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Abstract: Better knowledge of food webs and related ecological processes is fundamental to
understanding the functional role of biodiversity in ecosystems. This is particularly true for
pest regulation by natural enemies in agroecosystems. However, it is generally difficult to decipher
the impact of predators, as they often leave no direct evidence of their activity. Metabarcoding via
high-throughput sequencing (HTS) offers new opportunities for unraveling trophic linkages between
generalist predators and their prey, and ultimately identifying key ecological drivers of natural pest
regulation. Here, this approach proved effective in deciphering the diet composition of key predatory
arthropods (nine species.; 27 prey taxa), insectivorous birds (one species, 13 prey taxa) and bats
(one species; 103 prey taxa) sampled in a millet-based agroecosystem in Senegal. Such information
makes it possible to identify the diet breadth and preferences of predators (e.g., mainly moths for
bats), to design a qualitative trophic network, and to identify patterns of intraguild predation across
arthropod predators, insectivorous vertebrates and parasitoids. Appropriateness and limitations of
the proposed molecular-based approach for assessing the diet of crop pest predators and trophic
linkages are discussed.

Keywords: conservation biological control; trophic network; intra-guild predation; arthropod diets;
feces analysis; DNA sequencing; millet-based agroecosystem

1. Introduction

Crop pests cause substantial economic losses to agricultural production and thus threaten the
increase of crop productivity needed to achieve long-term food and nutrition security [1,2]. In addition,
excessive reliance on chemicals to control crop pests is not sustainable, and innovations relying on
ecologically-based approaches are urgently needed. Conserving functional biodiversity and related
ecosystem services, especially by controlling pests using their natural enemies, offers new avenues
to tackle challenges for the sustainable intensification of food production systems [3–5]. Predation
of crop pests by generalist predators, including arthropods and vertebrates, is a major component of
natural pest control [6]. A particularly important trait of most generalist predators is that they can
colonize crops early in the season by first feeding on alternative prey [7,8]. However, the breadth of
the “generalist” diet entails some drawbacks for pest control, such as intra-guild predation [6,9,10].
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A tuned diagnosis of diet breadth in generalist predators, including predation of non-pest prey, is thus
needed to better disentangle food webs (e.g., exploitation competition and apparent competition) and
ultimately to identify key drivers of natural pest control in agroecosystems. However, the importance
of generalist predators in the food web is generally difficult to assess, due to the ephemeral nature
of individual predator–prey interactions [9,11]. The only conclusive evidence of predation results
from direct observation of prey consumption, identification of prey residues within predators’ guts [9],
and analyses of regurgitates [12] or feces [13]. Metabarcoding via high-throughput sequencing (HTS)
offers new opportunities for deciphering trophic linkages between predators and their prey within food
webs [14,15]. Compared to traditional, time-consuming methods, such as microscopic or serological
analyses, the development of DNA metabarcoding allows the identification of prey species without
prior knowledge of the predator’s prey range. In addition, metabarcoding can also be used to
characterize a large number of species in a single PCR reaction, and to analyze several hundred
samples simultaneously [16]. Such an approach is increasingly used to explore the functional diversity
and structure of food webs in agroecosystems [15,17–20]. Like other molecular-based approaches,
metabarcoding only gives qualitative results on the presence/absence of prey species in the gut or
fecal samples [21]. However, this knowledge of the identity of prey consumed by predators of the
same species in a given environment enables a “pragmatic and useful surrogate for truly quantitative
information” [22].

In the present study, we used metabarcoding as a tool for identifying prey species from arthropods
and fecal samples of insectivorous vertebrates involved in the natural regulation of insect pests in a
millet-based agroecosystem in Senegal. The analysis of DNA sequences enabled us to reconstruct a
trophic network in sampled millet fields, from the diagnosis of diet composition of main predatory
arthropods and insectivorous vertebrates. Millet-based agroecosystems are particularly relevant for
the study of complex processes of natural regulation of crop pests, because of the existence of a diverse
set of natural enemy communities in these agroecosystems, including arthropod predators, parasitoids,
and insectivorous vertebrates [23–28]. In addition, millet production relies on pest regulation by natural
enemies, in the absence of any insecticide application by farmers. Appropriateness and limitations
of the proposed molecular approach for assessing the diet of crop pest predators and reconstructing
trophic networks in a given agroecosystem are discussed in the light of the results.

2. Materials and Methods

2.1. Field Sampling

Arthropod predators and fecal samples of insectivorous vertebrates were collected during the
2018 growing season in two (2 km-distant) millet fields (or in the vicinity for birds and bats) located in
the “peanut basin” in Senegal (Bambey, 14◦43’0.79” N; 16◦30’5.56” O). Ground-crawling arthropod
predators (i.e., ants and carabid beetles) were collected daily for a two-week period in millet fields
at the panicle stage, using dry pitfall traps (12-cm diameter, 14-cm depth). In all, 20 traps separated
by at least 4 m were installed in each field along four transects, to avoid interference between traps.
Plant-dwelling arthropods (e.g., earwigs, bugs and spiders) were collected during the same period,
with a mouth or a backpack aspirator (Bioquip Products, Compton, CA, USA). In all, 256 arthropod
specimens belonging to nine species were collected (Table 1). They were individually stored at −20 ◦C
for at least 24 h, to avoid regurgitation (the most important source of cross-contamination [12,29]), then
conserved in 90% ethanol for subsequent DNA analysis. A plastic tarpaulin was placed under two
neem trees, Azadirachta indica, for the village weaver bird, Ploceus cucullatus (Passeriformes, Ploceidae),
and four palm trees, Borassus aethiopum, for the Mauritian tomb bat, Taphozous mauritianus (Chiroptera,
Emballonuridae). Fecal samples were collected five times (26 August, 4–11–16–25 September) during
the millet reproductive stage. A total of 92 samples for birds and 80 for bats were individually collected
using clean cotton buds and placed in 2-mL microtubes filled with silica-gel granules to absorb moisture
and prevent the development of molds and DNA degradation.
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Table 1. Taxa and number of positive samples of prey species detected from nine arthropod predator
taxa (n = 256) collected from millet fields in Senegal.

Predator Number of
Samples Analyzed Prey

Order (Family)
Species Order Species Blast Identity

(%)
Positive Samples

(%)

Araneae
(unidentified) 12 Blattodea Odontotermes sp. 100 8.3

Sp.1 Coleoptera Carabidae sp. 99 8.3
Elateridae sp. 99 25.0

Diptera Rachispoda sp. 99 8.3
Lepidoptera Hypena masurialis 100 8.3

Sp.2 30 Blattodea Odontotermes sp. 100 10.0
Coleoptera Elateridae sp. 98 3.3

Omonadus floralis 100 3.3

Hemiptera Creontiades
pallidus 99 3.3

Lepidoptera Hypena masurialis 100 3.3

Orthoptera Calliptamus
barbarus 100 3.3

Sp.3 19 Coleoptera Omonadus
formicarius 99 5.3

Diptera Culex sp. 100 5.3

Hemiptera Creontiades
pacificus 100 5.3

Creontiades
pallidus 99 10.5

Hymenoptera Apocryptophagus
testaceus 98 5.3

Camponotus sp. 100 10.5
Ceratosolen

fusciceps 99 15.8

Coleoptera
(Carabidae) 43 Araneae Gnaphosidae sp. 100 2.3

Bradybeanus
scalaris Blattodea Odontotermes sp. 100 9.3

Diptera Atherigona sp. 97 9.3
Hymenoptera Camponotus sp. 100 4.7

Ceratosolen
fusciceps 99 14.0

Encyrtidae sp. 100 4.7
Sycophaga testacea 99 4.7

Lepidoptera Aegoceropsis sp. 100 2.3

Thysanoptera Frankliniella
schultzei 100 7.0

Dermaptera
(Forficulidae) 79 Hemiptera Creontiades

pallidus 100 1.3

Forficula
senegalensis Lepidoptera Hypena masurialis 100 1.3

Orthoptera Calliptamus
barbarus 100 1.3

Hemiptera
(Pentatomidae) 13 Diptera Cylindromyia

bicolor 100 7.7

Carbula curtana Pegoplata
nigroscutellata 100 7.7

Entomobryomorpha Entomobrya ligata 100 7.7
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Table 1. Cont.

Predator Number of
Samples Analyzed Prey

Order (Family)
Species Order Species Blast Identity

(%)
Positive Samples

(%)

Hemiptera
(Anthocoridae)

Orius maxidentex
40 Hemiptera Creontiades

pacificus 100 5.0

Creontiades
pallidus 99 7.5

Lepidoptera Amyna axis 100 2.5
Ephestia kuehniella 100 2.5
Hypena masurialis 100 2.5

Masalia nubila 97 2.5
Hymenoptera
(Formicidae) 15 Hemiptera Carbula sp. 97 6.7

Monomorium sp. Creontiades
pallidus 99 6.7

Hymenoptera Apocryptophagus
testaceus 98 6.7

Ceratosolen
fusciceps 99 6.7

Cryptanusia sp. 98 13.3

Pachycondyla sp. 5 Coleoptera Bradybaenus
scalaris 100 60.0

Lepidoptera Aegoceropsis sp. 100 20.0

Prey detected from arthropod predators with a > 97% threshold of correspondence with our own reference database
(Sow et al., 2018), BOLD or GenBank. All predator species were identified by specialists, except spiders (in progress).

2.2. DNA Extraction

DNA of the arthropod specimens was extracted using the EZ–10 96-well plate DNA Kit
(Biobasic Inc., Toronto, Canada). Here, the whole arthropod bodies were used for DNA extraction
because arthropod gut dissection is very time-consuming and increases contamination risk [29,30].
The external body parts were wiped with cotton wool previously soaked in 10% bleach before extraction.
All extractions were carried out according to the manufacturer’s protocol and by non-destructive lysis,
corresponding to individual incubation overnight in a mixture of 300 µL of animal cell lysis solution
and 20 µL of Proteinase K at 55 ◦C in an oven, with stirring.

DNA of fecal samples was extracted using a NucleoSpin 96 Plant II kit (Macherey-Nagel), according
to slight modifications recommended by Zarzoso-Lacoste et al. (2018) [31]. This kit provides the best
compromise between throughput DNA isolation (up to 192 samples in parallel), price and sequencing
success for predators and prey [14]. All fecal samples (n = 172 including 80 bird and 92 bat samples)
were frozen at −80 ◦C and bead-beaten for 2 × 30 s at 30 Hz on a Tissue Lyser (Qiagen) using a 5-mm
stainless steel bead, then extracted.

2.3. PCR and Illumina Sequencing

A 133 bp fragment of cytochrome c oxidase I (COI mini-barcode, [32]) was amplified from
arthropods and fecal samples using the primers and two-step PCR protocol previously described by
Galan et al. (2018) [14], then sequenced on a MiSeq Illumina platform (Illumina, San Diego, CA, USA),
using two independent runs for arthropods and vertebrate fecal samples. This short mini-barcode was
shown to effectively discriminate arthropod species in millet-based agroecosystems [28]. It also offered
the advantage of amplifying degraded DNA or rare DNA. In addition, Corse et al. (2019) [33] and
Tournayre et al. (2019) [34] showed that primers used to amplify this mini-barcode were among the
best over dozens of COI primer sets tested in silico. Several negative controls (n = 10) were included,
according to recommendations made by Galan et al. (2016) [35], such as: (i) negative controls for
DNA extraction (NCext), (ii) negative controls for PCR (NCpcr), (iii) negative controls for indexing
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(NCindex: unused dual-index combinations), (iv) positive controls for PCR (PCpcr) and (v) positive
controls for indexing (PCalien: DNA from beluga whale—Delphinapterus leucas—used to estimate the
read misassignment frequency). We performed three technical replicates on each DNA extract of fecal
and arthropod samples in order to control PCR stochasticity for rare DNA targets and to validate
positive results [36].

A first amplification step of the short 133 bp COI fragment was carried out using two universal
primers. For arthropods, primers (MG-LCO1490 5′-ATTCHACDAAYCAYAARGAYATYGG-3′

and MG-univ-R 5′- ACTATAAAARAAAYTATDAYAAADGCRTG-3′) adapted by Galan et al.
(2018) [14] from the original primer sets designed by Gillet et al. (2015) [32] were used.
For vertebrate feces, primers (MG2-LCO1490 5′-TCHACHAAYCAYAARGAYATYGG-3′ and
MG2-univ-R 5′-ACYATRAARAARATYATDAYRAADGCRTG-3′) adapted by Tournayre et al.
(2019) [34], were used (the bases in bold indicate the modifications to improve the primers). PCR
reactions were carried out in a final volume of 10 µL containing 5 µL of Multiplex Master Mix
(Qiagen, Hilden, Germany), 0.5 µM of each primer and 2 µL of DNA. PCR conditions in this first step
consisted of initial denaturation at 95 ◦C for 15 min followed by 40 cycles of denaturation at 94 ◦C
for 30 s, hybridization at 45 ◦C for 45 s and extension at 72 ◦C for 30 s, and a final extension step at
72 ◦C for 10 min. A second PCR step was performed to add individual-specific multiplexing tags
(called index i5 and index i7), consisting of short 8-bp sample-specific sequences and the Illumina
adapters (called P5 and P7) at the 5’ ends of each amplified DNA fragment to the first PCR. As all the
PCR products were mixed together (multiplexing) for MiSeq sequencing, indexes made it possible to
identify the origin of sequences and reassign them to each sample (demultiplexing). This second PCR
was carried out in a total volume of 10 µL containing 5 µL of Multiplex kit (Qiagen, Hilden, Germany),
0.7 µM of each primer, and 2 µL of products from the first PCR for each sample. PCR conditions
consisted of an initial denaturation step at 95 ◦C for 15 min followed by 8 cycles of denaturation at
95 ◦C for 40 s, hybridization at 55 ◦C for 45 s and extension at 72 ◦C for 60 s, and a final extension step
at 72 ◦C for 10 min.

The volume-to-volume mix of all the PCR products (4 µL per sample) was screened based on
fragment length resulting from excision on 1.5% agarose gel. The pool of specific PCR products was
cut to the expected size (328 bp corresponding to the size of the amplicon, including the gene-specific
primers, sequencing primers, indexes and adaptors) under UV light. The resulting library was
purified with the NucleoSpin Gel & PCR Clean-Up purification kit (Macherey-Nagel, Düren, Germany),
quantified by quantitative PCR (KAPA kit, Kapa Biosystems, Waltham, MA, USA), then sequenced on
a MiSeq sequencer with a 500v2 kit (Illumina, San Diego, CA, USA).

2.4. Sequence Analysis

Raw data from the Illumina MiSeq were deposited in the Zenodo data repository [37].
The paired-end sequencing data from the Illumina MiSeq system were processed using the method
described by Sow et al. (2019) [27]. We processed the paired-end sequencing data from the Illumina
MiSeq system with the FROGS pipeline [38]. We preliminarily used a home-made script available at
Dryad data repository [39] to merge pair sequences into contigs with FLASH v. 1.2.11 [40], and trim
primers with cutadapt v. 1.9.1 [41]. This script is particularly useful when using FROGS on data
produced with primers that vary in size between reads, which is not covered by the pre-process step of
FROGS. In our study, size variation in primers resulted from the addition of heterogeneity spacers in
adapters during the library construction to shift the reading frame [42]. In FROGS, we then filtered
sequences by length (expected value of 133b ± 10b), dereplicated sequences, removed chimeras using
the algorithm of Edgar et al. (2011) [43] implemented in VSEARCH v. 1.1.3 and clustered sequences
with SWARM v. 1.3.0 using a local clustering threshold using the default d-value (d = 1) [44].

Taxonomic affiliations for each OTU (Operational Taxonomic Unit) were returned using a
previously constructed reference database [28]. The database consisted of 234 sequences of 658 bp of
the mitochondrial cytochrome c oxidase 1 from species involved in the trophic web of the millet head
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miner (MHM, key millet pest) in Senegal [28]. Sequences absent from our database were compared
by NCBI Blast+ on public databases (BOLD Systems v. 3 [45], and GenBank [46]). The identification
was considered as ‘valid’ from a similarity threshold of 97 to 100%. Below that threshold, the OTUs
were considered unidentified. Filtering for false positives was carried out as proposed by Galan et al.
(2016) [35]. In short, we discarded positive results associated with sequence counts below two
OTU-specific thresholds, which checked respectively for cross-contamination between samples (using,
respectively, twelve and six negative controls for the arthropod samples and vertebrate fecal samples)
and incorrect assignment due to the generation of mixed clusters on the flowcell during Illumina
sequencing, using a false index-pairing rate for each PCR product of 0.02%, based on estimates from
Galan et al. (2016) [35] (see Table S1). For each sample, OTUs found in at least two of the three PCR
replicates were considered positive, and OTUs found in only one of the three PCR replicates were
removed. This strategy is the best compromise between eliminating false positives and conserving
low-biomass prey [47]. Lastly, for each identified prey, the number of sequences obtained for each PCR
replicate from a sample were summed.

3. Results

3.1. Sequence Analyses

We conducted Illumina MiSeq run to sequence 256 arthropod samples. In all, 4,333,970 reads
were generated (mean = 16,929.57, SD = 3264.68) and, after sequence filtering, 4,274,516 reads
(mean = 16,697.35; SD = 3262.51) remained. In all, 516 OTUs corresponding to environmental
contaminations, chimera, pseudogenes and sequences for which no relevant match was obtained
were also excluded from the analysis. Here, sequences of one pest, the millet head miner, Heliocheilus
albipunctella (Lepidoptera, Noctuidae), were deleted after filtering due to critical contamination of part
of the negative controls (NCext and NCpcr) for this taxon. On the 181 remaining OTUs, 91 OTUs
were identified to species or genus level using our own reference database and public reference
databases (Table S2). We then conducted another Illumina MiSeq run to sequence 172 vertebrate
fecal samples (92 from bats, 80 from birds). In all, 2,085,699 reads were generated (mean = 11,630.30;
SD = 5744.10) and, after sequence filtering, 1,957,455 reads (mean = 11,380.55; SD = 5240. 57) remained.
In all, 894 unidentified OTUs and 28 OTUs corresponding to environmental contaminations, such as
sequences of rodents, lizards (Gama gama), and humans, were also excluded from the analysis. Of the
522 remaining OTUs, 154 OTUs were identified to species or genus level (Table S3). The raw and
filtered tables of abundance for these two sequencing runs are available in the Zenodo data repository
(see link in Supplementary Materials).

3.2. Diet Composition of Predatory Arthropods

After assigning the identified OTUs as species, 27 arthropod prey taxa were identified from
the nine arthropod predators (n = 256) sampled from millet fields (Table 1). The diet of predatory
arthropods was assessed only on 25.4% (range 4.0–58.3) of the total number of samples tested. Among
positive samples, most reads belonged to predatory arthropods themselves (97.8% of the reads
obtained) and their diets were described only on 2.2% (range 0.1–7.0) of total reads obtained (Figure 1A).
The mean number of prey taxa detected per sample was the highest in carabid beetles (1.1, range 0–4),
ants (0.5, range 0–3) and spiders (0.4, range 0–2) and the lowest in the remaining predators including
anthocorid bugs (0.2, range 0–2), pentatomid bugs (0.2, range 0–2), and earwigs (0.04, range 0–1)
(Figure 1B). Across predatory arthropods, a high diversity of arthropod preys was observed in spiders
(14 species belonging to 11 families and seven orders), carabid beetles (nine species belonging to eight
families and six orders), ants (seven species belonging to six families and four orders), and anthocorid
bugs (six taxa belonging to five families and two orders). In contrast, the diversity of prey species
identified in earwigs (three species belonging to three families and three orders) and pentatomid bugs
(three species belonging to three families and two orders) was relatively low. Lepidoptera (detected on
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six of nine predators tested), Hemiptera (detected on five of nine predators tested), Diptera (detected
on four of nine predators tested) and Coleoptera (detected on four of nine predators tested) were the
most common insect prey taxa detected from predatory arthropods (Figure 2).Insects 2020, 11, x FOR PEER REVIEW 7 of 19 
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3.3. Diet Composition of Insectivorous Vertebrates

In all, 110 insect prey taxa were identified from fecal samples of insectivorous birds and bats
(Table 2). Diet of birds and bats was assessed on 13.8 (11 out of 80) and 93.0% (86 out of 92) of samples
tested, respectively. Few reads belonged to insect prey (10.5%) in bird fecal samples, whereas most
reads belonged to insect prey (61.0% of the reads obtained) in bat fecal samples (Figure 1A). A lower
diversity of prey species was observed in fecal samples of birds (0.4, range 0–4) compared to that of
bats (5.0, range 0–16) (Figure 1B).

Table 2. Taxa and number of positive samples of prey species detected in feces of two major insectivorous
vertebrates collected in the surrounding environment of millet fields in Senegal.

Predator Number of
Samples Prey

Order (Family)
Species Orders Family Species Blast Identity

(%)
Postive Samples

(%)

Chiroptera
(Emballonuridae) 92 Blattodea Macrotermes subhyalinus 100 2.17

Taphozous mauritianus Odontotermes sp. 100 2.72
Coleoptera Philonthus discoideus 98 1.09

Diptera Chrysomya marginalis 99 3.26
Hemiptera Anisops sardeus 100 2.17

Campylomma sp. 100 16.30
Creontiades pacificus 100 1.09
Creontiades pallidus 99 3.99

Hymenoptera Perilampus sp. 100 1.09
Lepidoptera Achyra coelatalis 99 38.04

Achyra nudalis 100 13.04
Acontia gratiosa 100 3.26

Acontia sp. 100 3.26
Adisura bella 100 11.41

Adoxophyes thoracica 99 3.26
Agrius convolvuli 100 3.26

Amyna axis 100 9.78
Ancylosis nubeculella 100 7.61

Anomis flava 100 3.80
Antheua simplex 99 3.26
Asota heliconia 98 1.63

Bastilla angularis 100 1.09
Brachynemata sp. 99 1.09

Cadra sp. 100 1.09
Caryocolum petrophila 99 1.09

Cerastis rubricosa 98 2.17
Chrysodeixis acuta 100 1.09
Condica capensis 100 3.26

Coniesta ignefusalis 100 1.09
Daphnis nerii 100 1.09

Deltote sp. 98 1.09
Duponchelia fovealis 100 2.17
Ebertidia haderonides 98 1.09

Ectopatria sp. 100 1.09
Ericeia inangulata 99 2.17

Franclemontia interrogans 99 1.09
Garella nilotica 100 5.43

Grammodes stolida 100 13.04
Helicoverpa armigera 99 3.26
Helicoverpa assulta 100 15.22

Heliocheilus albipunctella 100 7.61
Hippotion gracilis 100 2.17

Hyles sp. 100 3.26
Hypena holophaea 100 1.09
Hypena laceratalis 100 4.35
Hypena masurialis 100 4.35
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Table 2. Cont.

Predator Number of
Samples Prey

Order (Family)
Species Orders Family Species Blast Identity

(%)
Postive Samples

(%)

Isturgia disputaria 100 3.26
Isturgia pulinda 100 4.35
Lamoria imbella 100 3.26

Lepidoptera 100 1.09
Leucania commoides 100 1.09

Leucania sp. 98 1.09
Lophocrama

phoennicochlora 100 1.09

Marasmia poeyalis 100 4.35
Maurilia sp. 98 1.09

Morosaphycita oculiferella 98 2.17
Mythimna sp. 100 7.61

Noctuidae 100 7.61
Ortaliella palaestinensis 97 1.09

Pasiphila derasata 100 1.09
Pericyma sp. 100 1.09

Phazaca theclata 100 2.17
Polydesma umbricola 100 1.09
Polypogon fractalis 100 1.09
Psilopleura vittata 99 1.09

Pyrausta sp. 100 1.09
Rhabdophera exarata 99 2.17

Rhesala moestalis 100 2.17
Scoliopteryginae sp 100 2.17
Scopelodes sericea 98 1.09
Scopula adelpharia 100 1.63
Sesamia calamistis 100 8.70

Sphingomorpha chlorea 100 1.09
Spodoptera cilium 100 4.35
Spodoptera exigua 100 7.61

Spodoptera littoralis 100 1.09
Spodoptera sp. 100 2.17

Spoladea recurvalis 100 10.87
Stegasta sp. 98 1.09

Sympis rufibasis 99 1.09
Tegostoma sp. 100 8.70

Theclinae 97 1.09
Thylacoptila paurosema 100 4.35
Thysanopyga cermala 99 1.09
Traminda neptunaria 100 1.09

Trichoplusia ni 100 10.87
Trigonodes hyppasia 100 3.26

Trisuloides sp. 99 1.09
Uraba lugens 98 2.17

Vanessa cardui 100 1.09
Neuroptera Chrysoperla sp 98 1.09

Mallada signatus 98 4.35
Plesiochrysa atalotis 99 1.09

Orthoptera Acheta domesticus 99 2.17
Arcotylus longipes 99 1.09

Gryllus bimaculatus 100 5.43
Gryllus campestris 98 1.09
Locusta migratoria 100 1.09

Oecanthus pellucens 99 1.09
Oedaleus decorus 99 3.73

Oedaleus sp. 98 1.09
Stenohippus maculifemur 99 1.09

Trilophidia conturbata 99 1.45
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Table 2. Cont.

Predator Number of
Samples Prey

Order (Family)
Species Orders Family Species Blast Identity

(%)
Postive Samples

(%)

Passeriformes
(Ploceidae) 80 Coleoptera Elateridae 99 1.25

Ploceus cucullatus Dermaptera Forficula senegalensis 100 6.25
Diptera Bryophaenocladius sp. 100 1.25

Hemiptera Carbula sp. 98 1.25
Hymenoptera Pachycondyla sp. 100 2.5

Perilampus sp. 100 1.25
Pristomerus pallidus 100 1.25

Lepidoptera Heliocheilus albipunctella 100 2.5
Lepidoptera 98 1.25

Pelopidas mathias 100 2.5
Scoliopteryginae sp 100 1.25

Sphingomorpha chlorea 100 2.5
Spodoptera cilium 100 1.25

Prey detected in fecal samples of insectivorous vertebrates with a >97% threshold of correspondence with our own
reference database [28], BOLD or Genbank.

In bird fecal samples, 13 species distributed in six orders were identified (Table 2, Figure 3A).
Most prey species belonged to Lepidoptera (six species belonging to three families) and Hymenoptera
(three species belonging to three families), but Coleoptera (one species), Dermaptera (one species),
Diptera (one species) and Hemiptera (one species) were also identified. Earwigs (Forficula senegalensis)
were the most frequent prey species detected from bird fecal samples (6.3% of positives samples).
Among herbivorous species, most were crop pests (e.g., H. albipunctella). In bat fecal samples, most prey
species were Lepidoptera (81 species belonging to 15 families), but Orthoptera (10 species belonging to
two families), Hemiptera (four species belonging to two families), Neuroptera (three species belonging
to one family), Blattodae (two species belonging to one family), Coleoptera (one species), Diptera (one
species), and Hymenoptera (one species) were also detected (Table 2, Figure 3A). Among Lepidopterans,
species mainly belonged to Noctuidae (32.1% of prey taxa) followed by Erebidae (22.2%), Crambidae
(9.9%) and Geometridae (8.8%). Two Crambidae species belonging to the genus Achyra (A. coelatalis and
A. nudalis) were the most frequently observed, with 51% of positive samples. Among phytophagous
species for which host plants have been documented, 63% were crop pests. For both insectivorous
vertebrates, composition of prey species differed according to sampling date (Figure 3B).
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3.4. Qualitative Trophic Network and Interactions

Qualitative trophic networks were designed based on diet composition of arthropod and vertebrate
predators. Two main patterns of intraguild predation were identified: arthropod predators vs.
arthropod predators, and insectivorous vertebrates vs. arthropod predators (Figure 4).
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in the reference databases, mostly because African entomofauna is still poorly documented. The 
trophic network obtained was thus constructed from 35% of the identified OTUs. However, some 
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Figure 4. (A) Qualitative trophic networks of arthropod and vertebrate predators collected from a
millet-based agroecosystem in Senegal. Arrows represent biomass flow between predators and preys.
(B) Intraguild interactions. Arthropod predators: 1: Araneae sp.1. 2: Araneae sp.2. 3: Araneae sp.3.
4: Bradybeanus scalaris. 5: Camponotus sp. 6: Carabidae sp. 7: Carbula curtana. 8: Carbula sp. 9: Chrysoperla
sp. 10: Creontiades pacificus. 11. Creontiades pallidus. 12: Encyrtidae sp. 13: Forficula senegalensis. 14:
Gnaphosidae sp. 15: Mallada signatus. 16: Monomorium sp. 17. Orius maxidentex. 18: Pachycondyla sp.
19: Philonthus discoideus. 20: Plesiochrysa atalotis. Parasitoids of arthropods: 21: Cylindromyia bicolor.
22: Pegoplata nigroscutellata. 23: Perilampus sp. 24: Pristomerus pallidus. Insectivorous vertebrates: 25:
Ploceus cucullatus. 26: Taphozous mauritianus.

4. Discussion

In food web ecology, “who eats whom” is a fundamental issue for gaining a better understanding
of the complex trophic interactions existing between pests and their natural enemies within a given
ecosystem [11,48]. Results here provided bring essential data for characterizing the functional diversity
and structure of the food web associated with a couple of millet fields in Senegal. The dietary analysis of
arthropod and vertebrate predators enables the identification of key predators involved in the natural
control of arthropod pests and gives insights into the breadth of their diet (generalist vs. specialist)
and intraguild predation.

4.1. Taxonomic Affiliation and Diet Analysis

The reliability of biological information provided by metabarcoding mostly depends on the
non-arbitrary measures taken to limit PCR bias, which may lead to misinterpretations. In this study,
non-arbitrary filters for false positive results were applied as recommended by Galan et al. (2018) [14].
A proportion of 65% of the OTUs obtained after filtering could not be identified using either conventional
databases such as BOLD and Genbank or our reference database [28]. This limitation generated false
negative results, as it was not possible to detect the occurrence of species not included in the reference
databases, mostly because African entomofauna is still poorly documented. The trophic network
obtained was thus constructed from 35% of the identified OTUs. However, some unidentified OTUs
might be pseudogenes or non-target sequences that would not be referenced within an exhaustive
database. The reconstitution of food webs by metabarcoding depends on the ability to identify the
majority of sequences of interest, which in turn mainly depends on the completeness of the reference
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databases and on the resolution of the minibarcode used (i.e., using several genes, see [15,47,49]).
In this study, 133 bp of COI was used as a very resolutive fragment for most arthropods [28,32] and
vertebrates [14].

Technical replications, which showed a high proportion of stochastic positive results, are also
necessary to limit PCR bias in metabarcoding, increase the detection of low biomass taxa, and thus
reduce subsequent underestimation of predation [47]. The instability with PCR replicates was mainly
observed in arthropod predators. This was probably related to the presence of a large quantity of DNA
of the analyzed predator itself, which decreased the detectability of prey. On the contrary, prey DNA
was present in large quantities in the fecal samples of insectivorous vertebrates. These differences of
DNA amplification between arthropod and vertebrate predators may also result from PCR bias due
to primers [33]. These observations highlight the importance of considering enough specimens and
including biological replicates. At last, it is important to note that DNA-based techniques cannot detect
cannibalism, which may be substantial in some predators [50].

In this study, DNA extraction from the whole body of predatory arthropods could lead to possible
contamination by the exoskeleton (i.e., DNA outside the body) of these arthropods. Nevertheless,
precautions were taken to avoid potential external contamination of arthropod samples by systematically
individualizing samples during field sampling and avoiding regurgitation by placing “living” samples
at −20 ◦C before storage in alcohol [51]. Critical contamination of the sequence of the millet head miner
(MHM, millet pest) during the MiSeq sequencing run on predatory arthropods is another limitation of
this study. However, generalist predators of the MHM have been extensively documented [23,24,28,52].
Here, the main objective was to identify alternative prey of predatory arthropods, diet composition of
insectivorous vertebrates, and extent of intra-guild predation in the studied agroecosystem.

4.2. Diet Composition of Predatory Arthropods

The “generalist” diet was confirmed for all tested predatory arthropods. However, the degree of
polyphagy differed across species. More diversity of prey taxa was observed from “true predators”
including spiders, carabid beetles, anthocorid bugs, and ants (except Pachycondula sp., likely due to
the low number of samples). These predators preyed on a wide array of arthropod orders (27 prey
taxa belonging to 18 families and 9 orders were identified). Spiders [53–55], carabid beetles [17,56–58],
anthocorid bugs [59], and ants [60] are considered as effective biological control agents in several
crops. Their diet composition showed the presence of crop pests (e.g., Lepidoptera, Hemiptera,
and Thysanoptera), but also non-pest arthropods (e.g., wasps, beetles). The anthocorid predatory
bug, Orius maxidentex, preyed on four Lepidopteran prey taxa, including Ephestia kuehniella and
Masalia nubila, which are secondary pests of pearl millet [23,61]. Carabid beetles preyed also on two
important pests of sorghum and maize, namely the common blossom thrips (Frankliniella schultzei,
Thripidae) and shoot flies (Atherigona sp., Muscidae). The diet composition of earwigs, F. senegalensis
(Forficulidae), and pentatomid bugs, C. curtana (Pentatomidae), supported their facultative predator
status. However, the beneficial status of these omnivorous insects, often secondary pests, has often
been controversial [62]. Populations of earwigs mainly feed on millet pollen [52] to which they add
insects (here, one Lepidopteran species and two mirid bugs) during their breeding period. Due to its
high abundance in millet fields and the non-limitative quantity of pollen for millet pollination, this
species should be considered as beneficial for pearl millet. This is probably also the case for C. curtana
which generally feeds on millet grains but can also prey on small arthropods. Like ‘true predators’ that
can persist on crops in the absence or low density of target pests by feeding on alternative prey, these
omnivore arthropods (namely ‘false predators’) can persist in the absence of prey by feeding on plants,
enabling them to maintain high populations before pest arrival.

4.3. Diet Composition of Insectivorous Vertebrates

The analysis of DNA from fecal samples of the Mauritian tomb bat revealed a diet mainly
composed of moths (79% of total species detected), as shown by Kingdon (1974) [63], of which two
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species of the genus Achyra were dominant (81 out of 103 prey taxa). The majority of Lepidopteran pests
identified are among the most economically important crop pests in Senegal, including armyworms
(Spodoptera spp., see [64–66]) and earworms (Helicoverpa armigera, see [67]). As expected, DNA of the
main pest of pearl millet, the millet head miner, was detected (8% of positive samples). The Mauritian
tomb bat contributes to the regulation of many nocturnal millet pests because, unlike arthropod
predators and birds, insectivorous bats can feed on a large quantity of individuals (up to 16 prey taxa
detected in a single sample), thus limiting egg-laying on millet panicles. In addition, the activity of
insectivorous bats has been shown to be strongly correlated with the abundance of arthropods in
agricultural systems [68]. The species is characterized by very effective hunting aptitudes, including
excellent vision, nocturnal hunting, echolocation of prey, and fast flight [69,70], which make it an
excellent predator of noctuid moths. Our field observations revealed that this generalist predator was
able to hunt under public lights in villages, in addition to its ability to hunt in total darkness or to
perform hovering flights to catch insects on millet panicles [26]. The diet analysis of bats revealed a
seasonal fluctuation of prey diversity (richness), with a particular increase at the early reproductive
stage of millet (heading).

The diet of village weaver birds was also composed of a diversity of arthropods. Of the 13 arthropod
species identified, Lepidopterans were the most common species (6 out of 13 prey taxa), followed
by earwigs (23.3% of positive samples). This is consistent with observations made by Bruggers et
al. (1985) [71], who reported that adults feed mainly on insects to which they add seeds of wild
plants. Unlike Mauritian tomb bats, which are solitary and strictly insectivorous, village weavers are
omnivorous and gregarious [72]. Seasonal fluctuation of prey composition was also observed in village
weaver birds, with a particular shift from Dermaptera to Lepidoptera during the reproductive stage of
millet. Comprehensive analysis of diet composition in time should include chicks that feed exclusively
on insects [71]. Colonies of village weavers settled a few weeks in the study area for breeding, from
emergence to maturity of millet panicles [26]. More research is needed to better understand the
migratory flow of these insectivorous vertebrates in and beyond Senegal, and its importance in terms
of ecosystem services such as pest control.

4.4. Qualitative Trophic Network and Interactions

Our approach also provided information on interactions between natural enemies, particularly
asymmetric intraguild predation. Diet analyses revealed predation across generalist arthropod
predators [e.g., spiders (sp.1) and ants (Pachycondula sp.) feeding on carabids (B. scalaris) and predation
of carabids on spiders belonging to the family Gnaphosidae)] or between parasitoids and arthropod
predators (e.g., C. curtana parasitized by Cylindromyia bicolor). Our results showed that the Mauritian
tomb bat fed on three Neuropteran species, and the village weavers frequently fed on earwigs and ants.
Such intra-guild predation could affect the overall abundance of natural enemies and thus biological
control of phytophagous arthropods [73,74]. However, according to a meta-analysis conducted by
Mooney et al. (2010) [75], this relation does not necessarily extend to insectivorous vertebrates. Authors
showed that effects of insectivorous vertebrates on predatory and phytophagous arthropods were
positively correlated and that, although insectivorous vertebrates fed as intraguild predators, strongly
reducing arthropod predators, they nevertheless suppressed herbivores and indirectly reduced plant
damage. Such effects were strongest on arthropods and plants in communities with abundant arthropod
predators and strong intraguild predation.

The parasitoid, Pristomerus pallidus and the hyerparasitoid, Perilampus sp. (see [28]), were also
detected in the gut content of birds. It is, however, probable that those birds fed on already parasitized
Lepidoptera larvae. This illustrates the ability of metabarcoding to identify unexpected interactions
between natural enemies.
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5. Conclusions

Better knowledge of food webs and related ecological processes is fundamental for understanding
the functional role of biodiversity in ecosystems [76]. This is particularly true in agroecosystems
to promote environment-friendly models for crop protection inspired by natural pest control [77].
However, it is generally difficult to decipher the impact of predators in food webs, as they often leave
no direct evidence of their activity. In this study, a metabarcoding approach enabled us to reconstruct
qualitative trophic networks from field sampling of generalist predators. This approach proved
effective in detecting preys in arthropods and feces of birds and bats. Key information on the diet
breadth and preference of predators, trophic linkages within food web, including intra-guild predation,
and potential apparent competition, were also provided. Such a qualitative approach should, however,
be supplemented with quantitative assessments, such as spatio-temporal abundance or predation
rates [25] to identify predators contributing to the suppression of the pest population and to validate
the relevance of such an ecosystem service for sustainable pest management. There is also a need to
improve our knowledge on the life system of key natural enemies (e.g., resource requirements and
dispersal), so that specific conservation measures, such as habitat management, can be designed to
promote their impact as part of biological control strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/5/294/s1,
Table S1: Objectives and impacts of the data filtering steps (TCC, TFA, PCR replicate) on the number of samples,
OTUS, and sequences in the abundance table. Table S2: Summarized abundance tables from 256 arthropod
predators after filtering; Table S3: Summarized abundance tables from 92 bat and 80 bird fecal samples after
filtering. The complete raw and filtered tables of abundance for these two sequencing runs are available in the
Zenodo data repository (http://doi.org/10.5281/zenodo.3752026).
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