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Abstract

Cholesterol metabolism is greatly affected in fish fed plant-based diet. The regulation of cho-

lesterol metabolism is mediated by both transcriptional factors such as sterol regulatory ele-

ment-binding proteins (SREBPs) and liver X receptors (LXRs), and posttranscriptional

factors including miRNAs. In mammals, SREBP-2 and LXRα are involved in the transcrip-

tional regulation of cholesterol synthesis and elimination, respectively. In mammals, miR-

33a is reported to directly target genes involved in cholesterol catabolism. The present

study aims to investigate the regulation of cholesterol metabolism by SREBP-2 and LXRα
and miR-33a in rainbow trout using in vivo and in vitro approaches. In vivo, juvenile rainbow

trout of ~72 g initial body weight were fed a total plant-based diet (V) or a marine diet (M)

containing fishmeal and fish oil. In vitro, primary cell culture hepatocytes were stimulated by

graded concentrations of 25-hydroxycholesterol (25-HC). The hepatic expression of choles-

terol synthetic genes, srebp-2 and miR-33a as well as miR-33a level in plasma were

increased in fish fed the plant-based diet, reversely, their expression in hepatocytes were

inhibited with the increasing 25-HC in vitro. However, lxrα was not affected neither in vivo

nor in vitro. Our results suggest that SREBP-2 and miR-33a synergistically enhance the

expression of cholesterol synthetic genes but do not support the involvement of LXRα in the

regulation of cholesterol elimination. As plasma level of miR-33a appears as potential indi-

cator of cholesterol synthetic capacities, this study also highlights circulating miRNAs as

promising noninvasive biomarker in aquaculture.

Introduction

The continuously expanding production of aquaculture since the past decades has posed a

great challenge to the supply of fish meal and fish oil which are traditional ingredients in aqua-

feeds. However, their productions have been keeping stable and will not be promoted in the

future due to the quota policy controlling global fisheries captures [1]. Accordingly, vegetable
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ingredients with lower cost and wider availability have been widely used to replace the fishmeal

and fish oil and have achieved considerable advances during the past years [2]. However, the

mechanisms underlying the fish physiology affected by vegetable ingredients remain to be

investigated. Previous studies have shown that plasma cholesterol level decreased in rainbow

trout fed diet with either vegetable oils [3] or plant proteins [4]. This hypocholesterolemia

caused by vegetable ingredients was observed in Atlantic salmon [5–7], turbot [8], gilthead sea

bream [9–11], and European seabass [12,13]. Expression of genes involved in cholesterol

metabolism (cholesterol synthesis, transport, and elimination) were found to be affected by

vegetable ingredients in Atlantic Salmon and European seabass [7,14–16]. As cholesterol is not

only an essential component of the membranes [17] but also the precursors of several bioactive

compounds, including bile acids [18], steroid hormones [19] and vitamin D [20], the alteration

of cholesterol metabolism could inevitably result in an array of consequences that may affect

the normal physiology of the fish.

The processes and pathways of cholesterol metabolism are quite similar in fish and mam-

mals. Dietary cholesterol is incorporated with bile acids in micelles and then absorbed by

enterocytes or pyloric caeca in fish [21,22]. Fish are also able to synthesize cholesterol per se,

mainly in the liver with a metabolic process including more than 20 reactions [23]. Numerous

enzymes, receptor proteins and different kinds of lipoproteins are involved in the transport of

cholesterol to peripheral tissues via circulating system [24]. In addition to the direct cholesterol

excretion by the liver and the intestine, the bile acid synthesis in liver also contributes to cho-

lesterol elimination in fish, which is similar to mammals as well [25].

Cholesterol metabolism in mammals is known to be tightly regulated at transcriptional

level by sterol regulatory element-binding proteins (SREBPs) and liver X receptors (LXRs).

The SREBP family includes three isoforms: SREBP-1a, -1c and -2. Among them, SREBP-1a is

able to activate all SREBP-responsive genes including those involved in the syntheses of choles-

terol, fatty acids, and triglycerides, while SREBP-1c and -2 preferentially activate genes related

to fatty acid and cholesterol synthesis, respectively [26,27]. There are two isoforms of LXRs in

mammals, termed LXRα and β, which are nuclear receptors serving as lipid sensors in case of

lipid overload [28]. LXRα is predominantly expressed in liver, intestine, and adipose tissue,

while LXRβ is expressed at lower level but ubiquitously [29,30]. The genes involved in choles-

terol elimination have been reported to be directly activated by LXRs [31,32].

MicroRNAs (miRNAs) are a class of small non-coding RNAs with about 22 nucleotides in

length and serve for posttranscriptional regulation of gene expression by binding with 3’

untranslated region (UTR) of the target genes, resulting in mRNA cleavage or transcriptional

repression [33–35]. A miRNA can regulate more than 200 genes and each mRNA in turn has

multiple binding sites of miRNAs, constructing an extensive and complicated network for fine

regulation of gene expression [36,37].The high degree of sequence conservation across dis-

tantly related species further suggests essential role of miRNAs in biological process. As

expected, many fundamental biological processes have been reported to be regulated by miR-

NAs, including animal development [38], cell differentiation [39], signal transduction [40],

metabolism [41], disease [42] and apoptosis [43]. Likewise, numbers of genes involved in vari-

ous processes of cholesterol metabolism are reported to harbor target sites of miRNAs in their

3’UTR and are regulated by miRNAs. Among them, many studies in mammals have investi-

gated the role of miR-33 in cholesterol metabolism. In human, two isoforms of miR-33 were

identified, miR-33a located in the intron 16 of SREBP-2 and miR-33b, located in the intron 17

of SREBP-1, whereas, only miR-33a is present in mice [44]. Studies in mammals showed that

miR-33a was co-expressed with SREBP-2 [45–47] and target sites of miR-33a were located in

the 3’UTR of cholesterol efflux related genes such as transporter ATP-binding cassette A1

(ABCA1) and ABCG1 [45], bile acid synthesis enzyme cholesterol 7α-hydroxylase (CYP7A1)
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[47], and biliary secretion transporter like ABCB11 [46]. Some of these studies also indicated

that these genes were inhibited by miR-33(a) at mRNA or protein level. Plasma level of high-

density lipoproteins (HDL) and biliary secretion were correspondingly decreased by miR-33

(a) as well [44–48]. Though the pivotal roles of miRNAs in the development and metabolism

of fish have been investigated in some studies (for review see [49], few of them reported their

involvement in cholesterol metabolism of fish fed plant-based diet.

Therefore, in the present study, we performed an in vivo experiment with trout fed either

plant-based diet or marine diet and an in vitro assay based on stimulation of primary cell cul-

ture of rainbow trout hepatocyte with graded levels of 25-hydroxycholesterol to evaluate the

involvement of SREBP-2, LXRα and miR-33a in the mechanisms underlying the alteration of

cholesterol metabolism in rainbow trout.

Materials and methods

1. Ethics statement

Experiments were carried out in the INRA experimental facilities (UMR1419 Nutrition, Méta-

bolisme, Aquaculture, Donzacq, France) authorized for animal experimentation by the French

veterinary service which is the competent authority (A 64-495-1). Experiments were in strict

accordance with EU legal frameworks related to the protection of animals used for scientific

research (Directive 2010/63/EU) and according to the National Guidelines for Animal Care of

the French Ministry of Research (decree n˚2013–118, February 1st, 2013). Scientists in charge

of the experimentation received a training and a personal authorization (N˚B64 10 005). In

agreement with the ethical committee “Comité d’Ethique Aquitaine Poissons Oiseaux”

(C2EA-73), the present study does not need approval by a specific ethical committee since it

implies only classical rearing practices with all diets formulated to cover the nutritional

requirements of rainbow trout. During this study, fish were daily monitored. If any clinical

symptoms (i.e. morphological abnormality, restlessness or uncoordinated movements) were

observed, fish were sedated by immersion in 10mg/L benzocaine solution and then euthanized

by immersion in a 60mg/L benzocaine solution (anesthetic overdose) during 3 minutes.

2. Experimental design

In order to investigate how cholesterol metabolism is affected at transcriptional and post-tran-

scriptional levels in rainbow trout by the transcription factors SREBP-2 and LXRα a and the

miR-33a, respectively, we designed both in vivo and in vitro experiments. For the in vivo

experiment, the fish were fed either a totally plant-based diet (V) or the marine diet (M) con-

taining fishmeal and fish oil for 10 weeks. In vitro, primary cell culture of rainbow trout hepa-

tocyte were prepared and stimulated by graded levels of 25-hydroxycholesterol which served

as a reflection of short-term elevation of cellular cholesterol level. Finally, the genes related to

cholesterol-metabolism and miR-33a were investigated in both experiments in order to deci-

pher the regulation of cholesterol and lipid metabolism.

3. Diets, fish and sampling procedure

Two diets formulated to be isonitrogenous and isolipidic were manufactured in our experi-

mental facilities of Donzacq (France) with a twin-screw extruder (Clextral, Firminy, France).

Diet M contained fishmeal and fish oil as protein and lipid source, respectively. Diet V con-

tained a blend of vegetable oils (palm, rapeseed and linseed oils) and a blend of plant protein

sources. Diets were formulated to fulfill the requirements of rainbow trout according to NRC

recommendations [50]. Synthetic L-lysine, L-arginine, dicalcium-phosphate and soy-lecithin
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were added to diet V to meet the requirement of essential amino acids, phosphorous and phos-

pholipid in rainbow trout. Diet formulation and composition are showed in Table 1.

Rainbow trout with approximately 72 g initial body weight were reared in our experimental

fish farm (INRA, Donzacq, France-permit n˚A64-104-1) in open circuit tanks supplied with

spring water at 17˚C and under natural photoperiod. Fish were randomly distributed into six

tanks (70–80 fish per 300-liter tank; three tanks per treatment) and fed twice a day until appar-

ent satiation with either the plant-based diet (V) or the marine diet (M) for 10 weeks.

At the end of the experiment, nine fish were sampled from each tank 8 h after the last meal,

anesthetized with benzocaine (30 mg/L) and killed by a sharp blow to the head. Blood was

removed from the caudal vein into syringes rinsed with 10% EDTA and centrifuged (3000 g,

5min). The recovered plasma was immediately frozen and kept at -80˚C for miRNA expression

(six fish) and plasmatic parameters (nine fish) analyses. Liver and viscera from nine fish

were dissected and weighed for viscerosomatic and hepatosomatic index determination,

Table 1. Ingredients and analytical composition of the diets.

Ingredients (%) V M

Fish meal 0.00 58.42

Corn gluten 16.03 0.00

Wheat gluten 17.72 0.00

Soybean meal 10.13 0.00

Soy protein concentrate 15.19 0.00

Light white lupin 6.75 0.00

Dehulled pea 4.30 0.00

Extruded whole wheat, 3.38 25.26

Fish oil 0.00 14.09

Vegetable oils1 15.61 0.00

Mineral premix2 1.18 1.12

Vitamin premix3 1.18 1.12

Soy lecithin 2.11 0.00

L-lysine 1.52 0.00

L-methionine 0.34 0.00

CaHPO4.2H2O 3.21 0.00

Attractant Mix 1.35 0.00

Analytical composition
Dry Matter (DM, %) 94.41 90.13

Crude protein (% DM) 50.01 46.98

Lipid (% DM) 19.49 18.80

Sterols (% DM) 0.004 0.737

Energy (kJ/g DM) 23.84 23.24

Ash (% DM) 6.25 8.17

1 Vegetable oils: palm oil (30%), rapeseed oil (55%), linseed oil (15%)
2 Mineral premix (g or mg/kg diet): calcium carbonate (40% Ca), 2.15 g; magnesium oxide (60% Mg), 1.24 g; ferric

citrate, 0.2 g; potassium iodide (75% I), 0.4 mg; zinc sulfate (36% Zn), 0.4 g; copper sulfate (25% Cu), 0.3 g;

manganese sulfate (33% Mn), 0.3 g; dibasic calcium phosphate (20% Ca, 18% P), 5 g; cobalt sulfate, 2 mg; sodium

selenite (30% Se), 3 mg; KCl, 0.9 g; and NaCl, 0.4 g (UPAE, INRA).
3 Vitamin premix (IU or mg/kg diet): DL-α-tocopherol acetate, 60 IU; sodium menadione bisulphate, 5 mg; retinyl

acetate, 15,000 IU; DL-cholecalciferol, 3000 IU; thiamin, 15 mg; riboflavin, 30 mg; pyridoxine, 15 mg; B12, 0.05 mg;

nicotinic acid, 175 mg; folic acid, 500 mg; inositol, 1000 mg; biotin,2.5 mg; calcium panthotenate,50mg; and choline

chloride, 2000 mg (UPAE, INRA).

https://doi.org/10.1371/journal.pone.0223813.t001
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respectively. Liver was then immediately frozen in liquid nitrogen and kept at -80˚C for gene

and miRNA expression analysis.

4. Diet and whole body composition analysis

Proximate analysis of the experimental diets and whole body was determined according to the

Association of Official Analytical Chemists [51] as follows: Dry matter was analyzed by drying

the samples to constant weight at 105˚C for 24 h. Crude protein was determined using the

Kjeldahl method after acid digestion and estimated by multiplying nitrogen by 6.25. Crude

lipid was quantified by petroleum diethyl ether extraction using the Soxhlet method. Gross

energy content was determined in an adiabatic bomb calorimeter (IKA). Ash was examined by

combustion in a muffle furnace at 550˚C for 16 h.

5. Plasma metabolites analysis

Plasma glucose, triglycerides and cholesterol concentrations were measured on nine fish per

diet using commercial kits (Sobioda, France) adapted to microplate format, according to the

recommendations of the manufacturers.

6. Hepatocyte cell culture

6.1 Animals. Rainbow trout were maintained in tanks of open circuits with 18˚C and

well-aerated water in INRA experimental fish facilities of Saint Pée sur Nivelle, France and fed

a commercial diet (T-3P classic, Trouw, France). After two days fasting, trout were chosen for

hepatocyte isolation.

6.2 Hepatocyte isolation and culture. Isolated liver cells were prepared as previously

described [52]. Firstly, fish were anesthetized in a bath containing 30 mg L–1 benzocaine and

then killed using a 60 mg�L−1 benzocaine bath. Livers excised and minced with a razor blade

after in situ perfusion with liver perfusion medium (1×, 17701–038, Invitrogen, Carlsbad, CA,

USA). The minced livers were then immediately digested in liver digest medium at 18˚C for

20 min. After filtration and centrifugation (120 g, 2min), the resulting cell pellet was resus-

pended and centrifuged (70 g, 2min) three times successively in modified Hanks’ medium

(136.9 mmol L–1 NaCl, 5.4 mmol L–1 KCl, 0.81 mmol L–1 MgSO4, 0.44 mmol L–1 KH2PO4,

0.33 mmol L–1 Na2HPO4, 5 mmol L–1 NaHCO3 and 10 mmol L–1 Hepes) supplemented with

1.5 mmol L–1 CaCl2 and 1.5% defatted bovine serum albumin (BSA; Sigma Aldrich, Saint

Quentin Fallavier, France). Cells were finally taken up in modified Hanks’ medium supple-

mented with 1.5 mmol L–1 CaCl2, 1% defatted BSA, 3 mmol L–1 glucose, MEM essential

amino acids (1×, Invitrogen, Carlsbad, CA, USA), MEM non-essential amino acids (1×, Invi-

trogen, Carlsbad, CA, USA) and antibiotic antimycotic solution (1×, Sigma).

Cell viability (>98%) was assessed using the Trypan Blue exclusion method (0.04% in 0.15

mol L–1 NaCl) and cells were counted with a hemocytometer. The hepatocyte cell suspension

(CS) was plated in six-well Primaria culture dish (BD Biosciences, NJ, USA) at a density of

3×106 cells per well and incubated at 18˚C. The incubation medium was replaced every 24 h

over the 48 h of primary cell culture. Microscopic examination ensured that hepatocytes pro-

gressively re-associated throughout culture to form two-dimensional aggregates, in agreement

with earlier reports [53,54].

6.3 Primary hepatocyte stimulated by graded levels of hydroxycholesterol. The 48h-

cultured hepatocytes were stimulated with five graded levels (0, 1, 2, 3, 4 mg L-1) of 25-hydro-

xycholesterol (25-HC) (H1015, Sigma Aldrich, Saint Quentin Fallavier, France) and desig-

nated as C0, C1, C2, C3, C4, respectively, using ethanol as the solvent. After 16 h culturing

with 25-HC, the hepatocytes were harvested in TRIzol Reagent (Invitrogen, Carlsbad, CA,

In vivo and in vitro regulation of cholesterol metabolism in rainbow trout
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USA) for mRNA extraction and subsequent gene and miRNA expression analysis. The cell cul-

ture experiment was repeated twice for confirmation.

7. Gene expression analysis in liver and hepatocytes

Quantitative RT-PCR gene expression analyses were performed on liver (n = 6) and hepato-

cytes (n = 3). Genes studied were ATP-binding cassette transporter A1 (abca1), ATP-binding

cassette transporter G5 (abcg5), ATP-binding cassette transporter G8 (abcg8), cholesterol 7α-

hydroxylase (cyp7a1), HMG-CoA reductase (hmgcr), HMG-CoA synthase (hmgcs), sterol reg-

ulatory element-binding protein 2 (srebp-2), liver X receptor α (lxrα), 7-dehydrocholesterol

reductase (dhcr7), UDP glycuronosyltransferase (ugt1a3), Lanosterol 14α-demethylase

(cyp51), fatty acid synthase (fas), sterol regulatory element-binding protein 1c (srebp-1c), and

glucokinase (gck). Total RNA was extracted as previously described [55] using the Trizol

reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions and was

quantified by spectrophotometry (absorbance at 260nm). The integrity of the samples was

assessed using agarose gel electrophoresis. 1 μg of total RNA was used for cDNA synthesis.

The SuperScript III RNaseH-reverse transcriptase kit (Invitrogen) with oligo dT random

primers (Promega, Charbonniéres, France) was used to synthesize cDNA (n = 6 for cholesterol

metabolism genes in 6h). The primer sequences used for qRT-PCR analyses are listed in

Table 2. Quantitative RT-PCR assays were performed on the Roche LightCycler 480 II system

(Roche Diagnostics, Neuilly sur Seine, France). The assays were carried out using a reaction

mix of 6 μL per sample containing 2 μL of 76 times diluted cDNA, 0.24 μL of each primer

(10 μM), 3 μL of LightCycler 480 SYBR1Green I Master mix (ThermoFisher Scientific, Wal-

tham, USA) and 0.52 μL DNAse/RNAse free water (5 Prime GmbH, Hamburg, Germany).

The PCR protocol was initiated at 95˚C for 10 min for initial denaturation of the cDNA and

hot-start Taq-polymerase activation, followed by 45 cycles of a three-step amplification pro-

gram (15s at 95˚C, 10s at melting temperature Tm (60–65˚C), 15s at 72˚C), according to the

primer set used. Melting curves were systematically monitored (5 s at 95˚C, 1 min at 65˚C,

temperature gradient at 0.11˚C/s from 65 to 97˚C) at the end of the last amplification cycle to

confirm the specificity of the amplification reaction. Each PCR assay included replicate sam-

ples (duplicate of reverse transcription and PCR amplification) and negative controls (RT- and

cDNA-free samples, respectively). Elongation factor 1α (ef1α) showed no significant difference

among treatments and was used for the gene normalization. Relative quantification of target

gene expression was determined using the E-Method from the LightCycler 480 software (ver-

sion SW 1.5; Roche Diagnostics). In all cases, PCR efficiency (E) measured by the slope of a

standard curve with serial dilutions of cDNA ranged between 1.8 and 2.

8. miRNA expression analysis in liver, hepatocytes and plasma

miR-33a-5p (478347_mir GTGCATTGTAGTTGCATTGCA, ThermoFisher Scientific, Waltham,

USA) was detected by the TaqMan1 Advanced miRNA Assays (A25576, ThermoFisher Scien-

tific, Waltham, USA) in liver. The spike miR-39-3p (C. elegans) [56] (478293_mir TCACCGGG
TGTAAATCAGCTTG, ThermoFisher Scientific, Waltham, USA) was used for miR-33a normal-

ization and it was present at relatively constant levels among the treatments. Total RNA in

liver was obtained in the same way as that for gene expression analysis. 80ng RNA were used

for the poly(A) tailing, ligation and reverse transcription reactions to synthesize the cDNA of

all miRNAs followed by a miR-Amp reaction for cDNA pre-amplification according to the

manufacturer’s instruction. PCR was performed in a reaction mix of 6 μL containing 2 μL

cDNA (200 times diluted for liver cDNA and 50 times diluted for plasma cDNA), 2.67 μL 2X

Fast Advanced Master mix (ThermoFisher Scientific, Waltham, USA), 0.27 μL TaqMan1
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Advanced miRNA Assay (20X) (ThermoFisher Scientific, Waltham, USA) and 1.06 μL

DNAse/RNAse free water (5 Prime GmbH, Hamburg, Germany). The PCR protocol was initi-

ated at 95˚C for 20s for initial denaturation of the cDNA and the enzyme activation, followed

by 50 cycles of a 2 steps amplification program (3s at 95˚C for denaturation, 30s at 60˚C for

annealing). Each PCR assay included replicates for each sample (duplicates of reverse tran-

scription and PCR amplification) and negative controls (reverse transcriptase free and RNA

free samples). Relative quantification of the target miRNA was determined using the

E-Method from the LightCycler 480 software (version SW 1.5; Roche Diagnostics, Meylan,

France). PCR efficiency measured by the slope of a standard curve with serial dilutions of

miRNA cDNA ranged between 1.8 and 2.

Correspondingly, miR-33a-5p was also detected in plasma samples by the TaqMan1

Advanced miRNA Assays (A25576, ThermoFisher Scientific, Waltham, USA). miR-39-3p was

added and used as an exogenous control for normalization and showed constant levels in

plasma samples. Total RNA was extracted from plasma samples with the TRIzol LS reagent

(Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions and was

quantified by spectrophotometry (absorbance at 260nm). The cDNA synthesis of all miRNAs

and the following qPCR steps were performed in the same way as those previously described

for hepatic miRNA expression analysis. PCR efficiency measured by the slope of a standard

curve with serial dilutions of miRNA cDNA was nearly 2.0.

9. Statistical analysis

Results are expressed as means ± SD (n = 3 for body composition and gene and miRNA

expression in vitro; n = 6 for gene and miRNA expression in vivo; n = 9 for hepatosomatic, vis-

cerosomatic index and plasma parameters). Statistical analyses were carried out using one-way

ANOVA, followed by a Tukey test for post hoc analysis. Normality was beforehand assessed

using the Shapiro-Wilk test, while homogeneity of variance was determined using Levene’s

test. For all statistical analysis, the level of significance was set at P<0.05. Pearson correlation

Table 2. Sequences of the primer pairs used for gene expression analysis by qRT-PCR.

Genoscope1 or Genbank accession numbers

Gene Forward primer Reverse primer Paralogue 1 Paralogue 2

abca1 CAGGAAAGACGAGCACCTT TCTGCCACCTCACACACTTC GSONMG00078741001 GSONMG00074045001

abcg5 CACCGACATGGAGACAGAAA GACAGATGGAAGGGGATGAA GSONMG00075025001 /

abcg8 GATACCAGGGTTCCAGAGCA CCAGAAACAGAGGGACCAGA GSONMG00075024001 /

cyp51 CCCGTTGTCAGCTTTACCA GCATTGAGATCTTCGTTCTTGC GSONMG00031182001 GSONMG00044416001

cyp7a1 ACGTCCGAGTGGCTAAAGAG GGTCAAAGTGGAGCATCTGG AB675933.1 GSONMG00066448001 AB675934.1 GSONMG00037174001

dhcr7 GTAACCCACCAGACCCAAGA CCTCTCCTATGCAGCCAAC GSONMG00025402001 GSONMG00039624001

fas TGATCTGAAGGCCCGTGTCA GGGTGACGTTGCCGTGGTAT GSONMG00062364001 /

gck GCACGGCTGAGATGCTCTTTG GCCTTGAACCCTTTGGTCCAG GSONMG00033781001 GSONMG00012878001

hmgcr GACCATTTGGGAGCTTGTGT GAACGGTGAATGTGCTGTGT GSONMG00016350001 /

hmgcs AGTGGCAAAGAGAGGGTGTG TTCTGGTTGGAGACGAGGAG GSONMG00010243001 /

lxrα TGCAGCAGCCGTATGTGGA GCGGCGGGAGCTTCTTGTC GSONMG00014026001 GSONMG00064070001

srebp-1c CATGCGCAGGTTGTTTCTT GATGTGTTCGTGTGGGACTG XM_021624594.1 /

srebp-2 TAGGCCCCAAAGGGATAAAG TCAGACACGACGAGCACAA GSONMG00039651001 GSONMG00061885001

ugt1a3 CCACCAGCAAGACAGTCTCA CAACAGCACAGTGGCTGACT GSONMG00035844001 /

ef1α TCCTCTTGGTCGTTTCGCTG ACCCGAGGGACATCCTGTG AF498320.1 /

1 https://www.genoscope.cns.fr/trout/

https://doi.org/10.1371/journal.pone.0223813.t002
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coefficients were calculated based on data of normalized genes or miRNA expression calcu-

lated by the E-Method from the LightCycler 480 software (version SW 1.5; Roche Diagnostics,

Meylan, Fance). Statistical analyses were performed using R software [57].

Results

1. The effect of plant-based diet on growth, body composition and plasma

parameters in vivo experiment

After a 10-week trial, the final body weight (FBW) was significantly decreased in trout fed

plant-based diet despite the slightly higher level of protein in the plant-based diet. The hepato-

somatic index (HSI) and viscerosomatic index (VSI) of trout were not affected by the diets as

fish body composition, including protein, lipid, ash and energy contents. Regarding plasma

parameters, with exception of cholesterol which was significantly decreased in trout fed plant-

based diet, neither triglycerides nor glucose was affected by the diets. (Table 3)

2. Expression of genes involved in cholesterol metabolism

2.1 In vivo experiment. The expression of genes involved in cholesterol synthesis (hmgcr,
hmgcs, cyp51, dhcr7 and srebp-2) determined in the present study was significantly promoted

in trout fed plant-based diet. On the contrary, none of the genes involved in cholesterol elimi-

nation (cyp7a1, ugt1a3, abcg5, abcg8, abca1 and lxrα) showed significantly different expres-

sions between trout fed marine diet or plant-based diet. (Figs 1–3)

2.2 In vitro experiment. The expression of genes involved in cholesterol metabolism was

also evaluated in the hepatocytes stimulated by 25-HC. The expression of all cholesterol syn-

thetic genes (hmgcr, hmgcs, cyp51, dhcr7 and srebp-2) was significantly inhibited with the

increasing levels of 25-HC. Similarly, the expression of some genes involved in cholesterol

elimination (cyp7a1, ugt1a3, abcg8, and abca1) was also found to be significantly decreased

when 25-HC concentration increased. By contrast, lxrα was not affected by increasing levels of

25-HC. (Figs 3 and 4)

Table 3. Growth performance, body composition and plasma parameters of rainbow trout fed the experimental diets for ten weeks.

M V

Mean SD Mean SD P value

Final body weight (g) 311.44a 40.87 223.72b 23.91 <0.001

HSI (%) 1.34 0.28 1.15 0.12 0.337

VSI (%) 13.14 1.14 13.30 0.68 1.000

Body composition
Dry matter (DM, %) 31.57 1.04 31.70 0.38 0.845

Protein (% DM) 51.69 0.67 51.97 0.31 0.536

Lipid (% DM) 40.20 1.68 40.30 0.47 0.923

Ash (% DM) 6.22 0.48 6.65 0.15 0.222

Energy (Kg/g DM) 28.56 0.51 28.61 0.16 0.863

Plasma parameters
Cholesterol (g L-1) 3.55a 0.85 2.10b 0.25 <0.001

Triglyceride (g L-1) 3.46 2.31 3.87 1.41 0.651

Glucose (g L-1) 0.85 0.20 0.87 0.11 0.809

a, b Mean values with different superscript letters were significantly different (P<0.05; One-way analysis of variance, Tukey’s test)

HSI, Hepatosomatic index = 100 × liver weight/body weight; VSI, Viscerosomatic index = 100 × viscera weight/body weight.

https://doi.org/10.1371/journal.pone.0223813.t003
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3. Expression of genes involved in lipogenesis

In vivo, the expression of fas was significantly increased in trout fed plant-based diet, whereas

srebp-1c expression remained stable. The expression of gck was significantly decreased in trout

fed plant-based diet. (Fig 5)

In vitro, fas was more expressed in hepatocytes when the level of 25-HC increased, while

the expression of srebp-1c was significantly inhibited with increasing levels of 25-HC. The

expression of gck was significantly increased by 25-HC at the concentration from C1 to C3. At

the highest concentration (C4), the level of expression of gck was no more different from all

the other treatments. (Fig 6)

4. miR-33a expression and plasma abundance

The hepatic expression and the plasma abundance of miR-33a were both significantly

increased in trout fed plant-based diet in vivo. Results of the in vitro experiment showed that

the expression of miR-33a in hepatocytes was significantly inhibited by increasing levels of

25-HC. (Figs 7 and 8)

5. Analysis of correlations

A significant correlation was found between hepatic expression of miR-33a and plasma level of

miR-33a. In vivo, the expression of miR-33a in liver positively correlated with genes involved

in cholesterol synthesis (hmgcr, hmgcs, cyp51, dhcr7 and srebp-2). The plasma level of miR-33a

Fig 1. Gene expression involved in cholesterol synthesis in the liver of rainbow trout fed marine (M) diet and (V) vegetable diet. Expression values

were normalized by ef1α. Values are means (n = 6), with their standard deviations represented by vertical bars. a, b Mean values with unlike letters were

significantly different (P<0.05, One-way analysis of variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g001
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was also positively correlated with cyp51 and srebp-2 but correlations with the other cholesterol

synthetic genes (hmgcs, hmgcr and dhcr7) were not confirmed. In vitro, the expression of miR-

33a in hepatocytes showed significant positive correlation with the expression of hmgcr, cyp51,

dhcr7 and srebp-2. (Table 4)

With regard to cholesterol elimination, the expression of miR-33a in liver positively corre-

lated with the hepatic expression of cyp7a1 and abcg5 but not with the expression of ugt1a3,

abcg8, abca1 and lxrα. Similarly, the abundance of miR-33a in plasma positively correlated

with the hepatic expression of cyp7a1 and abcg5 as well as abcg8. In vitro, the expression of

miR-33a in hepatocytes also positively correlated with many genes involved in cholesterol

elimination, including cyp7a1, ugt1a3 and abca1. (Table 4)

Regarding lipogenesis, in vivo, miR-33a levels in liver and plasma positively correlated with

the expression of both fas and srebp-1c. A negative correlation was also found between miR-

33a and gck gene expression in liver. In vitro, the correlation was different from in vivo find-

ings, with miR-33a in hepatocytes showing a negative correlation with fas but positive correla-

tion with srebp-1c. (Table 4)

Discussion

Using both in vivo and in vitro experiments, the present study investigated the underlying

mechanisms involved in the regulation of cholesterol metabolism in rainbow trout. The tran-

scriptional factor SREBP-2 and the posttranscriptional factor miR-33a were found to be

affected in vivo and in vitro, strongly supporting their involvement in cholesterol homeostasis

in rainbow trout.

Fig 2. Gene expression involved in cholesterol elimination in the liver of rainbow trout fed marine (M) diet and (V) vegetable diet. Expression

values were normalized by ef1α. Values are means (n = 6), with their standard deviations represented by vertical bars. (P>0.05, One-way analysis of

variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g002
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The growth performance was significantly decreased in trout fed plant-based diet, as previ-

ously demonstrated in other studies [58,59]. A variety of vegetable-specific compounds [60]

and the deficiency in n-3 long-chain polyunsaturated fatty acids (LC-PUFA) and cholesterol

in plant-based diet may exert the detrimental effect on growth performance. As expected, the

cholesterol level in plasma was decreased in the trout fed plant-based diet, which may be attrib-

uted to the decreased supply of cholesterol [61], the soybean protein inclusion [62], or other

vegetable substances that exert lowering effect on plasma cholesterol, such as isoflavones [63],

phytate [64,65] and phytosterols [66].

In trout fed the plant-based diet, expression of genes involved in cholesterol synthesis

(hmgcr, hmgcs, cyp51, dhcr7) as well as their master regulator srebp-2 increased, suggesting a

promotion of the synthesis of cholesterol regulated by SREBP-2 to keep cholesterol homeosta-

sis when trout were fed plant-based diet devoid of cholesterol. This concordant upregulation

of cholesterol synthetic genes and srebp-2 was also found in other studies in trout [59] and

Atlantic salmon [5,14,15] fed plant-based diet. In the present study, consistent results linking

SREBP2 and cholesterol synthesis were also obtained in vitro with the concomitant decreased

expression of srebp-2 and genes involved in cholesterol synthesis in response to increasing lev-

els of 25-HC. 25-HC is an oxysterol produced endogenously during cholesterol hydroxylation.

It is often used in cell culture as a reflection of short-term elevation of cellular cholesterol level

[67,68]. Both cholesterol and 25-HC could inhibit the activation of SREBP but through differ-

ent mechanisms [69]. Thus, the graded inhibition of the expression of cholesterol synthetic

genes and srebp-2 by 25-HC indicated that the cholesterol synthesis was finely regulated by the

cellular cholesterol content in rainbow trout. This regulation mediated by SREBP-2, which has

been well studied in mammals [70] was also conserved in fish. Altogether, these results support

the conclusion that cholesterol depletion contributes to enhance the mechanisms of choles-

terol synthesis in trout fed plant-based diet.

Unlike cholesterol synthesis, the expression of genes involved in bile acid synthesis and cho-

lesterol excretion (cyp7a1, ugt1a3, abcg5, abcg8, abca1) were not affected in the present study

when trout were fed the plant-based diet. In mammals, it was reported that the expression of

cyp7a1 [31], abcg5, abcg8 [32,71] and abca1 [72,73] were all subjected to the transcriptional

regulation by LXRs. The absence of modulation of the expression of these genes in our in vivo

study is therefore in agreement with the expression of lxrα that was also not affected by the

composition of the diet. A negative impact of plant-based diet on the expression of cyp7a1,

abcg8 and lxrα had been yet previously recorded in trout fed plant-based diet. However, this

regulation was observed after a longer feeding trial, 6-month [59] compared to 10 weeks in the

present study, suggesting a progressive and adaptive metabolic response of the fish to the die-

tary cholesterol deficiency. In accordance with this hypothesis, it has been shown that the

expression of lxr is not affected by plant-based diet in Atlantic salmon fed during a short

period of 10 weeks [5] but significantly influenced after a longer period of two years [74]. In

the in vitro experiment, 25-HC failed to increase the expression of lxrα. The oxysterols identi-

fied as potent natural ligand for LXRs in mammalian cell-based systems are mainly 22(R)-

hydroxycholesterol, 24(S),25-epoxycholesterol and 24(S)-hydroxycholesterol [75–77], whereas

25-HC is only a weak activator of LXRs. Therefore, the inactivated expression of lxrα by

25-HC in the present study may be attributed to the weak activation of lxrα transcription by

25-HC or inadequate condition for lxrα gene expression stimulation, in terms of time or

Fig 3. Gene expression involved in cholesterol synthesis in trout hepatocytes stimulated with graded levels of 25-hydroxycholesterol (25-HC) in cell culture. Five

graded concentrations, 0, 1, 2, 3, 4 mg/L 25-HC are designated as C0, C1, C2, C3, C4, respectively. Expression values were normalized by ef1α. Values are means

(n = 3), with their standard deviations represented by vertical bars. a, b, c Mean values with unlike letters were significantly different (P<0.05, One-way analysis of

variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g003
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stimulus concentration, in the present primary cell culture of hepatocyte experiment. By con-

trast, the expression of cyp7a1, ugt1a3, abcg8 and abca1 was inhibited by 25-HC, which sug-

gested that other transcriptional or posttranscriptional factors are involved in the regulation of

these genes and are not compensated by lxrα in the present situation.

Regarding the lipogenic genes, the expression of fas was markedly increased in trout fed

plant-based diet. This induction of fas gene expression by plant-based diet could be one of the

reason why plant-based diet usually enhance body lipid content at long term [59]. The impact

of vegetable diet on lipid accumulation was unfortunately not confirmed in the present study

may be because of the duration of the trial, which was too short to start observing impact on

whole body lipid content. However, the expression of srebp-1c, which is known as the tran-

scriptional regulator of fas, was not affected by plant-based diet in the present study, indicating

that other mechanisms may contribute to the regulation of lipogenesis besides SREBP-1c, such

as the transcription factors upstream stimulatory factor 1 (USF1) and carbohydrate-responsive

element-binding protein (ChREBP) (reviewed by Wang, 2015) [78] or the posttranscriptional

regulators miR-122 and miR-370 [79,80].

In addition to its role in the transcriptional regulation of cholesterol catabolism, LXRs were

also known to enhance lipogenesis by activating SREBP-1c in mammals [81,82]. Therefore,

Fig 4. Gene expression involved in cholesterol elimination in trout hepatocytes stimulated with graded levels of 25-hydroxycholesterol (25-HC) in cell culture.

Five graded concentrations, 0, 1, 2, 3, 4 mg/L 25-HC are designated as C0, C1, C2, C3, C4, respectively. Expression values were normalized by ef1α. Values are means

(n = 3), with their standard deviations represented by vertical bars. a, b, c, d Mean values with unlike letters were significantly different (P<0.05, One-way analysis of

variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g004

Fig 5. Gene expression involved in lipogenesis in the liver of rainbow trout fed marine (M) diet and (V) vegetable diet. Expression

values were normalized by ef1α. Values are means (n = 6), with their standard deviations represented by vertical bars. a, b Mean values with

unlike letters were significantly different (P<0.05, One-way analysis of variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g005
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LXRs were suggested as the sensors of the balance between cholesterol and fatty acid metabo-

lism. In mammals, it has been suggested that 25-HC served as LXR ligand, increasing the

expression of fas via srebp-1c activation [83]. Though the increased expression of fas by 25-HC

was found in the present study, the expression of lxrα and srebp-1c was either unaffected or

inhibited by 25-HC, suggesting a different mechanism underlying the transcriptional regula-

tion of lipogenesis in fish or at least in primary cell culture of hepatocytes, which merits further

investigations in the future. As an important enzyme in the glycolytic pathway, the higher

expression of gck in trout fed marine diet could be attributed to the higher level of starch,

mainly provided by extruded wheat, in the marine diet. Actually, the expression of gck in rain-

bow trout is highly sensitive to the dietary protein to carbohydrate ratio and strongly increase

when starch is supplied to the fish [84]. However, the reason why gck expression was stimu-

lated in vitro by 25-HC under the concentration of 4mg/L is still elusive and needs further

investigations to understand the interlink between cholesterol and glucose metabolism.

In the present study, the expression of miR-33a was consistently modulated as srebp-2 gene

expression both in vivo and in vitro. While increased in trout fed the plant-based diet when no

cholesterol is provided to the fish, expression of miR-33a and SREBP-2 decreased in primary

Fig 6. Gene expression involved in lipogenesis in trout hepatocytes stimulated with graded levels of

25-hydroxycholesterol (25-HC) in cell culture. Five graded concentrations, 0, 1, 2, 3, 4 mg/L 25-HC are designated as

C0, C1, C2, C3, C4, respectively. Expression values were normalized by ef1α. Values are means (n = 3), with their

standard deviations represented by vertical bars. a, b Mean values with unlike letters were significantly different

(P<0.05, One-way analysis of variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g006

Fig 7. miR-33a expression in the liver and level in the plasma of rainbow trout fed marine (M) diet and (V) vegetable diet. Expression values

were normalized by miR-39. Values are means (n = 6), with their standard deviations represented by vertical bars. a, b Mean values with unlike

letters were significantly different (P<0.05, One-way analysis of variance, Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g007
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cell culture of hepatocytes stimulated with 25-HC. In trout, the miR-33a is located between

exons 16 and 17 of the two paralogues encoding SREBP-2 (Position 39884986–39885006 on

the NCBI reference NC_035088.1 sequence and position 71698078–71698058 on the NCBI

reference the NC_035089.1), confirming the intronic location of miR-33a in the srebp-2 gene

sequence as it is the case in mammals [44]. This suggests that miR-33a may play a conserved

role in rainbow trout and mammals, which is synergistically enhancing cellular cholesterol

level together with SREBP-2.

In mammals, abca1 and cyp7a1 were identified as the direct targets of miR-33a [45,47].

However, neither experiment implemented in the present study shows a consistent regulation

between abca1 and cyp7a1 gene expression and miR-33a expression. Conversely, positive cor-

relations were even found between abca1 and miR-33a in vivo and between cyp7a1 and miR-

33a both in vivo and in vitro. Additionally, other genes involved in cholesterol elimination,

such as abcg5 and ugt1a3, also showed positive correlations with miR-33a in vivo or in vitro.

These results oppose to the assumption that miR-33a directly target several genes involved in

cholesterol elimination in mammals. Therefore, further studies are needed to identify the

miR-33a-mediated regulation of cholesterol metabolism in rainbow trout in the future.

The potential synergy of miR-33a and SREBP-2 on cholesterol metabolism is supported by

the significant statistical correlations found between several cholesterol synthetic genes which

are known to be regulated by SREBP-2 and the hepatic abundance of miR-33a, both in vivo

and in vitro. These results strengthen the hypothesis that miR-33a may be indirectly involved

in the posttranscriptional regulation of cholesterol synthesis in trout. However, as miR-33a is

probably co-transcribed with SREBP-2, the correlation between miR-33a and genes involved

in cholesterol synthesis might be fortuitous. Therefore, further studies based on the utilization

of miR-33a mimic or inhibitor should be conducted to clarify the role of miR-33a in the regu-

lation of the cholesterol metabolism in rainbow trout.

Fig 8. miR-33a expression in the hepatocytes stimulated with graded levels of 25-hydroxycholesterol (25-HC) in

cell culture. Five graded concentrations, 0, 1, 2, 3, 4 mg/L 25-HC are designated as C0, C1, C2, C3, C4, respectively.

Expression values were normalized by miR-39. Values are means (n = 3), with their standard deviations represented by

vertical bars. a, b Mean values with unlike letters were significantly different (P<0.05, One-way analysis of variance,

Tukey’s Test).

https://doi.org/10.1371/journal.pone.0223813.g008
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Of note, hepatic and plasma miR-33a level in vivo showed significant positive correlation

between each other. Thus, as their hepatic counterpart, circulating miR-33a positively corre-

lates with genes involved in cholesterol synthesis and elimination. Since circulating miRNAs

were identified in humans as noninvasive biomarkers of diseases [85–87], for example, cardiac

myocyte-associated miR-208b and -499 were highly elevated in plasma from acute myocardial

infarction patients [85], the present study suggests that the abundance of miR-33a in plasma

could constitute an interesting biomarker of cholesterol metabolism in rainbow trout.

In conclusion, the present study provides new information about the involvement of

SREBPs, LXR and miR-33a in the regulation of cholesterol metabolism in fish upon cholesterol

supply. SREBP-2 and miR-33a seem to function synergistically to promote cholesterol synthe-

sis in rainbow trout. However, the posttranscriptional regulation of cholesterol catabolism

mediated by miR-33a remains questionable in trout, which still needs further study. The tran-

scriptional regulation of cholesterol catabolism by LXR is less susceptible, but other mecha-

nisms may underlie the regulation of cholesterol catabolism in trout. The observation that

miR-33a in plasma could be a relevant biomarker of cholesterol metabolism in trout opens

promising perspectives of utilization of circulating miRNAs as noninvasive phenotypic bio-

markers in aquaculture.
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Table 4. Correlation of miR-33a with cholesterol metabolism parameters.

Pearson value Cholesterol synthesis Cholesterol elimination Lipogenesis miR-33a 1

hmgcs hmgcr cyp51 dhcr7 srebp-2 cyp7a1 ugt1a3 abcg5 abcg8 abca1 lxrα fas srebp-1c gck

In

vivo

n = 12 L-miR-

33a

0.6013� 0.6444� 0.7704�� 0.7574�� 0.6651� 0.7087�� 0.3671 0.6499� 0.3382 -0.2204 -0.0462 0.8423�� 0.8151�� -0.6648� 0.9135��

n = 11 P-miR-

33a

0.5840 0.5525 0.6977� 0.5917 0.6112� 0.714� 0.2973 0.6591� 0.9265�� -0.3118 -0.1244 0.7803�� 0.8895�� -0.5607

In

vitro

n = 15 C-miR-

33a

0.4474 0.554� 0.5626� 0.5318� 0.5225� 0.5899� 0.6439�� \ 0.2184 0.5693� -0.1382 -0.5993� 0.5767� -0.2340 /

�P<0.05 is statistically significant with one star.

��P<0.01 is statistically very significant with two stars.
1 miR-33a: Correlation between liver miR-33a (L-miR-33a) and plasma miR-33a (P-miR-33a) in vivo.

Pearson correlation coefficient larger than zero is positive correlation, while Pearson correlation coefficient less than zero is negative correlation.

https://doi.org/10.1371/journal.pone.0223813.t004

In vivo and in vitro regulation of cholesterol metabolism in rainbow trout

PLOS ONE | https://doi.org/10.1371/journal.pone.0223813 February 28, 2020 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0223813.s001
https://doi.org/10.1371/journal.pone.0223813.t004
https://doi.org/10.1371/journal.pone.0223813


trout fed marine (M) diet and (V) vegetable diet and in trout hepatocytes stimulated with

graded levels of 25-hydroxycholesterol. Fig7 liver excel sheet: mean and SD of miR-33a expres-
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