined by

V8 Wi
f; = k# =W% [3.115]
Y Vit
i=1
and Vi = nj(4/3)ra;®

where n;j is the number of aggregates of radius a;. Therefore, the weighted
average value for D/a? is

T k
D/a® = Z[fi(D/ai2)]. [3.116]

i=1

If it is assumed that all aggregates in a given class have the same porosity and
diffusion coefficient, this expression simplifies to .

k
D/a® =D Z(Vi/vt)/ai2 = D/a? [3.117]
i=1
and a is then given by
k
a=[Y (viyvy for’] i [3.118]

i=1

An alternative to the above described procedure is to simply define a as a
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volume—weighted average radius,

k
a= ) (Vi/Vi)ai [3.119]
i=1

When dealing with cubic aggregates, one must first define the radius of an
equivalent sphere for each cube size and then aplly one of the two procedures
above proposed. It is obvious that for a cubic aggregate an equivalent radius
may be defined in many ways. The approach chosen by Rao et al. (19823 was to
simply calculate the radius such that the cube and the sphere have the same
volume. In that case one must notice that for a given volume the surface
developed by a cube is greater than the one offered by a sphere. Therefore, at
least at the beginning of the process, one can expect the amount of solute
transported per unit time from the aggregates to the solution to be greater in the
case of the cube. This way to define an equivalent sphere for a cubic aggregate is
therefore not very well suited rega.rdin% diffusion process. However, it has the
advantage to respect the total amount of solute initially present in the aggregates

Results

Figure 3.3, from Rao et al. (1982), presents for a mixture of spherical
aggregates, observed and calculated concentration evolutions of the batch
solution. Simulated results have been obtained with equation [3.114]. Solid and
dashed lines correspond to equivalent radius calculated with equation 3.118] and
equation [3.119], respectively. It appears that equation [3.118] gives a better fit.

‘For cubic aggregates, Figure 3.4(A,B,C,D) present observed and simulated
concentrations for three different aggregate sizes and for a mixture of aggregates.
The equivalent radius used in equa,tion%3.114] is calculated with equation [3.118].
The good fit of the results is in that case less easy to analyse. Unlike for
spherical aggregates where the diffusion coefficient was independently measured,
it has been In that case adjusted so as to obtain a best fit for cases A,B and C,
(Fig. 3.4). Thus, errors introduced calculating for each cube the radius of the
'equivalent' sphere are in part corrected by the diffusion coefficient. However, a
good agreement appears, with somewhat less satisfactory results at large times.

3.4.2 EFFECTS OF PARTICLE SHAPES: COLUMN STUDIES

Rasmuson (1985b) studied the effects of particle shapes, Peclet number,
and bed length on breakthrough curves. For respectively, slab, cylindrical, and
spherical aggregates, the system of equations considered was almost identical to
equation [3.78]—(3.81], where now a parameter as is introduced to account for the
three possible symmetries. Equations are as follows

X 4vL_p % = ~(8/dt)/m [3.120]

€p0Cp/ 0t + 8Cs/Bt= D (&Cp/r? + % 8C,/ or) [3.121]

,3% = Kads (Cp— Cs/ka) —k:Cs [3.122]
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L ﬁ(ﬂ‘f)ﬁl(C—cp';gb) [3.123]

where b is the characteristic length of the particles, and 4 is equal to 0, 1, 2 for
the plane, cylindrical and spherical symmetries, respectively. In this formulation
there is provision for a first order chemical reaction rate modeled by the term,
—k:Cs in [3.122]. Notice that this set of equations is slightly different from the'
one used by van Genuchten (1985a), since in this case solute adsorption on the
solid phase i3 now modeled by a first order process rather than assumin

ingtantaneous local equilibrium, first part of the right hand side in Eq. [3.122]g.
One of the consequences is that for cylindrical aggregates the general transient
solution cannot be obtained and expressed in terms of tabulated functions.
However, this is possible letting kads - « and k; -+ 0 which corresponds to the case
of instantaneous equilibrium and no chemical reaction. Remark also that the
transport rate from the flowing solution into the aggregates is controled by a
boubary layer with mass transfer coefficient, kf. Equations are solved for a
semi—infinit profile and a first type boundary condition at the inlet. The
analytical solution for this system of equations is very similar to the solutions
already derived by van Genuchten (1985a). In that case the analytical solution is

C(Z,t)/CO — % + %fwexp[ %Pe - (x'z2)2+glz2)2 + x'z2 ]
0

. 1,2)2 1,232 _ 1,2 d
sm[ A2y — (X2 4 (y'7)" - x'z ] = [3.124]
2
where
2
z2x'= Pe(% + 6Hy) z2%y'= éPe(% + Hs)

2Dpe zV

(ka+ep)b? Y

§= (af"'l)Dpfp Z

R, = (er+1) (katep) _ k(e +1)
1= m T~ T m

Functions H; and Hj are the same as for [3.77] and Hg;, Hgp are now given in
Table 3.2 according to the parameter of. Functions Hg; and Hgy are equal to
functions ¥y and ¥, defined by van Genuchten (1985a), equation [3.87] and

following, modulo a constant equal to 3 and already included in z2x'.
In order to compare the breakthrough curves obtained on media made up
of different types of aggregates, one must choose the geometrical characteristics
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of the particles such that they have the same surface to volume ratio (function
S'(2) previously defined). Thus taking by the radius of a spherical particle as a
relerence, corresponding bj, 6; and y; for the two others geometries are given by

b = ba(or+1)/3 b = 36/ (as+1)

Yi= [af—_?_dzh

-With this choice, the global exchange surface of the flow domain is the
same and one can expect the breakthrough curves to be identical at early times
since adsorption is independent of Ea.rticle shapes at the beginning of the process.
(cf.§3.4.1) Influence of particle shape is expected to appear at medium times
while at larger times breakthrough curves are again expected to be same, a
limiting case being solute saturation. of the particles. Figure 3.5 presents the
average concentration for the three geometries as a function of the dimensionless

parameter- Dyt/bo®. It can be constated that as expected, there is very little
difference at short times and that the slab is more "effective" at medium times.
Sensitivity of breakthrough curves to particle geometry and Peclet
number is illustrated by Fig. 3.6, 3.7, 3.8, taken from Rasmuson (1985b). The
parameter &, defined above has the dimension of (1/L) and in fact is a measure of
the bed or column length. All curves are expressed as function of y2 which is a
contact time parameter. For small values of &, which can be viewed as the case
of a short column when all other parameters are fixed, and whatever is the Peclet
number, no differences can be noticed. Identically, at large times, only a little
variation appears. For intermediate times some differences appear which seem to
be increasing with the Peclet number while remaining quite small for a Peclet of

3.4.3 SHAPE FACTORS

Shape factor based on evolution of the average concentration

We have discussed the effects of particle shapes on breakthrough curves
and showed that at least for batch experiments, cubic aggregates for example,
could be approximate by spherical aggrefates. For this purpose, an effective
radius was simply defined such that the volume of the cube and the volume of the
equivalent sphere be equal. It was also shown that any mixture of spherical
aggregates or cubic aggregates could be, via an "averaging procedure,
approximated by uniform spherical aggregates.

Conversion of a cubic ag§regate into a spherical one was made on a simple
geometry basis and regardless of the diffusion process. Therefore, the equivalence
was probably "weak" and as then remarked this weakness taken care of by the
fitted diffusion coefficient. van Genuchten 31985a) proposed an alternative to
transform any of the usual regularly shape aggregates, sphere, plane sheet,
rectangular prism, solid cylindrical and hollow cylinder into any of those.

Again, the basis of the approach was to consider a non—flowing system
characterized by a constant external concentration and initially solute free
aggregates. For the different geometries above referred, analytical solutions of
the diffusion equation with initial condition, C(r,0) = 0 and boundary condition
C(a,t) = 1, which correspond to the batch system described above, are available
in Carslaw and Jaeger (1959). For this particular problem, average
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concentrations, <C>, function of T = Dt/a? are given Table 3.3 and plotted
Figure 3.9. One can observe that these curves have all the same shape and that
if translated they are almost superimposed. Therefore, taking any shape as
reference, for example the spherical one, one can almost define for each of other
shapes a translation parameter such that the evolution in time of the average
concentration is the same for all. In fact, given the physics of the phenomena one
cannot expect that parameter to be a constant for a given geometry. It obviously
depends on time, and seeking for a constant value only leads to a more or less

ood approximation. A iiven value of <C> is attained for two aggregates with

ifferent geometries but having the same characteristic length at two different
times noted t; and t2. Therefore, we can seek for different characteristic lengths
such as to obtain a given average concentration at the same time for both
aggregates. It comes the following equalities

Dty _ Dt
8.12 a.22
ag = ag :—;.= aZE = as fy,9. [3.125]

, We can now define for each value of <C> a parameter, noted fy,, giving
the ratio between the characteristic lengths a; and a; of both aggregate types.
Recognizing that the parameter fi,5 is concentration or what is equivalent time
dependent, van Genuchten (1985a) arbitrarily chose to estimate the scalin
factor, now noted £, at <C>=.5. Table 3.4, taken from van Genuchten (1985:3
gives the values of £ to pass from one aggregate geometry to another. Notice for
example that the shape factor transforming a cube into a sphere is equal to 1.046,
and that with the previous approach it was equal to 1.2406. Noting fthe shape
factor that is concentration—dependent, Figure 3.10 presents the variations of
g ko as a function of the average concentration when the sphere is the reference.

n can observe that values relatively close to one, indicating a weak dependence
of fon <C>, are obtained except for the case of a plane sheet. Time variations.
of the avera%? concentration calculated with the spherical equivalent are plotted
together with exact values for some particular cases, Fig.3.11. Good fits are
obtained for rectangular prismatic or cubic aggregates, but much less good
agreements for geometrical shapes not so close to the sphere. Observe also that
at early times the curves are superimposed whatever is the geometry. This is due
to the fact that the quantity of solute diffusing into the aggregates is very weakly
shape dependent at the beginning of the process, but mostly related to the
exchange surface area.

iet us to end outline two properties of this scaling factor. First, it is
evident that with the procedure above defined one can transform any aggregate
into any other and not only a spherical equivalent. This is accomplished with the
following rule, fi,3s = fi,2 £,3, where the subscripts 1,9,5 refer to any of the shapes
listed in Tab. 3.4. From this relation, and given that f£,, = 1, it comes
=1/ ph,1.
Aa /Iélbwever, besides the facts that this shape factor is constant while it is
really time—dependent, it has another major inconvenient which is that it is not
easily evaluated. As a mater of fact, no analytical expressions can be derived for
f and in order to obtain numerical values one is restricted to numerical
inversions of the solutions given in Table 3.3. An other more convenient method
based on comparison of Laplace transforms for average concentrations was
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. Pproposed by van Genuchten and Dalton (1986).

Shape factors obtained from Laplace transforms

Analytical solutions as those presented in Table 3.3 are usually derived by
first applying the Laplace transform to the system of equations to remove the
time—dimension. Solution obtained in term of Laplace transforms are usually
expressed in much more simpler analytical forms than the final ones. The main
idea is thus, as the Laplace transform is supposed to carry the same information
as the original function, to compare Laplace transforms of average concentrations
rather than much more complicated and not easily handled final solutions.

Let us consider the diffusion problems defined by the equations in Table
3.1 with the boundary condition Cy = Cp, Respective Laplace transforms for C,
f,nd C]im are given in Table 3.5. All these functions depend on v which is, Eq.
3.60a],

y; = DafL_ [3.126]
a%qRim
where the index ; stands for any particular geometrical shape already defined.

With little algebra the following relation is obtained between the parameters y;
and 7; corresponding to two different geometries

n/m = (ai/a;)? [3.127]

Laplace transforms of average immobile concentrations, #Ciy), are
expressed in terms of hyperbolic functions or Bessel functions. Thus a direct
comparison is impossible. However, it is possible to replace, at least for a limited
range of argument values, these functions by power series. These can be found in
Spiegel (1968). Using the first terms of these developments, comparable
expressions are obtained and a relation between 7 and 72 appears. Let us for
example consider the case ofitransformation of a slab into a sphere. From Tab.

3.5. we have for a spherical aggregate

Ca(Z,p,s) = fj—g%ﬁ%)cm(z,s)

Tin(Z,8) = [%coth(p) - 15)2] of [3.128]

where p = 48/7s and for a slab

Ca(Zyp,5) = S22 Ty (2,5)

Tin(Z,5) = 220(R) 7, (7,5) 3.129]

where p = v8/m. We have the following series expansions for the coth and tanh.

coth(p) =5+ B-De 4 202, (3.130]
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tanh(p) = p— B’ 4 2’1707 [3.131]

Using the first terms of these series in the expressions giving C and Tjp it comes
for spherical and slab aggregates,

Cin 2 (1 -r%s) Ch T (1 —%q) Cn, [3.132]

respectively. Thus, equating term to term these two expressions one obtains:
'7s/p')f13 = 1/5. Notice that second order terms have been released. One can
immediately deduce the relation between as and a; from Egq. [3.127]). It that
particular case it comes: ag = ~ 2.24 a;. Remark that with the previous method a
value of 2.54 was obtained. _ :

Therefore, using this shape factor to convert any aggregate into, a sphere
for example, and making also use of the weighting procedure developped by Rao
et al. (1982), (cf.§3.4.1), it is possible to transform any mixture of aggregates into
an. equivalent media, made up of uniform spherical particles, and behaving
approximately in the same way as the original one regarding the diffusion
phenomena. Besides this. method consisting to first transform the media in
something '"equivalent" and mathematically more tractable, some other
approaches have been developped to deal with complex media made up of
mixtures of aggregates or particles having different shapes and sizes. Works of
Rasmuson (1985a) and Barker (1985a,b) are presented hereafter.

3.4.4 MIXTURE OF PARTICLES. ANALYTICAL SOLUTION.

Rasmuson (1985a) gave an analytical solution for transport through a bed
made up of a mixture of spherical, finite slab and finite cylinder particles. Let us
consider a particle size distribution where each particle size group, 4, is
characterized by a shape factor as,; , a characteristic length b; and the volume
fraction ngi) of the total volume of particles. The shape factor as takes the
values 0,1,2 for, slab, cylindrical and spherical particles, respectively. In addition
each group is allowed to have different values of the properties: diffusivity, Dp,;,
adsorption constant, Ka,;, adsorption rate constant, kags,i, mass transfer
coefficient, ky,;, chemical reaction rate, ki, and void fraction, ep,;. The set of
equation describing the transport by convection—diffusion in the bed, exchange of
solute between liquid phases, surface adsorption and kinetic adsorption on the
solid phase inside the particles is as follows,

ac ac PC_ 1 gor,itl py
2+ VE—DE——EE)—B;—F(b,)Nd [3.133]
i i i— ini i 2 aof,j i
€p p/at + Nl— Epr(pr/ar + _1%' 3Cp/3r) [3134]
3Ci . . . .
at_E + kr’iCtls = kads,i (C[-l’— é/ka,i) = Ni [3135]

N§ = ki (C - C'i’|r=bi) . [3.136)
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Initial and boundary conditions being

Cl(bizt) = Clf,_y, %Ce(0,2,t) = 0. [3.137)
C(0,t) = Co Clooyt) = 0 [3.138]
C(z,0) =0 3(r,2,0) = Ci(r,z,0) = 0. [3.139]

The analytical solution of this system is classicaly obtained by means of Laplace
transforms and is as follows

- @ 1,212 1,2)2 1,2
C(Z,t)/00=%uw+%f exp[%Pe— (x'z°)°+(y'2%)? + x'z ]
0 2

. 9, 14(x'29)%4+(y'z%)? — x'z2) d)
sm[ Ay ] T

2

[3.140]

where

[« ]

u = exp[%-Pe—JPe[iPe + g z_%i%iF(bi)Xi(O)”

Xi(0) =1 -—L
¢ Vig0) + 1

The functions g!(.) are given in Table 3.6, wi(.) = ¥ vi(.) and

= (ai+1)Died i Diel
(bi)2 kf.‘bi
vi(s) — S! b i !2 [1 + &’,@ké S+k11- 1 ]
5 ed % ki(s+ki) + kigs
vi(0) = A; B
B1+1

where

2%'= Po(F2 + bE,lriF(bi)H})
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2 Al ..
2ly'= 6Pe(3f‘{—l A(1+1/Rg) + 2-;1 F(bY)Hj)

H}:Hél + V(H{)2+ (Hb)Y
(14+viH§)? + (v1H§,)?

Hi,

H2(’\,V)= . . . .
(1+/H4))? + (v'H{»)?

Functions Hd; and H{, with respect to af are given in Table 3.7.

Lkg—d sk%] "M + Bi(Bir1)

A=Al kgd sKa

(Bi+1)2 + k?.dsksixJ 2/\4
kz%.dska

di [kadskg,J Al[_l_ 1 J 22
kzidska R} (Bi+1)2 + kadsk;J 2/\4
kal,dska

Dimensionless parameters are

_ 7z _ (a+1)Dpep 2 _ kgk
"—%-(—b}“m B=pet

ads

k DK k
y="pdet R1=(1_)_afr'; Re = g2
_ b2kags _ Dpe _zV
A= D YTk Pe=p-

and K=ka+¢p. Rasmuson (1985a) compared the breakthrough curves for three
Gaussian and two log—normal particle—size distributions. These distributions
were chosen so as they have the same expected value. Log—normal distributions
were skeewed toward small radii. Therefore, for a given volume of bed, the total
outer surface offered by the particles can be quite different. It is obvious that
skewing the distributions toward smaller "radii" relatively increases the surface
to volume ratio by comparison with a normal distribution. One can therefore
expect the skewing to have a strong effect for short contact times and the



Fig. 3.12A Breakthrough curves
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for the varying total particule
surface (dashed line) I:[)after
Rasmuson 1985]



§3.4.4 :Mixture of Particul. -109—

presence of small particles to delay initial breakthrough times. Fig 3.12 A,B,C,D
taken in Rasmuson (1985a), presents the breakthrough curves obtained for
various combinations of the parameters. It can be seen that as far as initial
breakthrough times are concerned, the following ranking holds among the
distributions; U<G1<G2<L1<G3<L2.  Differences are larger for short
bed—lengths or what is equivalent short contact times. Curves A,B,C were
obtained neglecting the resistence of the liquid film (v=0) and assuming
instantaneous equilibrium between liquid phase concentration inside the particles
and adsorbed concentration, (Ry=w). Those are the assumptions used by van
Genuchten (1985a,b), van Genuchten et al. 1984. Fig. 3.12D presents the
breakthrough curves when the presence of a liquid film is accounted for (14#0).
We still assume, (Ry=w). In that case differences are much larger. Rasmuson
1985a) concludes that narrow Gaussian paricule size distributions have very
little effects on breakthrough curves as compared to thoses obtained with a
uniform distribution.  Calculations show that non—negligible effects due to
particle size distributions can be expected for short contact times or for short
bed—lengths. More details are available in the paper of Rasmuson (1985a).
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3.5 BLOCK—GEOMETRY FUNCTIONS

In the following, we first present some mathematical results which are
later used to develop a new solution for the solute transport problem in double
porosity media. In particular it will appear that the analytical solutions given for
the QSS model and all the geometrically based approaches in the previous
paragraphs are in fact particular cases of a more general formulation. Solutions
for the set of equations modeling the transport phenomena in double porosity
media can be obtained by different techniques. In the following, we start with an
approach making use of the Laplace transform and later connect it with more
direct solutions techniques leading to a Volterra integro—differential equation.
This development is partially based on works of Barker }1985a,b) and Hornung
(1987). 'In fact, the main mathematical tools used in the following belongf to the
theory of potential and to the theory of eigenvalue problems %or self—adjoint
operators Courant and Hilbert (1966).

3.5.1 THEORY
Consider a media where two water phases are present. In a first time one

can imagine this one as composed of porous blocks Q with surface I', delimitated
by a network of cracks. The dependent variable for each phase is a "potential"
noted ¢;. The term potential is taken here in its mathematical sense.
Physically, it can represent either the piezometric head in a saturated media, the
solute concentration, or the temperature. Assume that the following set of
equations models t?é variations of the potential in respectively the mobile and

immobile domains, [ %y wwuliotion
St(Opr/ %) = Dr — ke + q [3.141]
Su(O¢n/0t) = KnA@n —kngn in Q [3.142]
a(-t) = ~AvKn £ f Ve dA = — 1 K< Opn/ B>, [3.143]
r
¢m=¢f onTl [3.144]

where A and V are respectively the Laplacian and gradient operator, D is a
differential operator, which can for example be the dispersion—convection
operator, D*A — vV, S¢ and Sy, are the respective porosities of the two regions, k¢
and kn are two decay constants, K, can be considered as a conductivity or
diffusion coefficient, g is the volume to surface ratio of the blocks, v is the
fraction of all space occupied by matrix material, dp/dn is the normal derivative
and <.>; denotes the average value of a variable over a surface or a volume
according to index ;. In addition ¢fp and ¢mp are the two initial conditions. If
boundary conditions are supplied for [3.141}, then one have a system very similar
to the one defined by [3.39], 3.40],3-[3.41].

- In previous chapters several analytical solutions have been proposed for
cases where the porous blocks could be given a geometrically simple shape. The
standard procedure followed to obtain analytical solutions was to first apply the
Laplace transform, then to solve the problem in the Laplace space (solution of a
ordinnary differential equation), and at the end to invert that solution to obtain
an expression in term of original variables. While the two first stages of the
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procedure are relatively straightforward, inversion of the Laplace transform is a
lengthy and tedious process leading to complicated expressions which in addition
require some precautions during their numerical evaluations.

An other limitation of previous approaches is that natural media must be
approximated by regular aggregates or porous blocks. No provision was made
and could be made to account for irregular aggregate shapes. We are going to
introduce the concept of Block—Geometry Function (BGF) and show how used.
with numerical inversion procedures for Laplace transform it allows to overcome
these difficulties and generalizes previous approaches. We note

AE)p) =1(p,.) = f exp(~pL)i(.t) dt
0

the Laplace transform of a function, f.
The first step is to apply the Laplace transform to equations [3.141] to
(3.144]. The fcl)&owing set of equations is then readily obtained.

St(pPpr—¢ro) — Dot + kigr —q = 0 [3.145]
Sn(PPn—¢mo) — KnAPn + kngn = 0 [3.146]
@n(-p) =w(p) onT [3.147]
q= —% VKn <8pn/ 00>, [3.148]

The Laplace transform of the interphase transport rate, g, is in fact,
modulo a multiplicative constant, an average value of the Laplace transform of
the gradient, which one can be derived from the solution of [3.146] and [3.147].
Equations [3.146), [3.147] can be written

a?Apn—x%gn=7 inQ [3.149]
Yn=¢f onT [3.150]

where x? = a%(kn+Sup)/Km, and 7 = —a%Sngmo/Kn. Applying the linear

transformation
N S 2 {
b= A ’ Bpex? whane P =t =

. . Pt

one obtains the following problem }
a?AY—-x2=0 inQ [3.151]
$=1onT. [3.152]

For any function 4 solution of this sytem of equations, one can define a function
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_ noted B(x), by
B(x) = x'2a{ oY/ o> [3.153]

A straightforward application of the divergence theorem leads to B(x) = <¢> Q

Definition:  B(z) is called the Block—Geometry Function assossiated with
the problem [3.151], [3.152].

Replacing from [3.153] into [3.148], the Laplace transform of the
interphase transport rate can be expressed as a function of B(x),

q = — Ypr(kn+Snp) — Snpmo] B(x). [3.154]

Combining with equation [3.145] its comes the following differential equation

Dor = Mgt — oo [3.155]
where
A = S¢p + k¢ + v(kn+Snp)B(x) [3.156]
b= nggo + VSnnoB(x) [3.157]
x? = a%(ky+Sup)/Kn . [3.158]

Notice that, when defining the concept of BGF no assumptions have been
made regarding the shape of 2. Remark also that the BGF depends only on the
geometry of Q, (not its abolute size{. An important consequence is that the
equation modeling the system in the Laplace space, Eq. [3.155], is now a simple

Pianch fipt—order differential equation similar to the one obtained for a transport
problem in a homogeneous media. :

Quasi—steady State Models and BGF.

. The quasi—steady state approach has already been presented. The first
order physical non—equilibrium model being for example a quasi steady—state
approximation of models explicitely accounting for diffusion into the porous
blocks. With the notations above defined, this approach corresponds to
equations [3.141], [3.144] and

Sn(0¢'n/3t) + kng'n +q/v =0 [3.159]

q = ovKn(p'n—yr)/a? [3.160]

where ¢'y represents an average potential in the porous blocks and a is a
dimensionless parameter. Equations [3.141], [3.144], Ei.lsg] and 53.160] can still
be reduced to equation [3.155] and followings where the Block—Geometry
Function is now defined as

B(x) = af(a+x?) [3.161]
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shapes [after Barker 1985a].
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The fact that quasi—steady state and geometrically based models can be
both integrated into the same formulation will provide an interesting way to
compare both approaches, and will give some indications on when and how good
(or bad) is the quasi—steady state model an approximation of the real transport
process. Of course, we implicitely assume that equations [3.141] to [3.143{

- repregent a good model, or at least the best available model, for the physica.
Q\phengmena under examination. Notice that we do notinclude the bounda.ry/<
condition defined by Eq. [3.144] in this affirmation, sirtce, as already remarked,
the presence of a boundary layer, due to physical or chemical properties, and
controling the exchange rate is likely. Introduction of this feature is the subject
of the next paragraph.

‘Block—Geometry Functions and Boundary Layers

Equations modeling the presence of a boundary layer, also often referred
as skin effect, film diffusion or film resistance, have been given earlier (see §3.2.2
Another way to couple macro— and micro—porosity). With the present notation,
transport equations for a model accounting for the skin effect are constituted by
[3.141] to [3.143] and the boundary condition [3.144] is now replaced by

¢m=ys onT

and q verifies q = BvKy (gs — ¢r)/a? [3.162]

The Laplace transform of the interphase transport rate is still given by
equation [3.154] where y; now replaces ypr. Taking the Laplace transform of
[3.162], s can be expressed as function of q, and replacing s by its value in
[3.154] leads to the following expression for q

q = (¥Kn/a?)(¢ — pr)xBs(x,0) [3-163]

where

Bs(x,f) = B(x)/[1+x?B(x)/4]

and E = Smme/(km"‘Smp).

Remark that if 8 - «, (no film resistance{), Bg(x,0) - B(x). Thus, the case
of continuity of the concentration at the interface can be viewed as a limiting
case of a more general formulation using the concept of film resistance. Barker
(1985b), called Bg an " Effective Block—Geometry Function".

There i8 a certain analogy between the flux defined by equation [3.162] for
the skin—effect model and the flux given by [3.160] for the quasi—steady state
model. This degree of redundancy appears clearly when the BGF for the QSS

model is written, B(x)=1/(1+x2/a). This means that the QSS model can be
viewed as diffusional model with an effective block—geometry function Bg(x,5),
where f=a and B(x)=1. Physically, this means that the QSS model can be
viewed as a good representation of situations where the skin controls the
exchange process and where the porous matrix has an infinite diffusivity
(B(xgsl). Therefore, unless the introduction of the skin is physically required it
is redundant to combine skin effect and QSS models.
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Fig. 3.13 Some examples of BGF for simple aggregate
shapes [after Barker 1985d].
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Block—Geometry Functions. Properties and Ezamples.

Block geometry functions depend on x and therefore on p. Given equation
[3.154L this means that they completely characterize the time—variation of the
Interphase transport rate. Therefore, diffusion rates inside various aggregates can
be qualitatively appreciated by looking at their respective BGF. It is obvious
that the same is true regarding the variation of the average concentration inside
the aggregates. Block—Geometry functions are easily calculated for simple
domains, {. Some examples are given in Tab. 3.8 and plotted fig. 3.13. It is
easy to verify that the BGF listed in Tab. 3.8 all verify the following properties

(8) limB(x) =1
(b) limB'(x) =0

(©) B <0
(d) B(x)#1/x asx-w

These pi‘operties do not automatically follow from the definition of B(x).
Remark also that the BGF defined for the quasi—steady state model verifies

properties (a), (b) and (c), but that when x -+ w then B(x) » a/x? and not 1/x.
- These properties give some insigths into the physical process. First, at
small times or with high decay rates, kn large, the behavior of the physical
gsystem is given by the behavior of B(x) when x + ». Property (d) shows that all
the BGF have the same behavior which means that the solution will not be shape
dependent but will only depend on the block surface area per unit volume. This
is not the behavior predicted by the BGF for the quasi—steady state model.
Identically, at large times a common behavior, including the quasi—steady state
model, is predicted which corresponds to the approach of equilibrium between
matrix and fracture phases.

Arbitrery Block—Geometry Functions

Looking at the curves plotted on Fig. 3.13 it appears that for example an,
infinity of other possible BGF could be defined "between" those corresponding to
an infinite slab and a cube, respectively. Thus, one can imagine to use
parametrized empirical BGF in addition to the few ones already defined for
regularly shaped porous blocks. Notice that using arbitrary BGF probably
precludes from deriving analytical solutions and thus requires to numerically
invert the solution obtained in the Laplace space. It seems reasonable that above
properties be required from any BGF candidate. Barker (1985a) proposed three

families

(a) All the functions in Tab. 3.8 can be parametrized by a.
(b) Bi(x) = (1+kx)/(1+kx+kx?) k>0
() Bin(x) = (1+kx?)/(1+hx2+kx®) h>k>0
Families (a), (b), ((3 have 1, 2 and 3 parameters, respectively. Barker (1985b)

also remarked that BGF for slabs, spheres and cylinders (see Tab. 3.8) can all be
expressed in terms of modified Bessel functions
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I 1o(1x)
B(x) = )% [3.164]

where s = 1,2,3 for slabs, cylinders and spheres, respectively. Eq. B.164]
represents an infinite familly of functions which may be useful as empirical BGF.

Block—Geometry Functions and Composite Media.

Regarding, the problem of media made up of a mixture of blocks split into
N classes, each characterized by their parameter a; (volume to surface ratio),
and BG% Bi(x),it is still possible to define a BGF for this mixture and this one
is given by

B(x) = L P;Bj(xa;j/a)

1

vs{herebPi is the proportion of matrix volume occupied by blocks of type i, and a is
given by

S

1

It is readily verified that the BGF above defined also verifies properties ga), (b),
(c), (d). Barker (1985:;.} remarked that such BGF can considerably differ from
those shown Fig. 3.13. However, it is interesting to remark that a BGF verifying
properties (a), (b), (c), (d) exists for such a system and consequently that the
behavior of a composite complex media can still be modeled with the approach
previously developed. Therefore, for a given system, there is some hope to find a
BGF by fitting procedures. One clearly see here that all the information usually
carried by the solution of the diffusion equation in the porous block is now ail
contained in the BGF. The resolution of the diffusion equation in the porous
blocks is no longer required.

Solution Procedures

At this point, analytical solutions of equation [3.155] with appropriated
boundary conditions can be easily obtained. When D is the convection—
dispersion operator these solutions already exist for particular one— two— or
three—dimensional problems. Barker (1985a) remarked that analytical inversion
of these expressions is not easy if not impossible in certain cases due to the
complexity of B(x). Numerical inversion algorithms allow to overcome this
problem. An other important advantaée of numerical algorithms is that, given
the possibility to quickly change the BGF or to use any reasonnable expression
for it, they release the problem consisting to handle several complicated
analytical solutions and the constraint consisting to only consider geometrically
simple aggregates. This will be explained in more details later. A review of
numerical algorithms for Laplace transform inversion is given §3.5.2. Let us also
remark that if analytical solutions of [3.155] cannot be derived for some reasons,
it is still possible to obtain by means of standard numerical techniques, finite
differences or finite elements, an approximate solution and to apply the inversion
algorithm to this one. This approach has been applied with success to different
heat transfer problems in homogeneous media, Chen et al. (1987).
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Time dependent Block—Geometry Functions and Direct Solutions

From equation [3.154] or [3.163] one can see that in fact q is expressed as
a product of Laplace transforms. Let us define a function noted By(t) by
[+ 4]

B(x) = f exp(—x2t)Be(t) dt

0

which means that B(x) is the Laplace transform of By(t) with respect to x2.

From gquation [3.154] where s replaces gr and after some manipulations q(t) is
given by

q(t) = L7{q(p)] = vSnipmoL[B(x)] ~vknL*[s(p)B(x)] — vSnL[pizs(p)B(x)]

wﬁhere L is the Laplace transform operator and L™ its inverse. It is easily shown
that

2

1IB(x = Kn —Xp y n) By Kpt
LB = 52 ext-tat/5o) Kt

Using the convolution theorem, L[L(f)L(g)] = L[L(f*g)] = f*g, and usual
formulas for Laplace transform it comes

a(t) = 22 exp(kat/Su){ (mo—eo)Bu(Kat) -
a a°Sp
t
f [g%”lg‘ﬁws] exp(—knt/Sn) Bt[&zgﬂl] du} [3.165]
0 a"Om

If the skin effect is not accounted for, yr replaces ¢s in equation [3.16&%. A
similar expression is obtained if we start with [3.163] instead of [3.154] and Bi(t)
is replaced by a function Bg(t). Barker (1985b) remarked that no relationship
seems-to appear between B¢ and Bg;.

If one knows By(t), expression [3.165] is very useful for numerical
modeling without making use of Laplace transform. Again, it is clear that the
time dependent Block—Geometry function By(t) carries all the information
regarding the exchange process between the two phases. As an example, let us
consider the case of solute transport modeling in densely fractured or aggregated
media. Assuming that initial concentrations are equal to 0 in both phases, and
that k=0 (no decay), the initial system of equations ([3.141] to [3.144]) is then

reduced to

t "
St 32 = KeApr — vigr - HI:—2 f %) Bt[%;;_“l] du . [3.166]
0
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Such an equation is usually referred as a Volterra partial integro—differential
equation. Notice that the variation of concentration in the immobile phase and
consequently the exchange process between the two phases is modeled by a
convolution integral. A certain analogy can be remarked when comparing with
the coupling terms used by Huyakorn et al. (1983a) for water flow modeling in
saturated fractured media. (Infinite sum of convolution integrals with an
exponential in place of Bt(t)?. (cf Equations [1.35], [1.36], [1.38]). This analogy is
not surprising and will be clearly explained in the following paragraph. B(t) is
here analogous to what is known as a "Memory Function" in the field of leaky
aquifers flow modeling, Herrera and Rodarte (1973), Herrera (1974), Herrera and
Yates (11977).

f we want to use this approach we need to know By or at least to know
some properties of By(t). In the g)llowing we derive a general definition for By(t),
and give some of its properties.

Let us consider the case of diffusion inside porous blocks with initial
concentration ¢no, without decay and with a known and constant external
concentration ;. In that case, equation [3.165] gives q(t) as
Kmt 2

a
22 Sm)/

q(t) = —vKn(®mo—s)B(

and we have also

q(t) = —VKn<8pn/ 00>
Thus, B¢(t) and the average gradient over I' are related by

By(

K;'; ) = a<dpn/ 00>/ (Pno—ps). [3.167]
a“on

Consider now the problem (P) defined by
2= KnAY  in 0 and

Yp=1on T H0x) =0

These are in fact the equations describing solute transport inside an aggregate (2,
with a unit concentration at its surface and a zero initial concentration.
general solution of this problem can be sought of the form: ¢(.,t) = f(.)g(t) where

g(t) is
g(t) = exp(—fKnt/Sn).

Then, f must be a solution of Af = —4f and must verify f=1 on I'. This is a
particular case of a Sturm—Liouville eigenvalue problem. The Laplace operator
being self-adjoint, we know, Courant and Hilbert (1966), that the eigenvalues of
this problem constitute a denumerable sequence f; and that the eigenfunctions f;
constitute a complete ortho%onal system. Noting V(2) the volume of §, the f;
functions can be normalized by
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fi = fi/|| £; I = £i/[V(Q)<fi®>

and any general solution of the eigenvalué problem can be expressed as an infinite’
linear combination of the fj,
() = Zaifi(.) .

i

The coefficients a; are determined such that f verifies the initial condition of (P).
Hence, they are the composantes of yng in the basis (f;) and are given by:

o= tpmo<fi>QV(Q)

Therefore, the general solution %(.,t) of (P) is given by

<f;>
Wot) = Y, —— exp(—Katfi/Su) gl

: <f; >0

% constitutes the solution of (P‘l which is the homogeneous problem associated
with Eq. [3.142] and (3.144]. At this point a direct application of Duhamel’s
theorem would lead to an expression of (%(pm/ dt) under the form of a convolution
integral. As we already noticed, a simple application of the divergence theorem
allows to replace the term q appearing in Eq. [3.141] by the time derivative
Opn/dt). Thus, by means of the solution of the homogeneous problem and of

uhamel's theorem, we can combine equations [3.141] and [3.142] to obtain an
integro—differential equation. The other possibility is to calculate the average

adient over A from above expression. Noting b;=a?#; and using [3.166] we
erive the following formula for By

o~ 2
B (t) _ Zb <f1>Q e—bit — Zc. e—bit [3 168]
t l <f;2 >q l .

1 1

An important property expressed by this formula is that time dependent
block—geometry functions can always be expressed as an infinite sum of
exponentials. It will be seen in the following that this property is fundamental
when it comes to design efficient numerical schema to integrate equations such
that [3.166]. Some example of By(t) functions are given in Tab. 3.9. For these
particular cases, the correspondance with the analytical solutions given Tab. 3.3
is obvious. Bg(t) functions can be shown to verify the following properties,

Barker(1985b)

(2) By(t) ¥ 1/yaT as t-0
(b) dBy(t)/dt <0
(c) lim By(t) = 0.

t% o
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These properties cannot be obtained directly from the definition given above, Eq.

. [3.168]. They can be obtained from an other expression of By(t) derived by the

method of images and the fundamental solution of the heat equation. (See for

example Herrera and Rodarte (1973) for a particular case or Carslaw and Jaeger

1959)). Hornung (1987) gives the following result, very similar to property (a).

or spherical aggregates, p(t), the solution of the homogeneous problem given
Tab. 3.3, is closely approximated by the function:

p'(t) = y 1—exp(—7?Dt)
and in particular we have the following properties

lim [p(t)—p'(t)) =0 whent-0andt- o

lim [p(t)/p'(t)] = m/7/6 = 1.08
tTo

- 1=p(t
tTo 't

. We actually dont know if similar approximations hold for other

geometries. These results are of practical interest since they allow to replace the
sum of convolution integrals by a simple integral with a controlled error. This is
the occasion to remark that even if the BGFs, B(x) and By(t), are "equivalent",
the approach based on the Laplace transform has from a computational point of
view the advantage to use simpler expressions for the BGF. In the direct
approach, even with the possible approximation of B¢(t) given above, will remain
in many cases the problem of the evaluation of an infinite sum of convolution
integrals.
Remark that the function By for the quasi—steady state model is
cexp(—at) and tends to a as t tends to zero. Thus at early times different
behaviors are predicted by the QSS model and geometrically based models. This
was a qualitative result also derived from BGF using the Laplace formulation of
the problem.

Proceeding in a way similar to that used with block—geometry functions
defined with the Laplace variable, it is possible to define a function By(t) for a
media made up of a mixture of porous blocks belonging to N classes each of which
characterized by a volume to surface ratio, aj, and a function, Bgj(t). This
function is given by '

By(t) = zPi(a/ a3)?B.i(ta?/a;?)

1
al= Zpi/ai
i

Parametrization of Time—dependent BGF.

Although, this is not remarked by Barker (1985b), it is probably possible
to use parametrized B¢(t) functions. First, from equation [3.166], it appears
clearly that for a given geometry, e is a possible parameter. Secondly, one
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remarks that for the functions given Tab. 3.9, caS' coefficients are constant and
therefore that By(t) can be written

Bi(t) =c¢ Ze_b“t
n

Hence, for a given set of coefficients b, € appears as a second candidate to
parametrize By(t). This gives a two—parameters function. For a given physical
situation, one can use the by's corresponding to a theoretical aggregate whose
gshape is the closest to the the real ones and adjust the parameters a and c.
Usually, only the very first terms of the series are used due to the very quick
convergence of the exponential series. Therefore, if we only use the first or the
first two terms we ﬁet three— or four—parameters families. It is also evident that
if we deal with short time transport processes, By(t) can be taken in first

approximation equal to 1/y/at. The notion of "short time" is of course relative to
the transport coefficient, diffusion or conductivity, in the porous matrix. The

higher the.value of the transport coefficient, the shorter the period of time this

approximation can be consider a good one. The results given above regarding the

approximation of the solution of the homogeneous problem also suggest some

parametrizations.

3.5.2 RESOLUTION TECHNIQUES.

Though analytical solutions could be derived from equation [3.155] and
the expressions given for the Block—Geometry Functions, this is not the most
intelligent use it can be made of these. Beside the fact that the BGFs theory
offers a- general frame for transport modeling problems in densely fractured
media, one of the main advantage it offers is that it releases the geometrical
constraint and thus eliminates the part of the problem consisting to solve the
diffusion equation for particular geometries. Thus, to take full advantage of the
possibility to use arbitrary BGF and for example to fit these functions, one must
use numerical techniques to invert analytical or numerical solutions obtained in
the Laplace space. It is clear that with this approach a single numerical code is
sufficient and that the block of the program defining the BGF only has to be
change from one case to the other. Identically, if we use the time—dependent
block geometry function approach leading to partial integro—differential
equations, specific numerical techniques are required to handle such equations.
In the following we give a review of different algorithms and methods to
numerically invert Laplace transforms or to integrate equations such that [3.166].

A Method to solve Integrodifferential Equations

We are %iving here some ideas and a numerical algorithm usua.lkr
employed in the field of leaky aquifers flow modeling to treat such equations.
complete review of numerical techniques to solve integro—differential equations
arising in the field of flow modeling in leaky aquifers an applicable to this case is
given in Herrera (1976). Considering equation [3.166), one sees that evaluation of
the convolution integral normaly requires to know at a given time t all the past
history of functions ¢r or ¢s. This means that if the variables t and u cannot be
decoupled in By(t—u) one have to keep at hand all the information on 1 OF (g5 t0
be able to calculate the convolution integral. Effectively, since one of the
function under the integral sign depends on the upper bound of the integral one
have to carry out at each new time step the integration from 0 to the actual time.
Fortunately, it has been shown that By(t) can allways be expressed as a
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sum of exponentials, which allows to decouple the contributions of u and t.
Hence, the terms function of t can be carried out of the integral sign. The
problem is then to truncate the infinit sum. A rigorous procedure to construct a
familly of functions By, that approximate By is developed in Herrrera and Yates
(1977). ' These functions essentially retain the first n terms of the infinite series
and have in addition a Dirac's delta function located at the origin, the mass of
which accounts for truncated terms. Hence, each of the functions Btn preserves
what is called the "yield", which means that they verify the following condition

] a0

f By(t)dt = me(t)dt.

0 0

Thus, keeping only n terms of the series, equation [3.149] becomes

. n t
0 Kpbity vK 7] —Kpbju
St 359( = KrApr — vVpr — ) c¢; exp(=224) ——l"-f (u) exp(—2=L3) dy
¢ _2:1’1 a?S, a? OB%S a?Sy
i=

t
—A Y[ 9 .
A, L2 j; -aat“g‘(u)J(t u) du

Notice that the second integral on the right hand side is equal to s/t
evaluated at u=t. Therefore, using a classical step by step integration algorithm,
the remaining integral is simply evaluated by adding to its value at the previous
time step the contribution of the current one. A complete derivation of discrete
equations for a Crank—Nicholson schema is given in Herrera and Yates (1977)
(see annex 3 for details). A second order in time accurate aleorithm is also
proposed in Hornung (1987), gs.ee also annex 3). A somewhat similar method was
also used by Bibby (1981), but his algorithm was not including the § Dirac's
function. The method developped by Herrera and Yates (1977) is in fact very
general and said to be " more appropriate than most o f the methods specifically
devised for transport modeling in fissured media.", Barker (1985b).

Numerical Inversion of the Laplace Transform

Many algorithms are available for numerical inversion of Laplace
transform. Qur purpose in this paragraph is to give some references where the
reader will find most appropriate methods. Before startin this discusion we
recall that if we deal with a convection—dispersion problem, the Laplace
transform of the potential in the mobile phase is usually of the form:

L(tp?(s)=[exp(a. 8))]/s where f(s) is a complicated function of s, classicaly
involving ratios and square roots o hyperbolic or Bessel functions. Therefore,
one should be carefull when assessing the quality of a method from results
obtained on simple test problems.

A very easy to implement algorithm is the one given by Stehfest (1970).

Applied to some test problems, and in particular to the inversion of F(s)=y7/2
exp(—1/2s)/s it seems to give an accuracy of about 1%. This algorithm was used
by Moench and Oﬁata %1981) for a radial flow problem. The solution was

displaying some oscillations and inaccuracies at large times as compared with the
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-analytical solution. This method should only be used for debugging purpose.

In a study of different theoretical solute transport problems in fissured
media Barker (1982) used an algorithm due to Durbin (1974). Durbin (1974)
obtained a very good agreement for a case involving a combination of hyperbolic
functions. Valocchi (1985) in his study of the validity of the LEA, (see §3.6.4)
also used the same algorithm to evaluate the moments of the breakthrough
curves from their expressions in the Laplace space. This algorithm largely
improves the original method of Dubner and Abate 1968). A very similar
method was proposed by Crump (1976). This last algorithm is particularly well
suited to handle oscillating functions. A very good accuracy is obtained in the
case of damped oscillatory functions. These two methods are recommended by
Barker (1985b), as well as a method due to Talbot (1979) for its high accuracy

and efficiency.
Lately, an algorithm based on an expansion of the function f, solution of

the inverse problem, in series of Laiuerre polynoms and Poisson functions have
been proposed, McCoy (1987). The coefficients are simply function of the
moments of f, which are easily obtained from F, the Laplace transform of f, by

M, = lim (-1)"d"F/ds®
8-+0

The moments M, can be evaluated numerically or by means of a code
performing algebra operations, (MACSYMA, MUMATH, ..). This method seems
to be able to give correct results for exponential functions but is not
recommended for oscillatory functions.

Hsu and Dranoff (1987), proposed an algorithm based on Fast Fourier
Transform. They compared their numerical solution with the analytical one
given by Rosen (1952) for the problem of solute transport in media made up of
spherical aggregates. (See §3.2.2 An other way to couple macro— and
micro—porosity for the definition of the problem and §3.3.1 for the analytical
solution.) A very good agreement is obtained with a relative error lower that
.001%. In addition it seems that their solution is very little sensitive to the
number of terms used to calculated the FFT and to the size of the time
increment. This aﬁorithm is in fact the one proposed by Durbin (1974) and
improved for the evaluation of the Fourier coefficients.

The reader interested in a review of these methods and more details
should refer to Davies and Martin (1979). See also for an improved method, De
Hoog et al. (1982). 1t is difficult to recommend a particular algorithm, but it
seems that one should preferentially use those of Durbin (1974), Crump (1976),
Talbot (1979) and Hsu and Danoff (1987).  However, it would be interesting
and probably a good precaution to first test these methods against the various
analytical solutions presented before. ‘

3.5.3 CONCLUSIONS

As remarked, the concept of Block—Geometry Function appears at two
levels. First, applying the Laplace transform to the set of equations defining the
problem, the BGF appears as the average of the Laplace transform ots the
potential over a porous block, or what is equivalent as the Laplace transform of
the interphase transport rate per unit storage capacity of the matrix per unit
difference in initial "potential’, Eq. [3.154]. In that case, a simple differential
equation modeling the transport phenomena results in the Laplace space, the
coefficients of which depend among others parameters on the BGF. It is also
obvious that BGFs naturally appear as Laplace transforms. Therefore, applying
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the Laplace transform inverse operator to equation [3.154], a relation is obtained
between the interphase tramsport rate and a function defined as a time—
dependent Block—Geometry Function. For both types, independent definitions
and properties have been given.

The connection with the solution of the homogeneous problem associated
with the diffusion equation modeling solute movement inside the aggregates has
been underlined. It is important to remark that in fact, we mainly used the
properties of regularity and linearity of the Laplace operator. For example these
properties allowed us to express the solution in a general form without having to
introduce assumptions regarding the geometry of §1.

The theoretical frame developed in the previous sections offers a (%enera.l
and attractive tool for transport modeling in materials presenting two distinct
domains where water, solute or heat transport rates are ruled by different
equations. It has been shown that all previous approaches, quasi—steady state
model, geometrically based models, skin effect model, can be integrated in the
frame of BGFs. Beside that, it is important to remark that with the formulation
obtained with the BGF we no longer have to assume a simple geometrical shape
for the porous blocks or more generally for the immobile water phase. All the
information on the interphase transport rate depending on the geometry is now
concentrated in the BGF. Thus, this one appears as a characteristic of the
geometry of the porous media, characteristic which can probably be obtained by
identification or parameter fitting techniques. As important is the fact that by
means of numerical inversion methods for Laplace transforms, we can use as
complicated BGFs as we want to characterize a porous media, BGFs for which
analytical inversion of the solutions of the problem are unlikely to be possible.
Thus, for problems where initial and boundary conditions allow to derive
analytical solutions in the Laplace space, the combination of arbitrary BGF and
numerical techniques for inverting Laplace transforms provide a powerful tool for
transport modeling.

When the geometry or initial or boundary conditions do not allow to
derive ana.ltytical solutions for [3.155], it is still possible either to use numerical
solutions of that equation, or to use equation [3.;:1{11] where q is given by 1&1}16512
In this last case we have to solve a partial integro—differential equation. ar
that a certain formal analogy exist between equation [3.166] for example and
equation [3.25]. The interphase coupling term is now much more complicated
and in fact the interphase transport phenomena is no longer approximated by a
first order process as it is the case in the usual quasi—steady state model. Here
again the time—dependent Block—Geometry Function completely characterizes
the geometry of the porous blocks. Thus, as for the BGFs, it seems reasonable to
try to obtain By by means of fitting techniques.

It appeared that the block geometry function concept allows to compare
quasi—steady state (QSS) and geometrically based models. As the QSS model is
usually viewed as an approximation of those, it is important to know when this
approximation can be considered valid. The general problem of relating
macroscopic models (QSS or LEA) to geometrically based models is adressed in

the following paragraphs.
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3.6 MACROSCOPIC MODELING APPROACHES.

3.6.1 INTRODUCTION .

As noted at the beginning of this report, first approaches to solute
transport modelin}g1 were based on the simple CDE. Later it was recognized that
the physics of the transport process was not well described by the LEA.
Progressively, more and more complicated models, more realistically simulating
the physical and chemical processes taking place during solute transport, were
introduced. So, successively appeared the first order non—equilibrium model
accounting with a relatively simple equation for solute exchange between two
water phases and later, models based on geometrical conceptualizations of the
porous media explicitely simulating the ditgfusion process from one phase to the
other. At each step more detailed informations on the media were required to
make use of these models. An other problem was that additional parameters
were introduced whose links with the physical process were not always very clear
or were quite complicated. .

Models such as the quasi—steady state model given §3.2.2 or the LEA
model (Local Equilibrium Assumption model) given by equation [3.1] are because
of their relative simplicity attractive and easily coupled with other transport
models. So an important task is to estimate when these simplified approaches
can be used instead of more rigorous but also more complicated models based on
a geometrical conceptualizations of porous blocks.

A trend in the last two or three years has been to use the information
fathered from complicated and detailed models to obtain more useful expressions
or the parameters to be used in simpler models. Therefore arises the problem to
identify the real dependence on flow characteristics and geometry of parameters
such that a for the QSS model or the dispersion coefficient for the LEA models.
The problems consisting to define conditions such that two different models are
"equivalent" and/or to seek for relations linking model parameters to flow and
domain characteristics has been mainly envisaged in the last years by Rao et al.

1980a), Raats (1981, 1984), van Genuchten (1985b), van Genuchten and Dalton

1986), Barker (1985a,b), Valocchi (1985), Parker and Valocchi (1986). At the
litght of the previous results obtained with the BGF theory and as we now dispose
of a general and relatively simple formulation for the transport problem in
inhomogeneous media, it is clear that some of these studies dealing with
particular cases are of somewhat limited interest. Therefore, we shall only briefly
review the various results presented in the literature.

The first step has been in a first time to link QSS and diffusional models
and then to go back one step further to the LEA model. Many ways have been
employéd to compare the different models and derive equivalent coefficients.
They are generally based on the comparison of solutions in batch systems or on
the comparison of breakthrough curves. In the following, before dealing with
these particular cases, we first present a general method having as starting point '
the partial integro—differential equation derived before and giving some insight
into the relations existing between the different models.

3.6.2 ZEROTH— AND FIRST-ORDER APPROXIMATIONS OF
DIFFUSIONAL MODELS

The quasi steady state model has already been presented, without
justifications, as an approximation of more rigorous models explicitely simulating
the diffusion process inside the aggregates. We are going to show that in fact the
QSS model is a " first—order" approximation of these models and quantify the
error made by neglecting "higher order" terms. We stated that the transport



§3.6.2 :0 and 1 order Approx -125—

process is modeled by a partial integro—differential equation such asl[3.166]. We
also showed that the function By(t) referred as BGF or "memory" function can
always be expressed as a series of exponential terms, eq. [3.168]. With these
properties, the general partial integro—differential equation modeling the
transport process can be symbolically written

t 0
M(pr) = — f gstéf(u)zcie‘bi(t’“) du [3.169]
0 i=0

where M is the differential operator (Sfd/8t—DsA-+vV). Notice that since the
inteira.l on the right hand side describes the time variation of the concentration
in the immobile phase, M is equivalent to : —dy,/8t. Taking the Laplace
transform of this equation and using its basic properties, in particular the
formula for a convolution product, yields

00

M=- SL(W)(S)Z ot [3.170].
i=0

It can be shown by different ways that the series in equation [3.170] can always

be written under the form X y;s! where each 7; depends on all the b; and c;
coefficients. Therefore, applying the inverse Laplace operator to

M=-— sL(tpf)(s)z yist [3.171]

i=0

and making use of the fact that if ¢(0)=0, L(dic/dt1) = siL(c) it comes

M(yr) = —{ gw Zt_ii} %tef [3.172)

Before using this result let us derive an other relation. An other possibility is, in
equation [3.171], to divide the left hand side by the series so as to keep on the
right hand side, the Laplace transform of the time derivative only. It is then
possible with relatively little algebra to obtain an expression of the form

—sL{pr)(s) = Mz Bist [3.173]
n=0

Then applying the inverse operator to this equation it comes
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G = ‘{iﬂi%} M(er) [3.174]
i=0

In equations [3.172] and [3.174] it is assumed by convention that &°/at° is
the identity operator. The time variation of the mass of solute in the immobile
zone is now directly related to the various time derivatives of the concentration
in the mobile phase. Considering [3.172] one sees that if we drop all the terms
but the first one in the series, we obtain a model where the variation of the
concentration in the immobile phase (left hand side) is linearly related to the
variation of the concentration in the mobile phase, which traduces the
establishment of an intantaneous equilibrium between the two phases. Therefore,
the instantaneous equilibrium model corresponds to a zeroth—order
approximation of the diffusional model. This conclusion is also straightforwardly
derived from equation [3.174].

Still considering equation [3.172], if we conserve the first two terms in the
series we introduce a second derivative for ¢r. This means that we add to the
instantaneous storage term (first derivative), an inertie term which is the
simplest way to account for the inertie of the porous blocks in the process of
uptaking or releasing solute. This results in a modified dispersion coefficient in
El§1e CI?E. An example of application to spherical aggregates, is given below,

3.6.4).
Conserving the first and second terms of the series in equation [3.174] can
be easily shown to correspond to use a first—order linear differential equation,
identical to the one used in the QSS model to describe the interphase transport
rate. From equation [3.174] we have

9 —  5M(r) — B {M(p1)]. 3175
But as M(¢r) % — dypn/ 0t it comes
g%m & %2[‘Pf_ﬂ1‘»0m] [3.176]

which effectively models the variation of concentration in the immobile phase as
a first—order process. Thus, the QSS model can be viewed as a first—order
approximation of diffusional models. Remark that the LEA model with a
modified dispersion coefficient and the QSS model constitute both first—order
approximations of the diffusional model. Which one is the best is not an easy
question to answer to. It is probably cases dependent

3.6.3 BACK TO THE QUASI-STEADY STATE MODEL

The quasi—steady state model uses in particular a parameter a which o<
controls the exchange rate between the mobile and immobile zones. Assumptions
behind this model are in particular, uniform concentration in both phases at a
given level and realization of an instantaneous equilibrium inside the "stagnant
zones" when a change in concentration occurs in the interface mobile—~immobile
water. It is obvious that in media where the immobile phase has a significantly
non—nul thickness, as it is the case for fissured or aggregated media, transverse
gradients exist and that equilibrium inside the immobile phase is never attained
unless the concentration in the mobile phase remains constant over a sufficiently
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long period of time.

- Consequently, description of the exchange rate by a first—order process is
only valid if the "thickness" of the stagnant zones is small enough. This notion is
in fact relative to the average time needed to obtain the equilibrium for a given
perturbation at the interface. Therefore, when this conceptual model is applied
to aggregated media, the fact that the basic assumptions are not verified must in
some ways be integrated in the parameter a.

Dependence of a on flow and media parameters .

The problem of relating a to media characteristics was first adressed by
Rao et al (1980b). They used two models, namely the spherical diffusion model
and the quasi—steady state model, to describe diffusion out of spherical
aggregates in a batch experiment. Using analytical solutions of these two models
and matching the expressions, the following expression was derived for a

a= Dafa . [3.177]

where D is the diffusion coefficient inside the aggregates, §, is the volumetric
water content of the aggregates, fj is the volumetric water content external to
the aggregates, a is the radius of the spheres, ¢ = 6,/(fa+6n), and oy and o, are
given by:

0
2 2
o1 = z _68(B+1)an exp(— BL;) [3.178]
a
n=1

9+9ﬂ+Qn2ﬂ2
> 2
0y = 2 6 +1 exp(— 2(Lt) [3.179]
_— g+9ﬂ+qn2ﬂ2 a.2
where qn are the roots of
tan(qy) = —39d0_
3+ﬂQn2

and f = 0Oun/0s. It appears clearly that o depends not only on the shape and size
of the aggregates but also on time. A plot of a(t) in dimensionless variables is
given Fig. 3.14 for different values of . Clearly a decreases untill it reaches a
constant value equal to

o = Dbupq;®/a® for Dt/a2>0.1. [3.180]

This means that the larger the size of the aggregates and/or the lower the
diffusion coefficient, the higher the time at which @ becomes constant. To fix the

ideas let us consider a diffusion coefficient of about 107 cm2s™, which is a
reasonnalble values for the Nitrate diffusion coefficient in soil, and aggregates
with radius .5 cm. Under these conditions, the value of t after which « is
constant i3 approximately equal to 7 hours. , Remark-the quadratic dependence on
the radius of the aggregates, Eq. [3.177]. (Equations [3.180] implicitely defineja

A/n ['C, ~—
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region of equivalence for both models. It is clear from these equations,
dependence of a on time, that the QSS model is a poor approximation at "early
times". The same conclusion has already been derived from respective BGFs for
these two models.

For non—batch systems, the dependence of o on flow and media
characteristics is more complicated. From a study by Nkeddi—Kizza et al. (1983)
where the different parameters of the QSS model were fitted to a series of column
experiments, one can conclude that @ increases with the velocity, but no simple
relation seems to arise regarding the dependence of « upon aggregate size while it
is the case for batch experiments. This may be due to incertitudes in fitted
parameters as well as to the poor adequacy of the QSS model. It ’Eppemaa
dependence of & upon the concentration which is not explained. In fact as it can
be constated on Fig. 3.15, the dependence of & upon the various parameters is
rather complicated and seems to preclude from deriving relationships between o
and these parameters.

van Genuchten (1985b) also proposed a method to relate @ to aggregate
shapes. This method is very similar to the one he derived to pass from one
aggregate shape to another. (cf §3.4.3) A solution of [3.33] in a system where Cy
is constant (Cn=1) and the initial concentration equal to 0'is given by:

. at

Clm (Tl) 1 exp( Tl) with Tl m [3.181]
The method consists to seek for a parameter a such that equation [3.181]
describes solute accumulation inside a given aggregate. Let's for example
consider the case of a spherical aggregate. If we consider T as the characteristic
time of a reference aggregate we can look for an & such that the average
concentration inside the sphere, <Ca> be equal to Ci, (Eq. [3.181]) at a given
time. Again a is time— or concentration—dependent and o is arbitrarily defined
such that the average concentration <C;> = .5 is attained at the same time for
both aggregates. Hence, we can use the table of parameters fpreviously defined,
0\ Tab 3.4, and for exa.mple/ the parameter « 4g-approximates media made up of

spherical aggregates with Tadius as is given by: \W( =

@= fDa—”zi:E [3.182]
§-1

It follows that dimensionless parameters w (dimensionless parameter for 4 and
7 (dimensionless diffusion coefficient for the aggregates), see equations [3.28] and
[3.60a,b] for definitions, are related by

w= @—‘5)&;& % 22.4(1-f)R s * [3.183]

sy 1

Similar equations a.pplty to conversions from other aggregate geometries. See
Table 3.4 for values of f,;. For a hollow cylindrical macropore the following
relation holds

w=—(1ORY% [3.184]

- (£0-1)2 fp.1®

Fig 3.16 illustrates the dependence of the parameter fupon average concentration
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inside the -aggregates. It can be seen that except for the case of a hollow
cylindrical macropore, the first order model only poorly approximates the reality.
This is more explicitely illustrated by Fig 3.17 and 3.18 presenting various
breakthrough curves obtained for different aggregate shapes using either the
exact solution or the one obtained with the first order "equivalent” model. A
derivation of w based on a comparison of Laplace transforms of immobile
concentrations obtained for both approaches is also possible and leads to similar
results. For more details see van Genuchten and Dalton (1986)

For the particular case of spherical aggregates, Parker and Valocchi (1986)
derived an expression for w by matching the second order moments of
breakthrough curves obtained with the QSS model and with the model using
spherical aggregates. (cf. Eq. [3.55][3.60] for the definition of the problem and
equations [3.87f—[3.88] for the analytical solution.) More details can be found in
the following paragraph (§3.6.4) concerning the technique used to calculate the
moments. They derived the following expressions

w = 157sR(1—-0) or &= 15Da0;in/a?. [3.185)

The. first expression is similar to the one derived by van Genuchten (1985b)
\ \,QN&/\ ~where-the coefficient was approximately equal to 22.4 instead of 15, (Eq. [3.183)).
o '

The same expression was obtained by Raats (1984) in the case of spherical
aggregates usin% a development of the operator in the mobile phase. His method
was a particular case of the general discussion on the relations between
macroscopic and geometrically based models proposed above, (see §3.6.2).

By means of BGFs, Barker (1985a,b) also looked at how good is the QSsS
model an approximation of geometrically based models. As already presented,
one of the main result is that the BGFs assossiated with QSS and geometrically
based models do not behave in the same way when x-w which indicates that at
early times the QSS model is not a good approximation of geometrically based
models. This is in agreement with previous conclusions. The BGF theor
predicts that at large times the QSS model becomes a good approximation. X
natural way to obtain the parameter a to be used in equation [3.160] at large
times is to compare the respective BGFs when x-0. (Attention, the meaning of a
is not the same here and in (3.185]). This is done by equating their respective
Mac—Laurin series in the vicinity of 0. One finds

= —-2/B"(0) [3.186] |

which for examle gives a = 3, 2, 5/3, 1.377... for slab, cylinders, spheres and
cubes, respectively. An other alternative proposed by Barker (1985b) is to
compare the long—time behavior of the respective By(t) functions. As they are all
expressed as series of exponential terms, (z:f Tab 3.9 and Eq. [3.168]), a possible
choice is to take only the first term of the series and to choose a=b,. In that case
one obtains a = 2.47, 1.45, 1.1, .82 for slab, cylinders, spheres and cubes,
respectively. Which ones are the best is here also a question without simple

answer.

Remarks and Perspectives
At this point it is important to remark that all above studies try to
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replace @, a time—dependent and very poorly understood parameter, by a
constant, simply in order to simplify the mathematical formulation and to reduce
the amount of calculation effort required to solve the problem. A very important
result of the BGF theory is that the complicated initial set of equations is,
precisely via the introduction of a BGF, reduced to a simple ordinary differential
&< equation or to ag partial integro—differential equation. These equations are no
more complicated to solve than those of the QSS model but have the advantage
to retain the complexity of the interphase exchange process through the
time—dependent BGF involved in the convolution integral or directly in the BGF
appearing in the coefficients of the equation in the Laplace space. Much more,
we are no longer restricted to make a choice regarding the shape of the
aggregates. Thus the block geometry functions and a play a very similar role.
However, it seems that unlike a the BGF does not depends on the characteristics
of the flow. This is probably due to the very crude nature of the QSS model
which leads to, at the same time, lump into a constant parameter, geometrical
and time—dependent properties. At the light of BGFs' intrinsic properties, it will
perhaps be more easy to relate the BGF to mesurable characteristics of soil
structure than we have so far been able to understand and quantify the
relationships between & and soil or/and flow parameters. This problem may very
well be a consequence of the poor representation of the interphase dit}f'usion
process provided by the first order equation. Consequently the following question
arises: Shouldn't we preferentially look at the relations between BGFs and soil
geometrical characteristics rather than go on focusing on the meaning of « that
we know is anyway a pisaller? One should be aware that while & can only be
D\ determined from dynamic experiments, the BGF for «f a representative volume of
soil, can be obtained from a simple batch experimént. (A representative volume
of soil being a sample offering a representative mixture of a regate shapes that
can be present in the soil profile.) This simply comes from the definition of the
BGF, Eq. [3.151]-[3.153] or Eq. [3.167). Thus, BGFs can be obtained by
applying fitting techniques either to the problem expressed in original variables
or expressed in terms of Laplace transforms. Compared to tracer experiments on
laboratory soil columns or in the field, advantages in terms of time, cost and
simplicity are evident. Of course, BGF3 can also be obtained from dynamic
experiments. In particular, if a boydary layer approach is elected for the
modeling of the interphase tranport fate, dynamic experiments are probably
requ[ired i1]1 order to fit the transport parameter involved in this formulation, # in
Eq. [3.162]. -
van Genuchten (1985b) remarked that many information have been
gathered over the years, Brewer (1964), Baver et al. (1972) regarding soil
aggregation, soil structure, aggregate shapes, sizes, types, etc.. As BGFs only
depend on the geometry of the porous blocks, direct links could probably be
found between BGFs and soil morphological properties.

3.6.4 BACK TO THE LEA MODEL
The simplest solute transport model based on the CDE is the LEA model.
The main advantage of this model over others is that it requires only two
parameters, the retardation factor and the dispersion coefficient. In addition
relatively simple analytical solutions are available for steady—state flows and for
()< more complicated unsteady casesp numerical solutions can still quite easily be
obtained. We showed in %3.6.2 that the simple LEA model is a zeroth—order
approximation of diffusional model. We also showed that by retaining one more
term iwe eries one obtains a model,with a modified dispersion coefficient
which ’M’ a first—order ap roxima,tionlw/The problem is thus t

2

define "when" a LEA based model can be used /in place of first~order or

o ook cally laomdino L.
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diffusional ‘models and how good is the approximation. We already reported in
para aph 3.1 ("Adsorption isotherms and Retardation factors"), that a rather
qualitative" condition was that chemical reaction rates should be faster than
flow rates. In the following we report two studies conducted by Valocchi $1985
and Parker and Valocchi (1986) defining some constraints on the validity of LE
a.nci1 first—order physical nonequilibrium models applied to structured porous
media. -

Moments Analysis

In both papers, evaluation of equivalence between the different models is
carried out by "comparing" the breakthrough curves. If we consider them as
distributions, a "measure" of their "differences" is provided by comparing their
various moments. Usually, the comparison is limited to the first three moments,
expectation, variance and skewness. For a pulse—like input, the nth moment of
the breakthrough curve is given by

0
M, =f T® C(L,T) dT [3.187]
0

Remark that the total mass of solute leaving the soil column is proportional to
Mo. “Thus the nth central normalized moment g, is given by

fn = [ f w(T-m)“C(L,T) dT]/ [ f mC(L,T) d'r]. [3.188]
0

0

The main problem arising when evaluating these expressions is that
analytical expressions for breakthrough curves are under the form of complicated
integral involving complicated analytical functions, (e.g. the various analytical
solutions presented beforeg, thus precluding from obtaining analytical expressions
for the moments. This obstacle is overcome by making use of a formula due to
Arig (1958) that relates the moments to the derivatives of the Laplace transform
of the function. In our case, Laplace transforms of the breakthrough curves are
easily obtained and expressed as relatively simple functions, hence allowing to
obtain analytical expressions for the moments. The formula due to Aris (1955 is

= (-1)* lim |-L oL.p)]. :
My = (1) Lim [dpn (L.p)] [3.189]

Valocchi (1985) gives the different expressions of the Laplace transform of the
breakthrough curve for the LEA model, the first—order physical non—equilibrium
model, a kinetic chemical non—equilibrium model and the spherical aggregates
model, respectively. One must remark that the chemical nonequilibrium model
used is only a particular case of a more ﬁeneral one proposed by Nkedi—Kizza et
al. (1984) that was shown to be mathematically equivalent to the physical
nonequilibrium model. In the model used by Valocchi (1985) all adsorption sites
are assumed to be of the kinetic type. Consequently, it seems that there is a
certain degree of redundancy among the various models he analysed. The first
three moments and Laplace transforms of the breakthrough curves for the various
models are given in Tabs. 3.10 and 3.11, respectively.
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_As the. first . moments are all equal one can conclude that the mean

- breakthrough time is not influenced by the type of nonequilibrium model. As

well, higher order moments are very similar which indicates that the type of

nonequilibrium model does not greatly influence the shape of the brea.kthrouﬁh

curve. Valocchi (1985) proposes to use the following formula to evaluate the

differences between the moments obtained for the various nonequilibrium models
and the LEA model, respectively.

ne_,, e

n_Hn 3.190]
pn®

where ne and ¢ refer to nonequilibrium and equilibrium models, respectively. The

index , refers to the moment order. In this study moments of order 2 and 3 are
considered. In terms of original variables we have the following expressions.

€n =

Chemical Nonequilibrium Model

& = %LR—;%I 5= ng—;zll[Hg 211{] [3.191]
Spherical Aggregates Model

&= (1-0/15 a=12 (1—ﬁ)2[1+% %‘@] /15 [3.192]
Physical Nonequilibrium Model

@ =" (1-p? a=" (1—ﬂ)2[1+% i ] [3.193]

Among the nondimensional variables used above, P, w, B, v and R have
already ‘been defined, (cf equations [3.28] and [3.58]—[3.60]'), and F is given by
F=k,L/v where k; is the reverse rate coefficient in the chemical nonequilibrium
model. Of course, for a given nonequilibrium model, the smaller the coefficients
¢n the better an approximation is the LEA model. This is illustrated fig. 3.19.
The various expressions derived for €3 and €3 show that the ratios P/F and P/w
can be viewed as index of equilibrium for a given R. In fact the ratio P/F gives
an idea of how "close" are reaction and flow rates. One sees that the smaller the
ratio P/F the smaller will be the coefficients e,. This means that for a given
reaction rate the smaller the Peclet number, which is a measure of the transport
rate, the better an approximation is the LEA. Thus comparing the moments, we
end up with the already proposed intuitive condition that if the flow rate is small
as compared to the chemical reaction rate, then the LEA model can be employed |
to simulate the transport of reactive substances. Setting bounds on the moments
or on the ratios P/F and P/w is let to the subjective appreciation of the modeler.
As an example, considering Fig. 3.19, the LEA model can probably be considered
a8 a good approximation of the nonequilibrium model for F=100, but as a bad
one for F=10. From above expressions one can see that

(1) If P and R are fixed, the chemical nonequilibrium model tends to the
LEA model when F increases.

(2) If F and R are fixed, the chemical nonequilibrium model tends to the

LEA model when P decreases
The same conclusions hold for the physical nonequilibrium model if F is replaced
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By wand R by p.

Derivation of an Equivalent Dispersion Coefficient
When P increases and R is kept fixed, the second moments of the various

models all tend to a unique expression, 2XR2/P. It means that all the
breakthrough curves tend to a Gaussian distribution with mean XR and variance

2XR?/P. Consequently, under these conditions the transport of a reactive solute
can be modeled by a CDE equation with appropriate coefficients. These
coefficients, velocity and dispersion, can be obtained from the moments.
Following an analysis due to Aris (1958) and Turner (1972), Valocchi (1985)
gives the following expressions for effective velocity and dispersion.

Vet = vX I(p1)1 [3.194]
Defs__114 Verf]2
3 = 2"0;,‘%' [Lv-] [3.195]

where, v is the velocity, # is the global water content, and 4, is the water content
of the mobile phase. Using expressions of the moments in Tab. 3.10 one sees that
the same effective velocity is obtained for all the models, '

Vert = 3 o [3.196]

while the following expressions are derived for the effective dispersion coefficient.

Physical Nonequilibrium Model

R 2 2
Detf = I]%gm +4 - i [3.197]
Spherical Aggregates Model
A2 2
Derr = g g2 + B lpva)’ [3.198]
Chemical Nonequilibrium Model
2(R—
Dest = | + [1‘%] RA1 [3.199]

The common factor Déy,/(JR) is the effective dispersion coefficient for the
equilibrium model.

Notice that for the chemical nonequilibrium model, 4, is equal to 8. It is
important to remark that the Peclet number must be large enough in order to use
these coefficients with some success in a CDE since this dgevelopment relies on the
hypothesis that P is large enough to have a Gaussian—like BT'C. It means that
very long soil columns or high velocities are required. Notice also that the notion
of large Peclet number is relative to the retardation factor as they have contrary
effects when they vary in the same direction. In the study of Valocchi (1985), a
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value of 1000 for P is said to be sufficient. However, no value is given for R and

- we assume that it is for a value of 4 as used elsewhere in that paper. In the same
study, with R=4 a Peclet number of 10 (upper bound) is required so as the LEA
closely approximates the chemical nonequilibrium model. Therefore, between
these two extreme values of P (10 and 1000) for which the LEA model can be
apllied with appropriated equivalent dispersion coefficients, a large gap exists
where none of these approaches gives a really satisfactory approximation.

We already shown, §3.6.2, that conserving the second order term in
equation [3.172] led to a modified dispersion coefficient with which the LEA
model constitutes a first—order approximation of diffusional models such as for
example the spherical aggregates model. The general methodology presented in
that paragraph can be applied to any BGF. Raats 3198:2 obtained an expression
for Defr equivalent to [3.198]. van Genuchten and Dalton (1986) used a very
similar method to derive effective dispersion coefficients for other simple
aggregate shapes. First they take the Laplace transform of the equation
describing the transport in the mobile phase and replace the term involving the
immobile concentration by its value taken in Tab. 3.5. One obtains

RsL(C;n) = 11,— &L(Cn)/ 82 — OL(Cn)/ Z — (1—H)Rs [gcoth(s) - gg] L(Cu)

That term, which might also be in the form of a Bessel function, is replaced by
its approximation at the first—order. For the spherical aggregate this one is given
equation [3.132]. Taking the inverse of the Laplace tra.nstgorm it appears a second
derivative for the mobi%e concentration. Replacing the time derivative by the
convection—dispersion operator and neglecting the terms of higher order it
remains a second order space derivative. The global coefficient of the second
order space derivative is then

2.2n. 2
De = Do + Q‘d’;'-é ;RZ Rin [3.200]

with ¢y = fn/0. It is readily verified that this expression is equivalent to the one
given by equation [3.198). Following the same method, effective dispersion
coefficients are derived for slabs, cylindrical aggregates and a hollow cylindrical
macropore. The various coefficients are given in Tab. 3.12. For spherical
aggregates, Parker and Valocchi (1986) derived the same expression by means of
moments analysis.

: Moments expressions for the LEA model and diffusional models can be
found in Tab. 4.10. Let us note P the Peclet number for the LEA model and P,
the Peclet number associated with a diffusional model. If we want the two
models to be equivalent, their second moments must be equal. Then, consider for
example the case of spherical aggregates, equating the second moments gives

2XR2 _ 2XR? + 2X(1-6)?R?
P, ~ P, 15y -

Let us note Pji, the additional dispersion due to solute diffusion inside the

immobile phase. If we define 1/P;, = (1—,3)2/ 159, we have the relation: 1/P, =
1/Pin + 1/Pyn. Expressions for 1/P;y are easﬂ%' derived for any other geometry.
otice that 1/Piy~0 thus provides an index of validity for the monocontinuum

approach.
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Fig. 3.20 Observed mean error versus third—moment
deviation between spherical diffusion model and LEA
model for a broad range of parameter values (see Table
below), Dirac injections SlX) and continuous injections (o)
[after Parker and Valocchi 1986).

Case X Y B R | P, . P,
1a 1.0 0.03 0.1 1.0 30.0 0.50 0.49
ib 1.0 0.30 0.1 1.0 300 5.00 4.29
le 1.0 300 0.4 1,0 300 50.0 18.78

2a 1.0 0.3 0.0t 10 Jo.o 455 395

2b 10 0.3 0.50 10 300 8.99 6.92
.2 10 0.3 0.99 1.0 300 45130  28.13,
Ja 1.0 0.1 0.1 100 300 1.66 1.57
k1. 1.0 0.1 0.1 10.0 300 1666 10.71
3c 1.0 0.] 0.1 100.0 300 16666 2542
4a 10 10 0.1 1.0 1.0 16.66 094
4b 1.0 1.0 0.1 1.0 100 16.66 6.25
4c 1.0 1.0 0.1 1.0 1000 1666  14.28
Sa 00! .100 0.1 1.0 300 16666 25.42
5h 010 too 0.1 10 300 16666 25.42
Sc 1.00 100 0.1 10 J0.0 166.66 2542

Parameter combinations used to define the points
in Fig. 3.20 [after Parker and Valocchi 1986).
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An estimation of the approximation error between the LEA equivalent
model and the original diffusional model can be obtained for the two methods
above proposed. Retaining one more term in the developement of L(Cip), van
Genuchten and Dalton (1986) obtained the following estimation

_2(1-8) (1 , 2-7 33C
E=2{-f [p+ - }% [3.201]

while calculating the absolute value of the difference between the third moments,

Parker and Valocchi (1986) obtained
1, 2-7
P+ T08oR l [3-202]

A]e — 4! l-é !
M3 5X27R
Although the two expressions are very similar, the last expression is not
an estimation of the error. However, Parker and Valocchi (1986) showed that for
a set of various conditions the mean error E defined by

n
E=1 2 |Y;5d — yjley [3.203]

i=1

was related to A }‘; Fig. 3.20 presents a Log—Log plot of E function of A ;‘; for a

Dirac and a continuous input, respectively. Remark that the Dirac input seems
to correspond to the most constraining situation. By means of the same

technique exposed above, an expression for A:‘; can be derived for the QSS
model.

Afo = A_IZQ.L [3.204]

B 175(X9R)?

It then appears that A}lg and Alf‘;’ are related by

Ale=’ 12 _14#Afo
43 PoP; X2 H3

This expression indicates that the QSS model and the LEA model with its
modified dispersion coefficient do not provide equivalent first—order
approximations. If the nonequilibrium behavior is pronounced the LEA model

may perform better than the QSS model depending on the value of Afg. If
nonequilibrium conditions are weak then the QSS model performs better. At the
limit when 4 + w then Af° 4 @ while Allt; is still different from 0. Parker and

Valocchi (1986) obtained, for certain combinations of the parameters, good
agreements between the BTC calculated for the spherical aggregate model and
those derived from the "equivalent LEA model". From the expression of the

[3.205]




§3.6.5 :Conclusions —~136—

moments given Tab. 3.10, one sees that if - 1 or if v is large ﬂSSd — pale.

Notice that making R=1 in above formula gives the dispersion coefficient
to be used for nonreacting solutes transport. Using a different redning, 0{
Passioura (1971), in his paper "Dispersion in aggregated media”, derived the
same expression for a media made up of spherical aggregates. He assumed that
by analogy with a capillary tube the dispersion coefficient could be written

D = Dy + kv?a?/Dy [3.206]

Then, assuming that steady—state holds in the mobile phase, and considering a
plane moving with velocity v, any flux of matter through this plane can only be
the result of lateral variation in concentrations. The flux through that plane is

then given by
F = eau(cn—ca)/ €t [3.207]

where ¢; and ¢, are respectively the total and intraaggregate porosities and u is
given by: u = vep/e;. Assuming that the flow is mainly convective and that we
can neglect second order terms, large Peclet number, c, is obtained by solving the
diffusion equation in a sphere of radius a with zero initial condition and surface

condition kit. At large times (t>.3a%/D,) ¢, is approximated by

ca = ki(t—a?/15D,) [3.208]
and it comes
_eau®a? g
F= f_: T5D; -ax—"' [3.209]

which means that the transfer is controlled by an effective dispersion coefficient.
It is important to remark that two assumptions are at the base of this result.
First the flow is mainly convective, which is an assumption present in the study
of Valocchi (1985) and secondly the coefficient a2/15D, in the approximation of
Ca is obtained if t is large enough.

3.6.5 CONCLUSIONS

We reviewed two classicaly used macroscopic modeling approaches, LEA
and QSS models. We have emphasized on their relationships with diffusional
models and showed that they constitute zeroth— and first—order approximations
of these models. Approximations of parameters, o for the QSS model and D for
the LEA model, have been expressed as functions of geometrical and diffusional
characteristics of the aggregates. Many approaches have been proposed to carry
out these derivations, Fl comparison of solutions in batch systems, (2) moments
analysis of breakthrough curves, (3) comparison of Block Geometry Functions
either in terms of Laplace or original variables, (4) development of the
convolution product in the partial integro—differential equation in a series of time
derivatives by means of Laplace transform. These derivations have highlighted
the limitations of macroscopic models when applied to aggregated mecglia.. For
example the fact the QSS model might not perform better than the LEA model '
when strong nonequilibrium conditions exist clearly shows that the first—order
equation modeling the transport between both phases is a poor representation of
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Fig. 3.21 Comparison of breakthrough curves (flux—averaged)
obtained with the spherical aggregate model (solid lines)

and the "equivalent" LEA mogellida,shed lines) for a Dirac
injection. Values of v indicated on the curves, and other
parameters as for cases la, 1b, 1c (see Fig. 3.20 and
accompanying table) [after Parker and Valocchi, 1986).
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the real diffusional process. Comparisons have been carried out between the

breakthrough curves obtained with diffusional models and with their QSS or LEA

"equivalents", van Genuchten (1985b),  Valocchi (1985), van Genuchten and

Dalton 1986), Parker and Valocchi (1986). Some of those are given in this

report, fig. 3.17,'3.18, 3.19, 3.21. One can see that the quality of the agreement

is very case dependent. In fact a large number of parameters; geometry, Peclet

number, 7, R, play a role and the agrfement depends in a complex way on the'

combination used. For example fig. 318 shows that the QSS model is a good

approximation of the diffusional model for a cylindrical macropore while Fig. 3.17

shows that for spherical aggregates or rectangular voids and with the same flow

conditions (R, # and P identical), the agreement is in many cases unacceptable.

We know that for pronounced nonequilibrium conditions the LEA model may

perform better than the QSS model to approximate the spherical aggregate

model. This means that for low values of w we shall obtain a slightly better

%’”’ approximation with the QSS model but that for intermediate values a large dgap

\\\- < \@Mm@mﬁaﬂ which ‘macroscopic model should be used as

\ \( function of aggregates geometry or soil structure is not an easy task. Much more

we do not always have acceptable physical conditions, flow parameters, diffusion
characteristics, aggregate sizes, to use a macroscopic model, QSS or LEA.

From all studies and modeling approaches it clearly seems to emerge that
models based on a first—order representation of the interphase transport rate
should poorly perform on strongly aggregated or structured media. Among all
the papers reporting and modeling solute transport experiments we reviewed, we
only found seven experiments conducted on undisturbed soil monoliths. Among
those, only one, White et al. (1986), is concerned with a quite strongly structured
80il (20mm<¢agg<100mm). That experiment was analysed with a transfer
function model.  Others undisturbed soil monoliths can be classified as weakly
structured. See for example, Seyfried and Rao (1987), Schulin et al. (1987),
Jardine et al. (1988). All others experiments are concerned with soil laboratory
columns packed with disturbed soil or small aggregates, usually with diameters
between 0.5 and 4.0 mm. Results from a study of Rao et al. (1980a), where large
spherical artificial aggregates were included in a homogeneous sand show the
limitations of the QSS model as compared to the spherical aggregate model.
Experimental breakthrough curves and those simulated with both models are
presented fig. 3.22 and 3.23. One clearly sees that the QSS model gives less good
an agreement than the spherical aggregate model, especially when the velocity
and/or the radius of the a%;gregat increase. In particular, while the tailing is
perfectly reproduced by the spherical aggregate model, quite poor a fit is
obtained with the QSS model. These experiments also lead to the qualitative
conclusion that the strongly structured is the soil the poorly will perform the QSS
model. This conclusion i3 in agreement with previous theoretical deductions.

In some papers, the LEA model has been used with a modified dispersion
coefficient as proposed §3.6.4. Rao et al. (1980a), using the formula proposed by
Passioura (1971), obtained a good aggreement for the first of their experiments
(small aggregates and low velocity), the only one to verify the conditions given
above. Schulin et al. (1987), also used an equivalent dispersion coefficient
derived from the QSS model. They obtained satisfactory aggreements between
simulated and observed breakthrough curves for the low velocity experiments
conducted with Tritium. For Bromide, one can observe in their data that the
agreement gets better when the Peclet number increases as required by the
theory, §3.6.4. However, for their experimental conditions, the Peclet number
was never large enough so as the LEA model could be used with some success.
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- Beside the deterministic modeling approaches developed in this chapter,
some other techniques have been employed to model and analyse field as well as
column tracer experiments. The following chapter treats of the Transfer

Function approach and of its applications to te problem of solute transport
modeling i heterogeneous media.
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4. TRANSFER FUNCTION MODELS — STOCHASTIC MODELING

Pople have been studying the problem of solute transport in porous medis
from different points of view and with different objectives in mind. Some were
urely cognitional such as identification of physical processes at different scales
?whjch equations appropriately model the phenomenag or theoretical study of the
pheneomena (origin of the dispersion for example); while others were more
applications oriented, fertilizers movement prediction and pollution risks
assessment for example. Another obvious discrimination is provided by the
modeling scale. Until now, this report has been dealing with deterministic
modeling studies, in particular based on the CDE, and has been focusing on the
relations existing between soil structure and solute transport. Beside their
mechanistic character, the models presented before have also in common g
deterministic character, since we were interested in modeling the physical
phenomena at a scale where first, transport characteristics (dispersion, velocity,
retardation factors, decay constant,...) could be considered as perfectely known
and sufficiently homogeneous over the soil volume, and second, physical and
chemical phenomena were sufficiently well identified so as we were able to write
equations. at our modeling scale. For example, remark that we implicitely
assumed the validity of the CDE as an equation accurately modeling the
transport of disolved substances through porous media. _

In this report, no attention ias been until now paid to the spatial
variability of transport coefficients. In the past years many approaches have
been proposed to deal with thig problem. They rely mainly on the use of
deterministic models whose coefficients are supposed randomly distributed in
space. Average and standard deviations of relevant variables, for example
concentration at a given depth, can be derived if the probability density functions
of the parameters are known. Unfortunately, due to the large number of
simulations required to estimate means and variances, these approaches are
restricted to simple models. In the following we describe a new approach, called
Transfert Function, ajmin§ at predicting solute transport at the scale of the field
and characterized by the fact that none of the physical or chemical mechanisms
taking place during the transport are specifically modeled. Rather, the system is
consigered as a "black box", transforming an input signal.

4.1 INTRODUCTION

Solute movement in saturated and unsaturated media has been for years
now modeled by means of the convection—dispersion equation. That equation
proved to be a useful tool to analyse laboratory experiments, but part of its basig
are of entirely empirical nature. Sposito et al. (1986) remarked, ”In respect to
modeling studies, the basic issue has not been adressed as to wether the CDE with
fitted values of its dispersion coefficient provides an intrinsically sound physical
description of solute transport i rough soil and aguifer materials or instead
generates only o mathematical model with enough adjustable parameters to
describe solute breakthrough curves having a sigmoid character.” In the past few
years many papers tried to propose a rigorous derivation of the CDE based on
microscopic or molecular principles. While, momentum, mass and ener
stochastic equations can be derived at the pore scale, the problem is, given the
various possible levels of randomness, to derive averaging laws allowing to pass
from a pore scale to a REV scale, then to the laboratory column scale ‘and
ultimately to the field scale. A very interesting and clear review of the different
approaches proposed in the litterature to derive stochastic partial differential
equations for solute transport can be found in Cushman (1987). Regarding solute
transport modeling through soil materials, a rigorous derivation of the CDE still
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remains an open research problem. The transfer function model, hereafter noted
TFM, proposed by Jury (1982, 1986) is an example of stochastic transport model
whom the convection dispersion equation is a particular case, Sposito et al.

(1986).

In his paper, Jury (1982) mainly invoques two reasons to model solute
transport with a transfer function and hence abandon deterministic and
mechanistic models. Respectively, were advanced the facts that natural soils are
heterogeneous at field scale (spatial variability), and that local scale
heterogeneitiés in soil structure (cracks, dead roots, worm holes, stron ly
structured soils,...) are present. So, one of the main reasons at the base of his
choice was that because of local heterogeneities, deterministic transport models
will fail, and consequently approaches based on deterministic models used with
stochastic parameters, like the scaling approach of Dagan and Bresler (1979),
should be rejected. Let us remark that the progresses made during the last years
in developing deterministic solute transport models for heterogeneous media
tends to weaken and give less weight to this assumption.

4.2 THEORY

The transfer function model proposed by Jury (1982) can be introduced by
different ways. In particular, a new and more general formulation was described
by Jury et al. (1986). Identically, Cushman (1987) remarks that the TFM was a
particular case of a stochastic convective model developed by Simmons $1982).
In the following, rather than presenting the model as particular case of more
complicated approaches, we first describe the initial reasoning followed by Jury
(1982) and then discuss the connections of the TFM with other models.

4.2.1 INITIAL APPROACH

The initial development of the TFM by Jury (1982), is based on the
following assumption.

H 1: The displacement of a solute molecule is controled by the amount o f
water applied at the soil surface independently of the rate or mode o f application.

This assumption relies for a large part on the work of Wierenga (197? in
which it was demonstrated that solute displacement under transient flow
conditions was primarily function of the amount of water applied. The validity
of this hypothesis can be discussed, given that Jury (1982) does not reject the
possibility of convective transfer through large heterogeneities and that the
theoretical work of Wierenga (1977) was based on the CDE which may not be
applicable in many field situations as demonstrated by many experiments.

This paragraph could have been also titled " The TFM or the resurgence of
the RTD", so much is the TFM closely related to the notion of Residence Time
Distribution (RTD). This notion was introduced by Danckwertz (19533 to
analyse laboratory column breakthrough curves. At each point of a field and for
a given application of solute and water, a RTD can be determined. Obviously,
owing to the spatial variability of the media these distributions will not be
identical, but it will be possible to estimate from those the probability for a given
concentration to reach a given depth. This is precisely the starting point of the

TFM.

Definition: Let us note Flgl)dl the probability that the injected tracer
reaches the depth ! for a dose of water between I and I+dl. Fy(I) is the
probability density function, hereafter noted pdf.

Hence, by definition, the probability that the tracer reaches the depth [
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" after a net amount of water, I, has been applied is

Py(I) = f Fy(I') aI' [4.1]

0

Our problem is now to determine Fi(I). Given (H1), we can use the global
amount of water applied I, in place of the time. Hence, our "time" of reference
will be I=0." Assume that we apply a é—pulse of tracer at I=0 followed by an
application of a net amount of water I, free of tracer. The function Fy(I) is
precisely the average normalized concentration measured at depth /. So, after a
Dirac-like input and application of a sufficiently large amount of water, an
estimation of Fi(I) can be obtained by sampling the field at depth ! and at
different times, provided that the application of water was uniform. This can
also be expressed by: if the input concentration was Cin=C08(0) and after
application of an amount of water I, the average concentration at Z=l will be
Cr=CiaFy(I). If the input concentration is not of the Dirac—type but varies with
the amount of water applied, the average concentration at / can be obtained by
superposition of an infinity of Dirac input Cin(I')6(I'). We obtain

Ci(I) =f Cin(I-I)Fy(1') dT. (4.2]
0

The upper bound of the integral is taken equal to infinity since Cjn=0 for I'>1.
This approach can be extended to spatially variable input rates. Let's

by a probability density function G(4). This one expresses that the robability
for the application rate at a point to be between i and i+dj ig G(¢)di. If we
assume that at any point in the field the rate of application is constant in time,
then at a given location the probability for a tracer to reach the depth [ between
times ¢ and ¢+d¢ for a Dirac input is

Fi(I)dI = Fy(it)idt [4.3]

between. times ¢ and t+dt will be given by integrating over all the values of i
found in the field, the joint probability density function, G(9)iF1(it). Hence, we
define a new pdf, noted H(t) by:

Hy(t) = f G(i)Fy(it)idi [4.4]

0

. . . Y
which for a nonuniform Input plays the same role ag F1 do, for a homogeneous
input. Here also notice that the integration is taken over [0,0], but that in fact .
intake rates, i, only spread over a finite lenght interval outside of which G ig
identically null. Following the same reasoning as for a uniform distribution of
water, the concentration at depth /for a Dirac input is Ci(t)=H}(t)Cin and for a
time dependent input concentration ig given by
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Ci(f) = f Cin(t—#")Hy(#") dt'=f f Cin(t—t)G(1)iF(i't)dt di". [4.5]

0 00

We now have all we need to predict the concentration at depth [ But this is of
little interest since ! is precisely the depth at which the field was sampled. In
order to extend the predictive capability of the model to other depths, another
assumption i3 required. Jury (1982) introduces here the following strong
hypothesis.

H 2: If an amount of water I is required to move the solute pulse to the
depth I, then an amount nl is required to move the same pulse to depth nL.

Making this assumption means that the probability density function F in
which are lumped all the physical and chemical phenomena conditioning the
transport of solute through the layer [0,]] is valid for any layer (z,z+]]. In terms
of stochastic models, this linear dependence of the pdf on the amount of water
applied is equivalent to assume that an invariant probability distribution for the
velocity applies at each depth z. A question arising is then: Isn't this invariance
of the probability distribution for velocity implying the vertical homogeneity of
the s0il? For example it is highly probable that crack density or soil structure
will vary with depth. In that case what are the effects on the pdf, and in
particular isn't that strongly limitating the ra.n§e of applicability and usefulness
of the TFM? In his discussion, Jury 51982 only envisaged the case of strongly
layered soils and concluded that a new pdf has to be ca.li%ra,ted for each layer or
that a single pdf is sufficient if the calibration is made at the bottom of the
system. Results of an experiment illustrating this problem and the limits of the
TFM are given §4.3.

Accepting the second hypothesis (H2), the probability to move the tracer ,
to a depth z after an amount of water I has been applied is

1l 2
P(I) = Py(Ilf2) = f Fy(I')dl’ [4.6]
0

He(n;:e, the pdf F,, associated with the depth z, is related to the reference pdf
Fi(I) by

Fo(I) = (I/2) Fi(1l/=2) [4.7]
The average concentration at depth z as a function of I or 2 follows
immediately by replacing F; by F, in equations [4.2] and [4.5]. One obtains
respectively for, spatially uniform and,variable applications
J

Co(I) = f Cin(I-I")(I/ 2)F1(I']/2) dT [4.8]

0

Ca(t)= f Cin(t—t')f (U 2iG(i)Fy(it') dt' di [4.9]
0 0
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It follows from these expressions that if an analytical or discrete

. expression is known for Fy, and G if needed, a simple analytical or numerical

integration will give the time and ‘space distributions of the average

concentration over the field. An extension of these results to the case of solutes

undergoing adsorption or first—order decay is presented in Annex 4. Jury (1982)

presents some theoretical calculations carried out with a lognormal expression for
Fi and a uniform input rate. F) is as follows

Fy(1) = exp Zn(1)=ul’/o” [4.10]

V2ol

where # is the mean of the lognormal distribution and o2 its variance. In that
case, analytical expressions for C,(I), solution of Eq. [4.8], are obtained in the
form of erffunctions. For a continuous application of solute and a square input
one obtains respectively,

Cout(Z,I) = %’{ 1+erf[1l(ﬁﬂ):ﬂ]} [4.11]

Cout(Z,I)='g°{erf [J——-LLEIH j;‘_;z — ]—erf [ln(I—Ag_E/ Z ” [4.12]

where AI is such that Ci,=0 for I>AL His simulations illustrated how
asymmetry and tailing of breakthrough curves are influenced by the velocity
distribution.

4.2.2 DEVELOPMENTS

Lately, Jury et al. (1986) and Sposito et al. (1986) proposed a new and
more generJ derivation of the TFM. This one is more enlightening regarding the
relations of the TFM with the CDE. Figure 4.1 gives a sketch oi‘g a macroscopic
unit of soil volume through which the transport will take place. The surface S
boundini V is chosen far enough such that no solute flux will occur through S
during the period the solute transport will be monitored. Inside V, is a volume
Vist, termed "effective solute transport volume", including all the fluid that is
active in the transport process. This volume can be seen as the mobile phase in
two—region models. It is obvious that the surface S, boundin that volume has a
very complex shape changing with time and likely also depending on the mode of
application or¥water intake rates at the soil surface. The solid phase is
considered as a potential sink or source for solute . Intersection of Sgt with the
soil surface defines an "entrance surface", while its intersection with the bottom
of the soil volume defines an “exit surface". One more time, no particular
physical or chemical mechanisms are specifically envisaged. Jury et al. (1986)
make the following assumptions; (1) Solute may enter the transport volume
through the entrance surface, (2)It may appear in the transport volume as the
result of desorption from the solid phase or contiguous liquid phases not
participating to the transport, (3) It may be the resuli of chemical, physical or
biological processes wholly occuring within the transport volume. Equivalenty, (1
Solute may disappear from the transport volume through the ezit sur ace, (2)It
may disappear as the result of sorption on the solid phase or diffusion into
conliguous liquid phases not participating to the transport, (3) It may disappear as
the result of chemical, physical or biological processes wholly occuring within the
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volume. Whatever physical, chemical or biological mechanisms acting during the
transport process, one can define two important time variables for any solute
molecule transported through the soil unit. First, noted T', the time at which it
first appeared in-the transport volume, V. T'is called the input time. Second,
noted T, its lifetime, that is the time lag between its appearance in the transport
volume and disappearance from the entire soil unit. Here, it is assumed that
when a molecule disappears it is permanently.

Jury et al. (1986) assume that these two characteristic times are random
variables whose statistical properties can be defined through a normalized joint
probability density function p(r,#'). This means that the probability for a
molecule to enter the system between ¢ and ¢'+dt' and to have a lifetime between
7 and 7+dr is p(7,¢')drdl'. Two probability density functions called marginal
pdfs, can be defined from p(7,t'), and associated with the entry time and the
lifetime, respectively. By definition, the marginal pdf associated with the entry
time and noted Qi is given by

o

Qin(?) =f p(n,t)dr [4.13]

0

Physically speaking, Jury et al. 51986) give the following definition for
Qin. Qin represents the rate at which solute enters the transport volume at the
first time, normalized by the total solute input. It is important to notice the
restriction, "at the first time" since a solute molecule can enter the flow, then
leave it because of adsorption on the solide phase or diffusion into immobile
water regions and then later re—enter the transport volume if diffusion from
immobile regions or desorption from the solide phase are possible. Remark also
that the time spent by the molecule adsorbed on the solid phase or in the
stagnant zones is part of its lifetime since the molecule is still in the soil unit
though not in the transport volume, V. One sees also that integrating Qi, over
all the input times leads to a value of 1 since p( r,t'zJ is a normalized pdf. It
results, still by definition, that the conditional probability density function for

the lifetime is
f
orlt) = 35 [4.14

¢(7|t') is called a conditional probability function since the lifetime is supposed to
depend on the entry time. This can be expressed by: given an entry time ¢'=T",
the probability that the lifetime T lies within [r,7+dr] is given by ¢(r|t')dr.
Physically it means that, for a molecule having entered the transport volume at
t' the probability to disappear from the soil unit between 7 and r+dr is g(7]¢')dr.
When considering the system at a time t, we are interested in knowing the
probability for a molecule having entered the transport volume at time T' still to
be in the soil unit at our observation time. In term of probability what we want
to calculate is the probability for the lifetime to be greater than +T', which
insures that the molecule is still within the soil unit, given that this molecule had
to be already in the transport volume at T'<t Given the joint probability
density function p(7,?') this probability is
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t L0
P{T>t+-T'|T'<t} = f f p(r,t)) drdt [4.15]
0o t-¢

which reads: the probability for a molecule having entered the transport volume
~at ¢'<T to have a lifetime, T, greater than —T' is equal to ... We can use the
relations derived above to express this in a slightly different form. It comes

P{T>t-T'|T'<t} = ft[fmp(r,t')dr - fw p('r,t')dt'}

0 0 t-t

t t at-t'
= | Qin(f)dt'- | (71t Qin(t") drdt. [4.16]
Jowow-f ]

The first term on the right hand side of [4.16] can be interpreted as the
total mass of solute injected in the system up to time % Since g rlt'fdr is the
conditional probability that a molecule having entered the transport volume at ¢
desappears from the soil unit between r and 7+dr, the second integral on the
right hand side gives the total amount of solute that have already left the soil
unit at time ¢  Consequently, equation [4.15] can be viewed as a
mass—conservation equation. Taking the derivative with respect to time one
obtains an expression of the net rate of solute accumulation in the transport

volume..
dP ‘
9P Quu(t) - f o(+012)Qua(t) (4.1
0
From this equation, we can formally define the transfer function equation
t
Qoue(d) = f o(t-21¢) Qua(#) dt 4.15]
0 .

where g(t—t'lt? is logically called the lifetime density function. Effects on solute
lifetime, of all the processes, diffusion, dispersion, convection, decay, sorption,
biological transformations, etc..., occuring in a representative volume of soil are
all lumped into g.

After application of the transformation ¢—t' — ' in the right hand side,
equation {4.18 i3 an example of first type Volterra equation. (Notice the analogy
with the formulation derived in §3.5). Qou¢ represents the inhomogeneous term,
Qin is the kernel and g is the homogeneous term. Identification of ¢ can be done
by inversion of [4.18] if the homogeneous and inhomogeneous terms are known.
For a Dirac input characterized by Qin(#') = ké(0), the lifetime density function
is g(t|0)=Qout t)/k, and for a step input characterized by Qia(¢')=Qin(0), ¢ is
-defined by ¢t 0)=(onut/dt)/[Qin(0)], Jury et al. (1986). If the form of the
kernel is not simple, one have to use numerical techniques.
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_Jury et al. (1986) recognized that if the solute enters or leaves the
transport volume only through respectively the entrance and exit surfaces which
is the case of a relatively nonreactive solute (e.g., a halide ion), then Q;, and
Qout Can be expressed as products of the solute flux concentration C by the
solution flow rate, 4. Under these assumptions equation [4.18] becomes

Cex(t)=f o2 f:: E) Cen() dt [4.19]
. |

Under steady—state flow conditions this equation reduces to

[ ¢]

Cex(t) =f g(t—2'[t") Cen(t') dt [4.20]
0

Since under these conditions the cumulative amount of water applied, I, and the
time are related by: I=iot, equation [4.20] can be written

I

Cex(1) =f F(I-I'|I') Cen(1') dI' [4.21]
0
where 'F(I—I'll'%sgl(:t—t'&t? I/ . Assuminé that the solute lifetime is independent of
the input time I', F(I-I'[') reduces to F(I-I'), and equation [4.21] becomes
I
Cex(t) = f F(I—I') Cen(I') dI' [4.22]
0

One recognizes here the initial form of the transfer function model developed in
the previous paragraph.

4.2.3 RELATIONS WITH MODELS BASED ON THE CDE

Let us consider the case of a steady—state flow. It is shown, Mysels
(1982), that the solution of the simple CDE for a initial concentration equal to
zero and an input concentration Cin&) can be written

C(L,f) = f Cin(t-£)Fy(t)) dt [4.23]
0

where L is the observation depth and F is

Fi(t) = exp[—(L—v#)*/(4D1)] [4.24]

L
2ty7D1
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This result can be obtained by application of Duhamel’s theorem. Remark also
that in Eq. [4.23] the concentration is a flux—averaged concentration. So, from
these expressions it is obvious that the .CDE is a particular case of TFM whose
travel time pdf is the function Fy given above, Eq. [4.24]. The TFM with its
lognormal pdf defined as in Eq. [4.10] can then be compared with the CDE by
looking at the first moments of their respective pdfs. Simmons (1982) and Jury
and Sposito (1985) remarked that the predictions of the two models will nearly
superimpose at the depth where the pdfs were calibrated. At other depths, mean
and variances of the two pdfs give a qualitative idea of the respective behavior of
the two models. Respective means and variances for the two pdfs are

E,[f] = f 7F4(7) d7'=[ by (OPE) [4.25]
o exp(u+d2/2) (TFM)
et ' | 2DZ/V3 (CDE)
— =Lz 2 z T T= M
var:{4 f {rBalt])*Fa(r)d [(Z/L)’exp(2u+a’)[exp(az—1](TFM) 14.26]

0

It appears that the variance depends linearly on the depth for the CDE and on
the square of the depth in the case of the TFM. Thus, the TFM will predict
‘much more spreading of the signal with increasing depths of penetration.

The same kind of analysis can be conducted for the two—region models
which account for physical or chemical non—equilibrium conditions by means of
first—order processes. See, §4.2.2 and equations [4.32]—[4.35]. These models were
expressed in terms of resident concentration, Evolume—averaged concentrations).
After expressing these equations in terms of flux—averaged concentration Cp,
Sposito et al. (1986) showed that the flux concentration at the exit of a soil
column of lenght L could be expressed as

T
Ca(L,T) = f Cen(T") J2(L,T-T) aT" [4.27]
0

where Cen(T) is the flux concentration imposed at the top of the column and Ct
is the solution for a unit flux concentration at the input. This results also from a
direct’ application of Duhamel’s theorem. Comparing equations [4.27) and [4.20],
we can define a travel time pdf g(T) evaluated at X=1 by

a(T) = J34L,T) [4.28

Hence, the travel time pdf is the time derivative of the flux concentration at the
exit of the soil column. In that case, as for the simple CDE, a strikingly
similarity appears between the TFM and the notion of RTD. Noting E(T) the
RTD, we have for an input Cen(?), Schweich et Sardin (1983),
T
Ct(1,T) = f Cen(7)E(T~71) dr [4.29]

0
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It appears immediatly that E(T) = aC¢/dT = g1(T). The similarity between the
RTD and the lifetime pdf is obvious.

Applying the Laplace transform to both sides of equation [4.22], and
making use of the convolution theorem, one gets

ACa)(s) = AG)(s) AICi/IT)(s) = AGC) Aq) [4.30]

where Zis the Laplace tranform operator. This equation expresses that the
Laplace transform of the lifetime pdf is directly related to the Laplace transform
of the breakthrough curve. In particular this last one being easily obtained, the
moments of the lifetime pdf are easily calculated by means of equation [3.189].
Sposito et al. (1986) show that in term of flux ‘concentration, applying the
Laplace transform to the two—region model leads to the differential equation

- ' 2
o [reof bl vaea = 200K gy

where Cri = #Cqn). Hence, according to Eq. [4.30], 4G) .S ) is solution of Eq.
[4.31]. The solution of [4.31] being

Ufl(S)=G(8)exp{%7% [p2+4/3RPs [1+1+ Ll w]] 1/2} [4.32]

AR
a comparison of Eq. [4.32] and Eq. [4.30] leads to

An)(s) = eXp{-g—%[P'~’+4ﬂRPs[1+1+ 1£_ ‘sd+w”l/2} [4.33] |

As said before the mean and variance of the solute lifetime are obtained by
applying formula [3.189] to Eq. [4.33]. In term of dimensionless variables it
comes

E[T]=R var[T]=3%3[1+§1—‘g)2_PJ 14.34]

.These expressions were already obtained by Valocchi (1985). Effects of
different model parameters on the mean and variance of the solute lifetime pdf
can be easily analysed in a way similar Valocchi (1985) proceeded to evaluate the
range of validity of the LEA model when varying some parameters (See §4.6.4).
Some trivial conclusions are obtained such that; E[T]| increases if (1) positive
sorption increases, (2) pore water velocity decreases, ({3 there is anion exclusion.
Similarly, it is concluded that vargT] increases if (1) pore water velocity
decreases, (2) dispersion increases, (3) positive adsorption increases. Inversely,
var[T] decreases in response to anion exclusion or to any other parameter
variation or mechanism tending to reduce the role of immobile zones. Sposito et
al. (1986) used a numerical algorithm, Talbot (1979), to invert Eq. [4.33]. Fig.
4.2 illustrates the effects of varying the Peclet number for the classical CDE.
Remark the displacement of the maximun toward the mean, E[T]=1, and the
simultaneous diminution of the tailing due to an increased convective character
of the transport. The authors also show how the introduction of velocity
heterogeneities modifies the shape of g(). Fig. 4.3 (bottom) illustrates the case
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of a velocity distribution obeing a gamma pdf. In the upper part of the figure,

notice the loss of symmetry and the long time tailing of the travel time pdf g
derived with the gamma distribution as compared with the pdf g obtained for
the classical CDE. Effects due to variations in § and w are presented Fig. 4.4 and
4.5. Comparing the triangles and the black dots in Fig. 4.4, one remarks that
increasing the retardation factor compensates the tailing effect and lack of
symmetry due to the presence of an immobile phase. This is a striking
illustration of the correlation existing between R and w in the QSS model.

4.3 APPLICATION TO EXPERIMENTS ANALYSIS

Following the publication of the TFM of Jury (1982) and its extension
Jury et al. (1986), several papers appeared using the TFM to analyse solute
movement at the scale of undisturbed soil columns as well as at the scale of the
field. The first study by Jury et al. (1982) had for objective to test the TFM on
a large scale solute transport experiment. The experiment consisted in following
in time and space (14 solution samplers at 30 cm depth over a 0.64 hectare field),
the movement of a é~input of Bromide followed by 93 mm of water distributed
over 100 days. The pdf Fi(I) (see Eq. [4.1]) was calibrated on the maxima of the
breakthrough curves obtained at 30 cm depth by means of the solution samplers.
Figure 4.6 presents the distribution of the amount of water applied, I, at which
the maxima were reached. A normal and a lognormal pdf were fitted to this
experimental distribution. As it can be observed on Fig. 4.6, the lognormal
distribution offers a better fit. Breakthrough curves at 60, 90, 120 and 180 cm
depth as well as concentration profiles at different times were then calculated
using equation [4.11]. Figure 4.7 taken from Jury et al. (1982) allows to compare
observed and calculated breakthrough curves at various depths. Calculated and
field—averaged concentration profiles are displayed Fig. 4.8. It seems that for
that situation, homogeneity of the soil structure throughout the profile in
particular, the pdf determined at 30 cm depth can be used to calculate the
behavior of the solute pulse at deeper depths. Table 4.1 presents the various
recovery percentages (14 sampling sites) obtained by integrating in time the
breakthrough curves observed at 30, 60, 90, 120 and 180 cm depths. Notice the
large inter—sites variability but the reasonable means.

Site Number
Depth, cm ! 2 k] 4 5 6 7 8 9 1 12 13 14 1S Average
30 41 50 54 121 96 132 142 81 33 55 84 95 s 59 83 .
60 84 30 62 103 61 64 115 29 57 49 67 91 126 178 80
90 146 50 100 43 113 110 162 13 180 124 122 126 105 100 108
120 80 65 134 69 17 126 115 158 106 218 76 68 163 149 17 .
180 3 8 213 123 110 0 126 141 113 R 131 138 63 104 108 (116°)

Percent recovery is 100 [ Clz, N dNCoAl.
*Neglecting site 1.

Tab. 4.1 Recovery percentage per site and depth of measurement
of the breakthrough curve [after Jury et al. 1982].

An important problem arising when calibrating the pdf is to determine the
number of sampling sites needed to achieve a given level of precision in the
estimated mean and variance of the pdf to be ﬁtteg. The first question to answer
to is: Are we interested in extreme values of the distribution ? These values can
be very important if we deal with tracers for which it is essential to predict the
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probability. that small quantities will reach the groundwater table. In the case of
the experiment reported by Jury et al. (1982), the mean and variance were
respectively, 4=E(Inl]=1.91 and var{InI]=0.56. The theoretical bounds for a 1%
error were Ipin<1.84 and Ipax>24.7. 'Hence, as the minimum and maximum
values recorded were 1.75 and 15 respectively, the maximun travel time expected
to occur 1 over 100 times was not contained in the 14 samples population. Jury
et al. (1982) calculated that with 14 samples the mean travel time was only
estimated at £35%.

The same set of data was also analysed by Jury and Sposito (1985). In

particular, three different optimization techniques, minimization of the sum of
square of the differences (SS} moments method (MM) and maximum likelihood
(ML) were used to fit the pdf F to a lognormal distribution. The breakthrough
curves and concentration profiles simulated with the three different lognormal
distributions presented non—negligeable discrepancies. This is illustrated Fig.
4.9. According to the authors these differences are a consequence of the fact that
the travel-time pdf they used flognorma.l distribution) was not physically
accurate, otherwise the same set of parameters, mean and variance, should have
been obtained by using different optimization techniques. In particular, this
result shows that the distribution of velocities is not always lognormal. It also
indicates that even if a fit to a lognormal distribution seems good it should be
used with precautions, and perhaps the simulated results obtained with the
lognormal distribution compared to those obtained with a numerical integration
technique directly using the observed distribution of travel times.
" Beside the loamy sand on which this experiment was conducted, the TFM
has been applied to various field and column tracer experiments, most of them
conducted on the same clay soil, (Evesham clay, Typic Haplaquent). These
studies are reported in White (1985), White et al. (1986a), White et al. (1986b),
White (1987), Dyson and White (1987?. A characteristic of these studies is that
they apply the TFM to laboratory column or small field plot as opposed to the
experiment of Jury et al. (1982) conducted at the scale of the field.

In each of these papers a lognormal travel time pdf was fitted to observed
breakthrough curves. This was done as follows. If the input is considered of
Dirac-type, we already noticed that ¢(#/0)=Qext/k where k is a normalizing
constant such that the integral of g(f)=1. If we note C(¢) the concentration of
the effluent and Vex(?) the cumulative dra.inalg)e at the bottom of the column or
of the field plot, the travel time pdf is easily obtained with Qextgt) approximated
by Qext'(?:C(t)dVexg(t)/ dt. Figure 4.10 shows two examples of travel time pdf
obtained for two differents plots, located in the same field, treated with an
identical f~input of Bromide, White et al. (1986a). While the breakthrough
curve recorded on the first plot shows evidences of rapid transfer, the second
presents a skewed but much more homogeneous distribution of travel times. Let
us define the median travel time tn, as the time at which the probability for a
molecule to have left the soil volume is .5. Notice that #, is not the expected
value of the pdf g. The median time gives an idea of the average travel time.
Values of respectively 110 and 170 mn were calculated for the two plots. If we
assume that the Bromide is a perfect tracer of water flow, then the median time
tn can be used to calculate an average fluid velocity w, and a porosity 6
participating in the transport. If qg is the input rate, we have

tp=L/1n 0=q0/ ¥n

Remark that if we have a steady flow, then g(¢{0)=q¢Cext/k and can be expressed
in terms of the cumulative amount of water applied, I. We can write,
F1(1]0)=9(#]0)/qo=Cext(I)/k. If F, is fitted to a lognormal pdf with mean y, then
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6, is given by: f=exp(p)/L. In a first approximation #; can be related to the
~mobile phase in a two—region model and of course to the transport volume
defined §4.2.2. .

. Laboratory experiments with step inputs were also performed on soil
columns taken from the same field plots as above, White et al. (1986a). Two
cylindrical columns with diameters and lenghts of about 23 c¢cm, and contrasted
initial water contents, .414 and .350, were irrigated at rates of 1.3 and 12 mm/h,
respectively. For these conditions we have

9(t10) = [dQext(t)/ 4]/ Qent [4.35]

where Qext(t) is approximated as already explained above. Figure 4.11A,B show
the various data and fitted distributions for the lower and higher application
rate, respectively. First, it should be remarked that the two pdis fitted for each
column are quite different. Origins of these differences should probably be
related to differences in initial water contents and/or irrigation rates. Large
differences in soil structure are unlikely since both columns were sampled at very
close locations and in the same horizon. These experiments show in particular
the dependence of the pdf on the input rate and initial water content. Hence,
even at the location it has been calibrated, the TFM cannot be used as a
predictive tool unless input and initial conditions are not to far from the ones
used during the calibration experiment. This means that for very contrasted
climatic conditions, for example a succession of very dry periods and stormy
évents, the TFM based on a travel time pdf calibrated during a steady state
experiment will perform very poorly. This means also that the notion of average
fluid velocity does not make a lot of sense under these conditions, but this is
obvious. That was also remarked by Jury et al. (1982). These conclusions could
be expected since for these unsaturated flow conditions, the TFM implicitely
integrates very rawly the strongly non—linear physical interactions existing
between mobile and immobile water phases, in particular the phenomena of
solute uptake by porous blocks due to water flow in addition to the diffusion
process. Thus, one probably cannot expect the pdf to be independent of initial
water content and input rate. It is also very interesting to remark that for this
soil, the travel time pdfs observed in the field and on undisturbed soil columns in
the laboratory are quite different. This can be partially explained by the fact
that two different tracers were used, in the field Bromide which is a perfect tracer
of water movement and for laboratory columns Chloride which is subject to anion
exclusion, this phenomena reducing the transport volume. Also, cannot be
eliminated the possibility that the results obtained at the scale of the laboratory
column are perhaps not extrapolable to the scale of the field plot. This appears
to be very likely since the field plots were squares of 2 by 2 meters while the
laboratory colums were cylinders with diameters of about 23 cm. Hence, the
differences in travel time pdf may very well be related to the different scales at
which the transport phenomena was observed. It seems that passing from one
scale to the other is not a problem of changing transport parameter values but of
changing the shape of the pdf.

be links between the CDE and TFM have been underscored in the
previous paragraphs. In order to compare these two modeling approaches, Dyson
and White (1987) analysed with the CDE and the TFM a series of laboratory
tracer experiments carried out on undisturbed soil columns. The same soil as
above was used. Steady—state flow experiments consisted to obtain the
breakthrough curves for various step input of CaCl; at rates varying from 0.3 to
3 em/h. Eighteen undisturbed soil columns with diameter of about 22 ¢cm and
height 15 cm were used. Chloride concentation profiles were also measured for 8
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Fig. 412 Measured (dots) and predicted volume-averaged concentration
profiles for two undisturbed soil cores with different structures. (a) and (b),
redictions based on Eq. [4.41] for the TFM (squares) and CDE (triangles

fc) and (d) see explanation in the text [after Dyson and White 1987]

Irrigation M CDE

inlensily v D v D

{cmh™Y) (emh~") (em*h-h) (emh™") (em*h-")
0.282 0.702 304 0.704 2.81
0.362 0.888 2.69 0.889 2.58
0.571 1.29 . 5.56 1.39 5.24
0.801 20 10.4 2.33 9.68
0.886 2.21 9.09 2.21 8.47
1.12 2,70 41.5 2.66 35.1
1.40 3.14 348 K 25.3
1.12 4.30 29.4 432 26.3
2.3 5.38 95.8 5.44 75.5
281 6.29 448 6.34 39.8

Tab. 4.2 Values of » and D derived from the TFM and the CDE.



§4.3 :Experiments Analysis —-152—

columns. Let us recall that for a lognormal travel time pdf

— ey In(1)—p]%/0?
Fi(I) = exp 5 ol [4.36]

where p the mean of the lognormal distribution and o2 its variance, the
concentration at any depth Z is given by

C(z,]) = -g-°{1+erf[1£(—1—li@):ﬂ] } [4.37)

V2o

OA. The concentration at the outlet is obtained by makinly Z=L. Analytical solutions
for the CDE in terms of flux—averaged concentrationAvith a step input have been
given at the beﬁinning of Chap. 3, Eq. [3.14). In the present case one have R=1.

‘An equally good fit between calculated and observed breakthrough curves
was obtained with the CDE or the TFM provided that the velocity in the CDE
was not taken equal to the flux divided by the water—filled pore volume.
Adjustement made allowing the dispersion only to vary were giving very bad
results. This means, as expected for this structured soil, that not all the water
present in the porosity participated in the transport. A strong correlation
seemed to hold between the velocity and the dispersion coefficient. The non

linear relation D=4.1(10.162lvl-42(*0'12) provided a fit with a correlation
coefficient of 0.889. Notice that the relation is not linear which seems to agree .
with the fact the linearity is commonly accepted for pore water velocities lower
than 1 cm/d, Sposito et al. (1986). The dispersivity was estimated to be of about
4.1 cm which also revealed the wide range of pore velocities. This value is also
slightly higher than those of about 3 cm/day or less usually found for field

experiments.
We gave, §4.2.2, Egs. [4.25] and [4.2 expressions for the mean and
variance of the travel time distributions Gespectively associated with the CDE

and the TFM. ¥By equating the two means, a value of the velocity can be

calculated function of the mean and variance of the pdf fitted for the TFM.
Identically,by equating the variances a value of the dispersion coefficient can be
derived. These substitutionx@v_eﬁ

v = L exp[—(u+0%/2)] [4.38]

D = L2%exp[—(p+0?/2)][exp(o?)—1]/2. [4.39]

Table 4.2 gives the values of the velocity and dispersion coefficient
calculated with above formula or obtained by fitting the solution of the CDE, Eq.
[3.14], to experimental breakthrough curves. It appears that the velocities
obtained by both methods are very close but that the TFM predicts larger
dispersion coefficients, especially for velocities above 1.1 cm/h. ~Thus, as said
before the predictions superimpose at the depth of calibration since the
breakthrough curves are equally well reproduced, but the fact that the dispersion
coefficient predicted with the TFM is larger means that at deeper depths the
signal simulated with this coefficient will be more spreaded.

Figures 4.12a,b presents two examples of calculated and measured resident
concentration profiles. In particular, the second sample noted Core B in the



§4.3 :Experiments Analysis -153—

graph, presents a sharp change in concentration at about 10 cm depth which the
authors explained by a change of the soil structure. This figure illustrates clearly
the fact that a perfect fit can be obtained for the breakthrough curves whit at the
same time a very bad prediction of the resident concentration profile. This also
shows that if the pdf used in the TFM is fitted at a depth such that the solute
already traveled through layers of different "characteristics", may be a correct
prediction of the breakthrough curve will be obtained at the scale of the field and
this is not certain, but a certainly very bad prediction of the resident
concentrations will follow. Of course the same is true for the CDE if a velocity
and a dispersion coefficient independent of the depth are used. It is obvious that
this incapacity to predict resident concentrations is a serious limitation to the use
of the model since for example subsequent irrigations will be simulated with a
false initial situation. Correct predictions of at the same time the breakthrough
curves and the resident concentration profiles can only be obtained by fully
accounting for the dependence of model parameters on depth in the CDE or by
fitting as many travel time pdfs as necesary to account for profile heterogeneity.

From a theoretical point of view, it appears that ignoring the physical
characteristics of the system, average transport parameters can still be found
such that the CDE or the TFM wilf correctly predict the breakthrough curves.
Thus, in that case these two models appear as pure mathematical models without
physical background. Since the breakthrough curves were equally well
reproduced by both models we can also conclude that the information included in
a breakthrough curve is not sufficient to decide of the physical validity of a
model. Comparisons with measures taken inside the system must absolutely be
included in the estimation process.

The solution of the CDE used to analyse these experiments is expressed in
term of flux—average concentration. Different methods can be employed to
convert the results in a resident concentration profile. The authors proceeded as
follows. We note J(0,8)=4Co the input flux and J(2,t)=Cex(#)Io(2) the flux at a
depth z where Ig(2) is the drainage rate at depth z and i the input rate. Since
Io&), the drainage rate at the bottom of the column may be different from 4 due
to water uptake by the sample, the drainage rate at any depth zis calculate as

To(2) = Io(L) — 22{Io(L) i) [4.40]

which means that the uptake of water by the porous matrix during the tracer
experiment is equally distributed all along the soil column. The average resident
concentration between two depths 2 and z is then

t
J To(2)Cex( 1,8)~To(22) Cex( 1)

—_ 0
Ce(21,22,8) = Y [4.41]

where @ is the radius of the column and 6,' is the estimated volumetric water
content.

An other way to calculate the resident concentration is to use Eq. 3.% or
what is equivalent use the resident concentration profile given by Eq. [3.6]. But,
since all the water is not active in the transport process this solution will lead to
an overestimation of the concentration and will violate the mass balance unless it
is applied with a porosity corresponding to the effective transport volume.
Figure 4.11c,d, black squares, presents the case where all the water is assumed to
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articipate in the transport process. The overestimation and violation of the
mass—balance appear clearlty. The authors then derived an average porosity
effective in the transport as follows. Let 7 be the mean travel time defined by

[ )

r= f t9(1]0) dt [4.42]

0

Remark that 7 i3 not the median time 7n, used before and which was defined as
the time at which the probability for a molecule to have left the soil column is .5.
Noting qo the rate of application of the tracer, the porosity effective in the
transport can then be estimated by

051:. = qor/L [4.43]

Notice that since 7 is different from rm, 65 is different from 6y calculated
previously. For these experiments s was estimated to be .41 (+.06) while 6 was
estimated to be .29 (*.07). Using fs, the profile with black triangles were
predicted, Fig. 4.11c,d. Quite la.rﬁe differences are still present. One of the
conclusions immediately arising is that when only a part of the water participates
in the transport process, it is impossible to pass from a flux—averaged to a
volume—averaged formulation of the CDE by means of Eq. [3.2]. According to
the authors, this is due to the fact that the porosity effective in the transport
process and derived from probabilistic considerations is interpreted in a
mechanistic sense. It probably exists a value of the porosity such that a good
prediction of the volume—averaged concentration is obtained from [4.6]. This
experiment shows that this value cannot be derived from the median travel time
or the mean travel time.

4.4 CONCLUSIONS.

If our objective is the prediction of chemical species movement in porous
media, and thus our criteria to judge of the usefulness of a modeling approach its
predictive capability, then one of the main conclusions of this study is that the
TFM approach does not have that predictive capability, unless an extensive and
carefull calibration of the model is conducted at the site where it will be used.
Due to its lack of physical background, it is difficult if not impossible to relate
the travel time pdf modeling the transport to the characteristics of the soil. The
experiments reported above have illustrated the large dependence of the travel
time pdf to be calibrated, on soil structure, initial water content, flow intensities,
type of solute, scale of the experiment, etc... Hence, similarly with the difficulties '
that arose with the equation, relating the flux and the water content in the
macroporosity, used in kinematic wave approach, the main problem is that the
travel time pdf does not depend on the characteristics of the soil only.

Now, if we look at the problem from a theoretical point of view, the
comparison of the TFM with more classical approaches such that the simple CDE
or two—region models have hiaﬁhlighted the fact that the CDE is a particular case
of TFM. Experiments have also illustrated the fact that using the TFM as well
as the CDE, correct predictions of the breakthrough curves can be obtained with
at the same time a poor prediction of the resident concentration profile. This of
course comes from disregarding physical properties and internal variability of the
system. In particular one can conclude that the simple good fit of a
breakthrough curve is not sufficient to decide of the validity of a physical model.
In consequence, the predictive capability of any solute transport model when
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applied to a natural soil profile cannot and must not be appreciated just by
looking at how good is the fit with experimental breakthrough curves. Inclusion
of variables internal to the system appears to be a requirement for future
experiments designed for solute transport model evaluations.

Although the last formulation of the TFM allows the modeling of reactive
tracers transport, it has only been applied to nonreactive solutes (Bromide,
Chloride, Tritium, Nitrate) since the evaluation of Q;, and Qout necessary to the
identification of g (see Eq.[4.18]) is possible only if appearance and disappearance
of the solute occur through respectively the entrance and exit surfaces of the soil
unit. This constitutes a serious limitation to the use of the TFM. We also notice
that the pdfs fitted to a breakthrough curve for a particular experiment have
never been used to predict later transport experiments. In the same order of
idea, the TFM has never been applied to analyse experiments involving square
pulse ixﬁmts or successive leachings.

11 experiments reported in the literature and analysed with the TFM and
the classical CDE show that the breakthroutgh curves are equally well reproduced
b{ both models. However, no estimation of the respective predictive capabilities
of the two models has been made or at least reported in the literature. Actually,
there is no experimental evidence allowing to say that one or the other is best’
suited for solute transport modeling. It seems that the TFM is slightly more
general since the CDE is a particular case of TFM. On an other hand, models
accounting much more accurately than the simple CDE for the physical and
chemical mechanisms acting during solute transport in heterogeneous media have
been developed in the past few years. These models presented in the previous
chapter proved that they could accurately simulate complex transport processes
through laboratory columns made up of aggregates. An other advantage of
models based on the CDE is that some of thelr parameters can be related to the
physical and chemical properties of the media. The TFM has been originally
developed to deal with tracer movement at the scale of the field where the CDE
seemed to fail. Applying the TFM to column experiments only adds to an
already abundant literature and certainly does not add to our knowledge and
understanding of the phenomena.

The main problem when using the TFM is that all the physical and
chemical effects are lumped into one "parameter". Hence, it is impossible to
assess the relative importance of each of the mechanisms, physical, chemical,
which by opposition can be done with a mechanistic model. Thus, this lack of
determinism_precludes from assessing the range of system parameters (soil
structure, initial water content, application rate, etc...) where a fitted pdf can be
considered valid. In particular, as opposed to determinist models presented
before, no relation, qualitative or quantitative, can be established between the
“"properties" of the media and the parameters of the model.

Regarding the identification of the travel time pdf, most of the time a
lognormal distribution is used. This choice was initially suggested by the fact
that many experimental studies reported a lognormal distribution of velocities for
undisturbed materials. Among the few field or laboratory experiments analysed
with the TFM, it already appears that the lognormal distribution is not always a

ood choice. The paper by Jury and Sposito (1985) clearly illustrates the large
gjfferences that may appear between lognormal pdf obtained by various
optimization techniques, thus sug§esting that a lognormal model is not the right
one to describe the distribution of travel times. In these cases, a dicrete travel
time pdf derived from the experimental breakthrough curve must be used.
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5. COUPLED TRANSFER. CONCLUSIONS AND PERSPECTIVES.
Coupled Transfer

Several models have been presented for saturated flow modeling in
heterogeneous or fractured media, (see §1). These models are based on a double
ﬁorosity approach consisting to distinguish between two continua with different

ydraulic properties ‘and in each of which water flow is modeled by different
equations. Interaction between these two continua is modeled with a distributed
source/sink term related to the density of fissuration and the eometry of porous
matrix blocks, Duguid and Lee (1977), Huyakorn et al. 51983). An other
approach based on a detailed geometricai description of the heterogeneities was
also propsosed by Narasimhan (1982d). If we consider that the flow is correctly
modeled with these approaches, we can derive, from the respective solutions, the
velocity distribution at any time and any location in the two continua. Then,
solute transport in each continuum can be modeled with a CD type equation. In
fact, it suffices to use the equations developed paragraph 3.2.2, assuming in
addition that the velocity is now space and time dependent. The same type of
coupling between the two continua can be employed, (continuity of the
concentration or film diffusion). As well, the same choice of geometrical
conceptualization for the porous blocks is possible, prismactic, spherical,
cylindrical. An example of such transport model, although not coupled with
water flow modeling, is given by Huyakorn et al. (1983b). The coupling with any
of the saturated flow models presented above is only matter of informatics work
and do not pose any conceptual problems.

For saturated—unsaturated flow conditions, it clearly appeared in the
previous paragraphs that the main problem was to correctly predict the flow of
water in the macropore continuum. Several different approaches have been
presented attempting to derive a macroscopic law relating the flux and the water
content in the heterogeneities. In all the cases but one, Germann (1985), the
interaction with the porous matrix during the experiments makes it difficult to
judge of the quality of the flow model for the macropore continuum. However,
since we have at our disposition several models predicting the flux of water in
that continuum, it is possible to built a coupled tranfer model based on a CDE
for solute transport.

For the case of a single crack or macropore, an equation for the flow in the
pore or the crack is not required. So a more accurate modeling is possible.
Water flow and solute transport in the porous matrix can be modeled with the
equations classicaly used for a homogeneous porous media. The flow of water in
the pore can be estimated fom the uptake of water by the matrix and the input
at the entry of the pore estimated from the runoff at the soil surface. The
transport of solute in the macropore can then be calculated with a CDE coupled
with the transport in the matrix. This approach has never been developed, but
the model proposed by Yeh and Luxmoore (1980) for water flow in a macropore
was coupled with solute transport in the pore and in the porous matrix.

Let us recall here that the flow in the macropore was modeled with the

following equation
p¥-vxis) [5.1]
when the pore is saturated and by

00 _ dz =
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when the pore is unsaturated. ¢, ¥, 4 are, the total head, the pressure head, and
the water content, respectively, in the pore. £ is the distance from a reference

point and ﬁl is the unit vector along the logitudinal direction of the pore. &' is

the compressibility of water and K is the equivalent hydraulic conductivity.
Expressions for the conductivity of a cylindrical macropore or a crack have been
given paragraph 2.2.

The chemical transport is modeled in the macropore and in the porous
matrix with the same equation

fRq gg = —V.(Vc) + V.(8[D].Vc) — (gg + 0ARg)c — (Kwf + KeppKa)c + M [5.3]

where ¢ i3 the concentration in the macropore or in the porous matrix, v is the
velocity, [D] is the dispersion tensor, A is a.decay constant, Rq is the retardation
factor, Ky is the first order degradation rate through the disolved phase, K; is the
first order degradation rate t%xroug the adsorbed phase, py is the bulk density,
and M is an artificial sink/source term. The velocity is either obtained from
Darcy's law for the porous matrix, or from the flux and the water content in the
macropore. The retardation factor is defined on a mass basis for the porous

matrix
Ra=1+ ppKa/¥ [5.4]

where Kg4 is the distribution coefficient. For the flow in the macropore, the
distribution coefficient is replaced by a surface distribution coefficient, K,, and

R4 is now given by

Ra, =1 + Ka/g [5.5]
and

Ra = 1 + Ka/(6W) 5.6]

for a pore and a crack, respectively. W is the aperture of a crack. Continuity of
the concentration is assumed at the interface matrix/macropore. Notice that the
transport is two—dimensional in the porous matrix and one—dimensional in the
macropore. This model was used by the authors to demonstrate the deep
migration of solute that occurs when the macropore participates in the
infiltration process.

Considering now a complete soil profile containing heterogeneities, there is
at our knowledge only one model available, named AGTHEM, and documented
by Fong and fppelbaum (1980), and Hetrick et al. (1982). This model still
considers two superposed macroscopic continua. The soil profile is divided into a
finite number of layers, across the boundary of which the flows in the macropore
and micropore continua are governed by the following set of rules:

1— Flow rate within the macropores is rapid and not governed by
eometrical factors. At each time step, the amount of water flowing from one
ayer to the next is the lesser of the amount of water contained in the layer and

of the amount of water that can be accepted by the underlying layer. So, no
equation is required to model the flow in the macropore continuum.

2— Flow from macropore to porous matrix is controled by the hydraulic
properties of the soil. Richards equation is solve for plane and cylindrical
symmetries in order to evaluate the amount of water uptaken by the porous
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matrix.
~.3— Flow from porous matrix to macropores results from the building of a

positive pressure head in the matrix. ‘ '

4— Flow from one layer to the other in the matrix obeys Darcy's law.

Regarding solute movement, instanataneous mixing is assumed in the
macropore continuum inside a layer. Diffusion and hydrodynamic dispersion are
not simulated. It is also assumed that chemicals enter the porous matrix by mass
flow. Solute movement by diffusion inside the porous matrix is not accounted
for. This means in particular, that the establishment of an instantaneous
equilibrium inside a layer is assumed. When solute is transported from the
porous matrix into the macropore, instanataneous mixing with the solution
already present in the macropore is also assumed. This model is therefore
considerably simpler than the one presented before, and mainly based on mass
balance considerations.

Conclusions and Perspectives -

It is now well recognized that in many situations the soil profile can
barely be.considered as an homogeneous porous medium. Most of the time,
natural materials present at least two kinds of porosity. A macroporosity, also
referred as structural porosity, corresponding to large voids of many origins, and
a microporosity, also referred as textural porosity, and determined by the
organization of soil particles. Water flow in these two domains does not obey the
same physical laws. In consequence, Richards' equation which proved to be a
(giot)d model of water movement in homogeneous porous media often leads to poor

escriptions of water distribution and fluxes when applied to undisturbed
materials. Hence, wether modeled for irrigation practices, groundwater recharge,
runoff control, etc..., or to be used in solute transport calculations, modeling of
water flux and soil water content distributions can no longer mainly rely on
Darcy's law and Richards' equation. Some years ago the scientific community
seemed to acknowledge the need for an improved water flow modeling approach
accounting for convective transport in the macropore continuum and for the
interactions with the pordus matrix. Since and quite surprisingly, a very small
number of models have been proposed, with a somewhat larger number of
experimental studies. If we neglect the models restricted to a single crack or pore
and of little applicability, only two models have been published, namely the
kinematic wave approach developed by Germann and Beven, and the double
porosity model lately proposed by Jarvis and Leeds—Harrison. Also, while for
years, hundreds of experiments have been conducted to test Richards' equation,
we remarked that except for the experiments conducted by Germann and Beven
in order to test their models, nobody else tried or at least reported field or
laboratory experiments analysed with the kinematic wave approach. It is
actually to early to judge of the popularity of the model proposed by Jarvis and
Leeds—Harrison.

By opposition, transport modeling in structured media has been largely
studied and improved in the past few years. In fact this may appear somewhat
illogical since solute movement modeling requires the knowledge of water flux.
So, we are actually in a situation where we have at our disposition a relatively
good modeling tool for solute movement in structured media but where we are
missing one of the main parameter required to make use of this tool: water flux in
the macropore continuum. In consequence and without any doubt, our capacity
to handle all the problems we are facing regarding water management, and which
will become more important and crucial in a near future, hinge upon our capacity
to model water flow in heterogeneous media. Problems such that, management
of groundwater recharge, optimization of irrigations and more generally of water
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utilization, - estimation of soil infiltrability and runoff risks assessment,
optimization of solute applications and of leaching strategies, groundwater
pollution and deep migration of chemical species, all strongly depend on the
quality of water flux estimation.

What are the reasons for this state of the research in the domain of water
flow modeling, what are the problems and difficulties encountered and what
should our efforts aim at ?

Considerin% the soil as a double porosity media and accepting Richards'
equation to model water flow in the microporosity, the first idea is to try to
derive an equation for the macropore continuum. At least one formulation have
been proposed. Germann and Beven derived an expression where the flux and
the water content are related by a power law (Q=afb). This law was derived
from geometrical consideration and scaled to account for soil tortuosity.
Experiments showed that the two parameters, a and b, could not be considered
as soil dependent only. It appeared that boudary conditions and at a lesser
degree initial conditions strongly influenced these two parameters. In addition, it
was difficult to relate the parameters to qualitative properties of the soil
structure. Notice that the same expression is in fact used by Yeh and Luxmoore.
In all other models, water flow in the macroporosity is not explicitely simulated.
In' the model of Jarvis and Leeds—Harrison the flux in the macropore continuum
is calculated from mass balance considerations. This way to proceed seems to be
the more promissing given the difficulties encountered in the characterization of
the macropore continuum from the point of view of water flow, (e.g. the
limitations of the power law). This last algorithm could in our opinion be
generalized to any heterogeneity profile and in a way such that it would only
require soil structure characteristics easily estimated or measured with standard
procedures, (e.g. structural porosity,...}.

The second problem, but vry closely related with the former, is to model
the interaction between soil matrix and structural porosity. This i8 done in a
relatively simple way in the models proposed by Germann and Beven, and at our
opinion probably too crudely. The treatment proposed by Jarvis and
Leeds—Harrison and based on the sorptivity seems much more appropriate and
accurate although they introduce some questionable simplifications (e.g. linearity
of the sorptivity function of water content). An other obvious limitation is due
to the assumption of plane cracks. We presented (e.g. §3.4.2 and Fig. 3.5) some
results for solute uptake by aggregates of various geometries. These results
showed clearly the influence of aggregate shapes on solute uptake rates function
of time. The same kind of behavior can be expected for water uptake. Thus,
water flow rates from the macropore continuum into the microporosity depend
not only on the fpercenta,ge of the exchange surface used by the flow but also on
the geometry of the porous blocks. At first, it seems that a cylindrical or
spherical formulation of Richards' equation would be more appropriate than the
conventional (1-D plane symmetry) formulation. This becomes particularly true
when the size of aggregates decreases, and/or when the flow in the macropore
lasts a long time, in which cases the geometry becomes very quickly an important
factor. The notion of "long time" is of course relative as it was for solute
transport (e.g. relative to soil water diffusivity and aggregate geometryl).
Calculations similar to what has been done for solute uptake by aggregates could
give some insights on that problem. '

Any model for water flow in the macroporisity requires a ceratin degree of
"characterization" of the macropore continuum. Among the different variables
required, some can be easily measured, for example a structural porosity profile.
Others such as the global exchange surface between micro— and macroporosity as
a function of depth iave been so far obtained from hypothesis on the geometry of
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the system, (e.g. plane cracks and spacing and widths of the cracks), Jarvis and
Harrison. Mathematical techniques for distributed parameters
identification could be usefull for that particular problem. In particular, they
could give the real exchange surface as a function of depth, and in fact more
likely and depending on the formulation of the model, the parameter, a (§3.5.1),
which is the volume to surface ratio of the porous blocks or aggregates, (not the
parameter of the power law of Germann and Beven). It has been well established
now that this parameter depends on the flow rate, and probably also on the lower
boundary condition and structural porosity profile. An upper bound of that
parameter, saturated flow, could probably be obtained from saturated solute
tracer experiments. Solute uptake by porous blocks has the enormous advantage
to be modeled by a linear differential operator, Laplace operator, which allows to
derive solutions without constraints on the geometry, (see §3.5.1). Thus, the
geometry of the porous media, parameter @, can be easily characterized, what
oes not appear to be simple for water flow without making some strong
assumptions of the geometry itself. '

Although the distribution of & with depth seems to be the main parameter
controling water flow in a structured porous media, one must not neglect the
structural porosity profile which may for certain flow conditions become an
important composante of soil water stora%;a capacity. Also, in many soils,
structural heterogeneities have a dynamic character. Hence, depending on soil
swelling and/or shrinking properties it may sometimes be necessary to
characterize this dynamics, and to account for it in models.

It seems clear now that one of the main problem we are facing when
modeling water flow in structured soils is that model parameters depend in
particular on flow characteristics, initial and boundary conditions, duration of the
phenomena, etc... For some flow conditions one parameter can be preponderant.
while for other boundary conditions or time durations, an other parameter
becomes preponderant. Hence, it is difficult to define a global approach that
could be applied in every case. The sensitivity of the model to parameters

oK changegwith initial, and boundary conditions. For example, if we consider the
case of infiltration, application rates at the soil surface of course directly
determine the value of @ and its evolution with time while on an other hand the
intial situation and the duration of the input will determine the time at which
the volume of the structural porosity will become important. In other words,
model parameters, even if they appear to be directly related to soil characteristics
and geometry, are not soil dependent only, while it is the case for the
conventional porous media approach where hydraulic properties of a given soil
can theoretically be defined once and for all and used for any flow problem. For
example we could see a as a model parameter as K(¢) or (6) are. But, by
opposition with classical hydraulic charcteristics, a depends on initial and
boundary conditions and not on a variable characteristic of the system such that
6 of ¢. This is important for future research since it appears that to model water
flow in the macropore continuum we should characterize a soil with respect to the
constraints that will be applied for a given initial situation and not regard the
material as having intrinsic properties as it is classicaly done. Notice that
classical hydraulic characteristics are still required to evaluate the uptake of
water by the aggregates and thus are still playing a very important role. At first
it seems that such a characterization cannot be achieved by direct measurement
techniques, but probably will require the use of mathematical identification
techniques. Thus, in—situ experiments are necessary and can barely be replaced
by laboratory experiments for obvious reasons related to the problems of
sampling soil cores with a volume sufficient to represent the overall profile.



§5 :Coupled Transfer ~161—

For transient unsaturated flow conditions, solute uptake by the porous
blocks results from a mass—flow component related to water uptake and a
diffusion component. Their relative importance depends on initial conditions,
diffusion coefficients and hydraulic characteristics. If we consider an infiltration,
it is obvious that in the early stages of the process, solute uptake due to water
uptake is the main component of the flux of solute into the porous matrix and
that the participation of diffusion is probably negligible. This is particularly true
for species with low diffusion coefficient. At long times, when the rate of water
uptake decreases, diffusion becomes a more important component of the intake of
solute by the aggregates. Here also, a model would allow to assess and quantify
the relative importance of the main parameters: initial situation, diffusion
coefficient, hydraulic characteristics, geometry of the aggregates. In conclusion,
water uptake rate by the porous block will probably be in most situation the
principal phenomena controling the quantity of solute retained and adsorbed by
the aggregates. This should encourage us to focus on an improved prediction of
water uptake rates by the porous matrix and water flux in the macropore
continuum,
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Appendix 1. Al

APPENDIX 1
Numerical Solution of Solute Transport Equations in an Aggregated Media.

In the following we give a numerical scheme proposed by Huyakorn et al.
(1983b). In their model, solute transport in the macropore continuum is modeled
with the following equation

. Dan ) —vall =& s (Lor [AL1]

which is a generalization of Eq. [3.39] to a multidimensional domain. They
assume that the porous blocks are either spherical with radius, a, or infinite
paralelepipeds with width, 2a, delimitated by parallel cracks with aperture 2b.
Solute movement inside the porous blocks is modeled with the diffusion equation.
We note c¢' the concentration inside the porous blocks and D' the diffusion
coefficient. The leakage term, T, is then given by

_Lip
r=--(D 'lz'=a) [A1.2]
1‘=-%(D'3°, ) [A1.3]
|r'=a,

for the parallelepipeds and the spheres, respectively. The gradient in above
formula will be obtained from the solution of the diffusion equation in the porous
blocks. For the parallelepipeds, ¢' verifies

(0% = yrE L R [AL4]
and for a sphere the diffusion equation is
%23;(D,'r7-§c;') = ¢'R'§°g'+ Ap'R'c! [A1.5]

where ¢' is the porosity of the porous blocks, A is a constant which can be used to
model radioactive decay or chemical reactions. R' is the retardation factor
defined by

R' =1 +p5(1—¢')kqg/¢' [A1.6]

where p; is the solid density and kq the distribution coefficient.
The boundary conditions for the macropore continuum are given by:

¢ = ¢ on a part By of the boundary and
(~Daa gs%j + vac)n = —q.C

on the rest of the boundary. n is the outward unit normal vector, ¢ is the
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_ concentration of the solute entering the system through By, and q is the inward
liquid flux. For the diffusion equation in the porous blocks, the boundary
conditions are

¢' = c¢ at the surface of the blocks
]
gc_ = 0 at the center of the spheres or on the plane of symmetry of the

parallelepipeds.  Initial concentrations are assumed constant in space and
respectively equal to co and c¢'g. The solution of this set of equations presents
two main difficulties. First the resolution of the convection—dispersion equation,
and second the evaluation of the leakage term, I'. Many works have been
devoted to the obtention of an oscillation—free solution of the CDE which at the
same time minimizes the numerical diffusion and preserves the accuracy. It is
well known that the problems arise from the convective term, and that mainly
two remedies are available. One is to used a decentered approximation of the
first—order derivative terms, which leads to uncentered finite—difference formula
or asymmetric weighting functions for a finite element based solution. The other
one is to use a Lagrangian representation of the phenomena which eliminates the
convective term. The present finite element based solution uses an upstream
weighted residual approximation technique presented by Huyakorn and Nilkua
(1979). In this approach, a set of asymmetric functions, Wj, is used to weight
the spatial terms in place of the basis functions Nj as it is the case with the
standard Galerkin technique. Assuming that there is n nodes in the macropore
continuum, and applying the weighting technique it comes

Jf‘ W; ['g;—(m(Dmn g}%n) - Vm-g%n] dR — Jr [_g(;E + Ac—ml — q(C*—C)] Ni =0
& Q

for i=1,..,n [A1.7]

Applying Green's theorem and assuming that ¢ = ¥ Njc; leads to the following .
set of ordinary differential equations

aW’ 3N' .aN' . AL dc.
Y. ) [P G Bl = vaWiig R + | oy a4
j=1 Q Q

r
J Ni(ANjc; — mN;Tj) dR _fWiDmngﬁ%nnn dy=0 [A1.8]
Q N

The last integral which is taken over the boundary, dQ, is easily evaluated with
the aid of the boundary condition. We have

_ WiDmn-g%nn dB = | Wig(c—) dB [AL9]
90 a0
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If a standard one-step schema is used to integraté in time, the following set of
. differential equations comes

n
. . k+1 k+8
E(HHij + M&% +0/\_Mij)Cj — mMj;T
i=t
k+1 .
+ Mjjc; =F; i=1,2,..,n [A1.10]

where At is the time increment, and k and k+1 refer to previous and current
time levels, respectively. @ is a time weighting factor equal to 1 or 1/2 for an
implicit and a Cranck—Nicholson schema, respectively. The coefficients of the
mass and stiffness matrices are equal to

r . AN : .
Hy; = J [Dmn AL %i—vmwi-g—l;lﬂ dR [AL11]
)
r
M;; =J N;N; dR [Al.12]
)
r
M;j = J qnW;iN; dR [A1.13]
9]

Fi = (6-1)(Hj; + /\Mij)Cjk +

[%5%] ¢ + Mije; (6-1) + Mic* AL.14]
+0 +
;" = " + (-1} [AL.15]

Integrals appearing in coefficients expressions can be evaluated
numerically, Gauss quadrature, or analytically. In order to solve the system of
equations for {ck*l}, an evaluation of {I'k*6} is required. Since a discrete
approximation of the concentration tgradient at the surface of the porous blocks
would lead to a poor estimation of T, especially at early and medium times,
Huyakorn et al. (1983), Lafolie et al. (1988), the authors elected to calculate T'
from the Galerkin finite element solution of the diffusion equation. This is
described in the following. First, a standard Galerkin procedure, with linear
basis functions is applied to the diffusion equation. For the plane symmetry,
prismatic blocks, and after application of Green's formula it comes

0

a a a
f DGt g o dz'+f SRNN; S’ + f ¢'R'NiNjc;'dz'
0 . 0
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~p&, C =0i=12.0 [A1.16]
Z=a ’

where n' is the number of nodes. After evaluation of the integrals and using a
one—step time integration formula one obtains the following tridiagonal set of

equations,
ﬂlCl'k+1 + ’71C2.'k"1 = d;
Otitli-l'k+l + ﬂiCi'kﬂ + ')rici,l'k"1 =d; i=23,.n'-1
cn.'k+1 = cjk+! [A1.17]

Notice that such a system of equations is associated with each node j in the
macropore continuum. The parameters a;,8;,7; and d; are defined by

ai = fai* + p'R'Az;4'/(6At)

1 = Gy* + (p'R'AZ{'/ (6At)

Bi = 08* + P'R!(Aziy'+Azi') /(3At)

di = (6-1)(as*cis'k + Bires'k + yivcin'k) + %O—A—l}

[(Azi")ciq 'k + 2(Azi'+Az;')ei'k + (Azi')ci1'K]

_n ! . )
ai* = AZIi)-I' + /\(P RGAZl-i

_n R Al
it = 52, + AR Ay

' ' IR
Bi* = Azli)-l' + AD y + i%:&(Azi-l'+Azi') i=2,3,..,n'—1

Zj
B = 661* + ¢'R'Az'/(3At)
M = 0n* + ¢'R'Az'/(6At)

_ D' | Ap'R'Az
ﬂl* = Az + 3

_—D' M'R' Az,
71* = AZ1' + 6

and the spatial increments are: Azi'=z,,,'—z"; i=1,2,.. n'—1.

For the spherical symmetry, the tridiagonal set of equations is obtained in
a similar way. For all elements but the first one, 12 is approximated by an
average of ri2 and rj4% For the first element the integration is explicitely
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‘performed and the element matrices obtained are as follows,

[E]* = f rlrznv{gl?‘f}{g?f dr = 29:11 [_% —ﬂ
0

and

I
3
M= [ )0 T ar = 5 2 9
. :

Two algorithms are proposed by the authors for the overall solution of the
problem. First, an iterative algorithm consisting in

(1) — At the be enning of a time step, obtain an estimation, by means of
an extrapolation formula (Eq. [A1.18] belows), of the concentration at the surface
of the porous blocks. .

(2) — Obtain from that valye and the solution at the previous time step an
extimation of the leakage term, T, from Eq. Al.17.

(3) — Use this estimation to solve the problem in the macropore
continuum, Eq. A1.10, :

(4) — Solve the problem in the porous blocks with the Dirichlet condition
furnished by the concentration in the macropore continuum,

(5) — An improved estimation for the concentration in the porous blocks
and hence for T is obtained.

The iterative process consisting of stages (2), (3), (4) is then repeated
until negligible changes in the concentration inside the porous blocks are
obtained. ccording to the authors, one or two iterations are sufficient to obtain
the convergence. At the begenning of a new time step, the extrapolation formula
used to update the concentration in the porous blocks and to start the iterative
algorithm is

kel — .k Ik k-1 log(tk"‘l/tk) A ]
¢ et = cj'k + (cj —¢j'l )1-—(7__).og T [AL.18]

k+1 k+1
b+ me' =4
k+1 k+1 k+1 .
aiCi4'  + fici'  + e = di i=23,..,n'1
an.cn,-l'k” + ﬂn.cn.'k” = dn'— ij+0 [Al.lgl

Using the first part of Thomas' algorithm, forward elimination, the following
expression is obtained relating the leakage term I and the concentration at the

interface
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—ij+e = In|Cj'k+1 + (amgn._l - dn|)j j=1,2,..,n [A120]

where 1 and g are coefficients resulting from the forward elimination. This
equation is used to eliminate the leakage term from Eq. A1.10. Then, the
concentration in the macropore continuum is obtained and a backward
substitution in the set of equations (Eq. A1.19) gives the solution in the porous
blocks. The forward and backward stages of Thomas' algorithm are given below.

Forward elimination
L= f
Ui-1 = 7i-1/li1 i=2,3,..,n'
l; = Bi — ajuiq i=2,3,..,n'
g1 = di/ly
gi = (di — asgs1)/li 1=2,3,..,n'
Notice that the right hand side of Eq. A1.10 is now
Ft = F; —mMj;(enigni-1 — dpi)j

Backward Substitution

The backward substituation to obtain the solution in the porous blocks is simply

1 J—
cnl k+l = cjk+1

Ci'k+1 =8 uiciﬂ'k+1 i=n-1,n-2,..1

The solution obtained with above procedures have been compared with
the analytical solution given by Tang et al. (1981) (see page 86) for transport in
plane fractures. A very good agreement is obtained for the concentration profile
along the fracture and inside the porous matrix. Calculations were also carried
out to evaluate the errors induced by assuming a one dimensional transport in
the porous matrix where a trully two—dimensional approach is required.
Comparisons with the results of Grisak and Pickens (1980) and Noorishad and
Mehran- (1982) who employed a two dimensional formulation of the diffusion
process inside the porous blocks show that the agreement is within 1%. The
authors also claim that the solution is little sensitive to the size of space and time

increments.
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APPENDIX 2
Numerical solution of an Integrodifferential Equation.

We give here an algorithm to treat the time derivatives and the
convolution product appearing in equations such that Eq. [3.166]. We disregard
is this annex the spatial approximation of the convection—dispersion operator
which can be carried out with finite difference or finite element approximations.

The integro—differential equations apearing in the modeling of solute
transport in aggregated media can be symbolically written

t
ba 50— g, f dp(t-8)/ds In(s) ds = A[Ca(t)] + b [A2.1]
0

where p is a function referred as "Memory Function”, and related to the function
B¢ in equation [3.166]. For above formulation, p is in fact the solution of the
diffusion ‘equation with homogeneous boundary and initial conditions, and the
convolution product stands for the time derivative of the average immobile
concentration. A[], in the right hand side of Eq. (A2.1] is the spatial
convection—dispersion operator and b corresponds to a possible sink/source term.
The development of the following algorithm uses th&fact that p can be expressed
a8 an infinit sum of exponentials. To derive a discrete time integration formula,
Hornung (1987) first integrates by parts equation [A2.1]. This leads to

t
2
0o 30 — g1a | p(t—5) L2C8(s) ds + Bin p(0) %)

0
— Binp(t) SE5(0) = A[Ca(t)] + b [A2.9]
At time t+h, this expression reads

t+h
o 522~ in | p(t+b-5) LC8(s) ds + Bim p(0) SC(t-4h)
0
— Binp(t+h) ICm(0) = A[Ca(t+B)] + b [A2.9

In the following we use C; and C'; in place of Cy(t;) and 8Cn/8t(t;), respectively.
(t;) is the time series discretizing the time interval. With this discretization of
time, above equation is approximated by

j ti C's. —C' jet
. . j+1
0mC'j+1 — bOip ZC_'I_T?'_H- p(tj+1—s) ds — 0imﬁl—{ P(tjd—s)ds +

i=1 ti-1 13
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Bin C'jot = Oim pj11C'0 = A[Cju] + b [A2.4]

Using the fact that,

ti tj-is2
f p(tj.1—8) ds = f p(s) ds, [A2.5]
by bj-i-1
the approximation
Cju=Cj+ -}21- (C'j + CY) [A2.6]

and rearraging, it comes

t1
(0w + Oin —-glil—"’f p(s)ds —%A)C'jd = A[C; + 1EI—C'J'] +
to

17} t1
(-8 &in [ p(eas — i f (5)ds]C
i1 to
j-1 ( Abj-iat tj-i.2
—Qfl—"’ E U- p(s)ds —f p(s)ds} C'i +
i=1 © bj-i bj-ia1
P tj+l
[0impj+1 - (l—Joj)j‘l—m p(S)dSJ Co+b [A2.7]
b

where .&; is equal to 1 if j=0 and O otherwise. Notice that Eq. EA2.5] is a
property of p(% fundamental for the development of Eq. [A2.7]. If the time
increment, h, is constant, integrals involving the function p can be calculated
once and for all. Above formula relates the time derivative of the concentration
in the mobile phase at time, t+h, left hand side, to the spatial operator, first
term of the right hand side and to the history of the phenomena through all the
time variations already experienced by C, all other terms in the rigth hand side.
Remark that, due to the properties of p, the overall contribution of the Cj' only
needs to be saved and not individual C;'. To complete the procedure, a finite
difference or finite element approximation must be carried out to approximate
A[.]. We give hereafter another algorithm.

The following algorithm due to Herrera and Yates (1977) proceeds in a
slightly different way to take advantage of the particular properties of p(t). For
numerical calculations, the infinit sum of exponential appearing in p(t) must first
be approximated by a finite sum. Here also we consider the problem of time
integration only, and disregard the spatial approximation. Consider the
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convolution product

. .
f p(t-s) Fon(s) ds [A2.8]
0
where p is given by:
@ .
p(s) = 2 cie'biS [A2.9]
i=0

This convolution product appears for example in Eq. [3.166;]. Notice that since p
is a sum of exponential, it does not make any difference if p or dp/dt appear in
the convolution product. The generalit ofy what follows is preserved. The
method proposed by Herrera and Yates &977), consist to construct a familly of
functions p, such that :

0] e v}
f p(s) ds = f pu(s) ds [A2.10]
0 "0
and of course presenting only a finit number of terms in the summation. Since a
simple direct truncation of the infinit sum would violate this requirement, the

authors propose to derived py in the following way.
First we integrate by parts equation [A2.8]; which gives

t t t
| f pli=s) §22(s) ds = [p(t-5)G32¢)| - f at—s) L08s) s (A2
0 0

§<0
t . éC . .
where p(t)= f p(s)ds. Given that p(0)=0 and that F1(0)=0, it remains
0
f 60 . 82C
f p(t—8) m—"‘(s) ds =-— f p(t—s) 5 3(s) ds. [A2.12]
0 0

Notice that p is also an infinit sum of exponentials. We note pn the function
corresponding to the sum of the first n terms. Thus, the convolution integral

above is approximated by

t

t
f p(t—s) -g(t)—'ﬂ(s) ds = —f Pn(t—8) Q;(E—'%(s) ds. [A2.13]
0 0
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Integrating by parts one more time the integral on the right hand side it comes

J‘ tpn(t ) 2Cy ik Cm [—a—-(s )Pn t—s] + f tp,'l(t—s) g(ti(s) ds [A2.14]

0 580 0

where ' denotes the derivation. Notice that now p(0) is not equal to 0. Hence, it
comes

fpn(t—s) T0%s) ds = — LCn(t)pm(0) + f pA(t-s) 9°n(s) ds . [A2.15]

0

Integrating [A2.9], the following expression is obtained for 2,

[ 4]
p(t) =K — 2{;—: e Ont [A2.16)
i=0
[01]
where K= 5(0). Notice that p(w) = pn(w) and that p,(0) = 2 % . We note
n
i=n+l

Pn(0) = Ay. We can now define a function pn such that the initial convolution
product, Eq. [A2.8], is approximated by:

t t
f pn(t—s) Frs) ds = -5—(t)pn f py(t—8) g%(s) ds. [A2.17]
0

0

Remarking that we have the following relation,

%Kn(t)pa f 72(0) Fn(s) (1) [A2.18]

where ¢ is the Dirac—function, it comes

t t
[ oae-s) §2a6) as = [ pute-5) §8206) - .0 P (A28
0

0

from which we define the function p, by
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n
palt) = 24(6) = 2, (0)6() = — Ans(t) + Y cie. [A2.20)
i=0

Remark that p, has in addition to the trucated sum a Dirac—function located at
the origin with a mass accounting for the truncated terms. So defined, p, verifies
Eq. [A2.10]. Using this function py, in place of the function p in the convolution
product leads to a transport equation of the form

I t
L[Cu] — An SS8(1) Zcie-bitf ebi® Lon(g)ds = 5 %) [A2.21]
i=0 0

where L[Cy] is the spatial operator.” With this algorithm, all we have to save
from one time step to another are the n integrals corresponding to the n terms
retained in the truncated sum. When time integration is performed, the integrals
on the left hand side are easily updated by adding to their current value the
contribution of the current time step. So as in the previous algorithm, the global
contribution of previous time derivatives only has to be saved and not the
individual values. For example, if the spatial discretization has N nodes, and if
we keep n terms in the sum, only Nn values will be stored. Notice also that with
this algorithm we are free to use any time step we want. Typical values of n for
transport in leaky aquifers are between 0 and 5. In fact, since when t increases
the error decreases, one can use large values (<5) at the beginning and smaller
values later, SO or 1). According to Herrera et al. a value of 0 is most of the time
sufficient. Also, it is intersting to remark that for short times we have at our
disposition some simple approximations for p. Thus, it seems that a main
problem in any numerical algorithm will be to decide when to shift from a short
time approximation to a sum of exponentials and how many terms should be
used. Since an estimation of the error can be obtained, estimation of A,, we
should be able to decide at any time of the number of terms to be kept.
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APPENDIX 3

Some extensions of the TFM to adsorbed solutes or species undergoing a decay
process.

In paragraph 4.2, equations [4.8] and [4.9] give the average concentration
profile for a solute that does not interact with the porous matrix and/or does not
undergo any decay process. These results can be easily extended to the case of
solutes with a linear adsorption isotherm, or undergoing a decay process.

Fztension to adsorbed chemicals.

If we assume an adsorption process with a linear adsorption isotherm, a
partition coefficient K and a local equilibrium, the breakthrough time for a
molecule of that chemical is, Jury and Collins (1982), _

ta = Kt' [A3.1]

where t' is the breakthrough time for a molecule of nonreacting tracer under the
same flow conditions. Assuming that the partition coefficient is a random
variable with density function p(K%, the average concentration profile is then,

Ca(z,t) = f Cin(t-K1') f f (I 2)F1(it)iG(3)p(K) dK did¢ [A3.2]
0 0 0

Eztension to First Order Decay
If we assume that the rate of decay of the chemical is R, then the
breakthrough concentration at depth z, will be

C(at,t',R) = H(t~')Cin(t—t')e R* [A3.3]
where ¢' ig still the breakthroug time of a nondecaying tracer and H is the

heaviside function. If we assume that R is a random variable with density
function q(R) then the averaged concentration profile willbe given by

Cd(z,t)=f Cin(t—1') f f (2F(it)iG()q(R)e ! dKdid?  [A3.9]
0 0 0



Tables ~T.1—-

Tab. 3.1. Diffusion Equation, Average Immobile Concentration and
Surface to Volume: Ratio for various aggregates.

Aggregate Immob. Liquid Average Immob. Function
Type Phase Equation Phase Conc. S’
. aCa _ l 3 2% - 1 2 _3
Spherical Grt = p; TR, Cin=3 fo p*Cadp g'=%
Aggregates
2 1
Rectangular , gcré = 75%%5 Cin = j; Cadp S'=%
Aggregates
o 8Ca _ 7% 0 ;.0C o (! 12
Cylindrical it = gﬁ 55,2 Cin=2 fo pCadp §'=2
- Aggregates
Hollow
Jij
Cylindrical o= 260,80y in=—2- [ 0Cadp  §'=2
p 9p\"dp P17, 22
Macropores

—Solute transport in the mobile region is in all cases above modeled
by the following equation:

. 2
R g+ (1-pR Kja - L ECy_0n 71
and dimensionless parameters, T,R,Z,5,p,7s are defined by equations [4.58], [4.59], [4.60]
— po = 1/r0. See also eq. [4.61].

— Useful boundary and initial conditions are given in the text.



Tables . -T.2—

Tab. 3.2 Functions Hq; and Hgs for various aggregate geometries

Geometry Hai Hao
. sinh 2\ + sin 2\ sinh 2A - sin 2\
Spherical ’\[cosh 2\ — cos 2/\] - A[cosh 2 — cos 2)\]
Cylinder with \ [ac+bd—ad+bc] ]\ [—ac—bd—ad+bc]
c2+d? c24d?
sealed ends :
. ginh 2\ — sin 2A sinh 2XA + sin 2\
Slabs with '\[cosh 2A + cos ZA] ’\[cosh 2A + cos 2,\]
sealed ends

—a = Beri(v2)), b = Beii(y2}), ¢ = Berg(y2)), d = Beip(y2))



Tables . -T.3—

Tab. 3.3 Local and average concentrations 1n51de aggregates of
various geometries. C| _ 0=0:Clp

SPHERICAL AGGREGATES

Local Concentration

2
C(t,p) —1+—2L—L81npm)e ~DTn’r*

n=1

Average Concentration

6 had e—DTn27r2
<C>(T)=1—? —_—

n=1

where T = DT/a?. ais the radius of the sphere and p € [0,1] is the normalized radius.

PIANE SHEET
1= [—a,a]X]—m,oo[X]—m,oo[.
Local concentration
N (2n+1) S (2n+1)
2n+1)a — x 2n+1)a + x
C(Tx)= ) (-1)" erfc[ ] + Y (-1)" erfc[ ]
E 2/Dt E 2¢Dt

Average Concentration

<C>(T) = 2/T/J7 + 44T Y (-1)" iest(ly)

n=1
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INFINITE BEAM WITH RECTANGULAR SECTION
= [—a,a]x[—b,b]x]—m,oo[

Local concentration

+ D% 2n+1,% 2m-+1,2
_16 (=" m ~ {[ ] +[ ]} (20+1)x7  (2m
Cleaay)= ZZ(2n+1)(2m+U e T

n=0 m=0

Average Concentration

[+ o]
=1-£
<C(t)>=1 ; 2

® _ Dtn%;2n+1,2, 2m+1,2
y (] PR
T
m=

(2m+1)2(2n+1)2

n=0 0

RECTANGULAR PRISM
Q = [—a,a]x[-b,b]x]—c,¢[
Local concentration

o w0 o

n+m+l
_b4 —ta, (2n+1)x7_ (2m+1)yxr__ (2141
(tx,y)=1 Z Z Z 2n+1) ST (2 1)C WSK_ZELCOSI_Q‘BILWS

n Om=01=0

where a.=

D[ (21+1)% | (2m+1)? | (2n+1)2
T[ a? i b 2 " c? ]

Average Concentration

I N
<C(t)> "%222 21+1)2 2m+1 2(2n+1)2

n=0m=01=0
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INFINITE CYLINDER
= [O;Q]x]—oo,oo[ (Cylindrical Symmetry)

Local concentration

@ _Da’nzt
Z T olaa) Jo(ray)

n=1

C(r,t)

alw

and where ap's are the positive roots of Jo(acq) = 0.

Average Concentration
—-a an®T
<C(T)>=1 —42 -
n=1
FINITE LENGTH CYLINDER

Q1 = [0,a]x[-b,8] (Cylindrical Symmetry)

Local concentration

o o
_ 1.8 -1)"Jo(ra 2n+1)71z —Dt[an?+(20+1)272/482
C(t,r,Z) =1 EE Z (éﬁl_—]).-)—agsqi%g:’ COS(_QT)_Q [ m ( ) ]

n=0m=0

and where ay's are the positive roots of Jo(aa) = 0.

Average Concentration
2 & —Talay> o~Ta?(2n+1)%r2/4p?
<om>=1-2Y Y
a27r2n_0m_o 0m?(2n+1) 2

where T = Dt/q?
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INFINITE HOLLOW CYLINDER
© = [a,b]x]-ww|[ (Cylindrical Symmetry)
Local concentration

o4}

Clr,t) =1— ,,ze—Danzt Ji2(ban)[Yo(ram) Jo(aon)-Y o (a0n)Jo(ren)]
’ [Jo?(aan)-J1%(ban)]

n=1
and where ay's are the positive roots of
ofJo(a@a)Yi(ba) ~ Yo(aa)Ji(ba)] = 0
Let p =r/a and py = b/a.
Average Concentration

[«

or ze-Danthlz(poan) ]

Jo? (an)-J1%(po an)

<C(t)>=1-

2 {ﬂo [JO(an)Yl(a’npo)—YO(Cl’n)J1(anpo)] +
po"—

n=1

[Yo(an)J 1( am)—Jo( an)Yl(arn)] }




‘Tables: T

Tab. 3.5 Laplace transforms of local and average concentrations
C(t,.)lt=0 = 0 and C(t")ll‘ = Cm(gt,.).

Geometry Local Concentration Average Concentration
Ca(s,r) Cin(s,r)
Plane cggg ; Ch @EJM Ch
Cylindrica;l IOO Ir) Ch 1231(1, 5 C
Spherical % 3;1113 ; Ch [% coth(p) — %2] Ch
Hollow Kg pa Ii pb :K: pb Ig pajCn 1?; K; a I: pb :K: pb I; pa)[Cn

where in every case p is such that: p? = s/



Tables. —T.8—

Tab. 3.6 Functions ifor the analytical
solution of transport through a mixture of particules.

Geometry af _ g'(s)
Plane 0 w'(s)tanh(wi(s))
Cylindrical 1 'wi(s)I—l[ﬂ:—s-ll
Io[w(s)]
Spherical 2 w'(s) coth(wi(s)) — 1

Tab. 3.7 Functions Hgy and Hgs for different geometries and
first—order kinetic adsorption.

Geometry Hgy; Hyo
Plane Ya8inh2py—psin2¢p —18i nh2¢y—p5in2¢
cosh2¢pp+cos2yp, cosh2¢a+cos2¢p;
Cylindrical " "
Spherical p28inh2pp+py8in2py —18i nh2p+ 981 n2¢

cosh2pr—cos2¢p; cosh2py—cos2¢p




Tables —-T.9—

Tab. 3.8 Block—Geometry Functions and volume to surface ratio
for some simple aggregate shapes.

Géometry a B(x)
Infinite Slab d tanh(x)/x
Cylindrical 2 11(2x) /xIo(2x)
Spherical -1;- (coth 3x)/x — ’%—2
~ Parallelepiped ZXY%%%-T-'ZX)' See (a) below

Hollow Cylinder &&’ZE%R% )l([K(I) Z: I; Z; :I ! Z; Ki Zz)

where Z; = Rix/a

(a) The BGF for the rectangular parallelepiped is

B(x) = 2255 5[ arn/(a1mn+x)]12m 202
T 1lmn

where the summation is made over positive odd integers and
O = a?r2(12/X2+m?/Y24n2/72).
The cube is a special case with X=Y=7Z=6a.

(b) The BGF for the quasi—steady state model is B(x) = a/(a+x2).



Tables -T.10—

Tab. 3.9 Time—Dependent Block Geometry Functions.

Geometry a B(x) Bi(t)
Cn n
Infinite Slab < tanh(x)/x 9 (2n—1)1%/4
Cylindrical = T4(2x) /xTo(2x) 1 An2/d
: R x2 2
Spherical T (coth 3x)/x —=5- 2/3 n27*/9
X Y7 See (a) below See (b) below

Par allelepiped m

QSS Model / of (a+x?) See (c) below

where A, is the n*® positive root of Jo(A) = 0.

(a) The BGF for the rectangular parallelepiped is

B(x) = 22 333 [stnn/(cana+3?))(mn) ?
T 1mn

01mn = a272(12/X2+m?/Y?+n?/272).
(b) The time—dependent BGF is given by

T 1mn
where for (a) and (b) the summation is made over positive odd integers.
(c) The time—dependent BGF for the QSS model is

Bi(t) = aexp(—at)



Tables

-T.11-

Tab. 3.10 First, Second and Third Moments of the breakthrough curve
for various equilibrium and nonequilibrium transport models.

LEA

Spherical Quasi—Steady Chemical
Aggregates State Nonequilibriu
' XR XR XR XR
2XR?2 2XR2,2X(1-4)?R? 2XR2,2X(1—4)2R2 2XR2,2X(R-1
Ha P P 157, P w i _(F‘
12XR%  12XR3,4X(1—6)°R?  12XR3,12X(1—4)?R3 12XR3, 12X (R~
H3 P? P2 oPy P2 Pw P2 -
A4X(1-6)°R3 6X(1—p)°R3 6X(R-1)
1052 w? F2




Tables -T.12—-

Tab. 3.11 Laplace transform of the breakthrough curve
for various transport models

. Model Laplace Transform of the
Breakthrough Curve.

Spherical Aggregate Ce(p)=A “P{%[l_[l+1‘1’(mp +G(p ))] 1/2”
Physical Nonequilibrium Ce(p)=A exp{l(%[ [1+£§(ﬂRp +H(p ))] 1/2]}

Chemical Nonequilibrium - Ce(p)=A exp{ [ [1+p‘9[ '@EHHM”

Local Equilibrium Ce(p)=A exp[ [ [1+ Ji/zn

A is the flux concentration applied at the surface of the column
F is the coefficient in the first—order rate chemical process.
B is defined Eq. [3.60b)

G(p) 37JE cothJ—

H(p)= p+w

7'=7/[R( l_E)] and 7 is the coefficient given Eq. [3.60a] multiplied by Rip.
w is defined



Tables -T.13—-

Table 3.12 Effective Dispersion Coefficients for various

aggregate shapes
Geon_letry Dispersion Coefficient
2.,2n.2
Slab De=Dy + (1=0)2"vRip
3DaR?
2 2R.2
Cylinder De=Dnt * (1-p)a’v?Rin
8D,R2
2.,2p.2
Spherical De=Dnd * (1-¢)a’v’Ria
15D4R2
2 2R .2
Cyl. Macropore De=Dn * (1=0)b*v°Rin [2ln(§)—1]
4D,R?
2 ,2R.2
QSS Model De=Dud * (1-0) *v*Rizf
oR?

=0/ 6.
n each case, a, is the characteristic dimension of the aggregate and f.
cylindrical macropore b is the radius of the soil column.





