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Abstract: In distributed land surface modeling (LSM) studies, uncertainty in the rain�elds that are
used to force models is a major source of error in predicted land surface response variables. This is
particularly true for applications in the African Sahel region, where weak knowledge of highly
time/space-variable convective rainfall in a poorly monitored region is a considerable obstacle to
such developments. In this study, we used a �eld-based stochastic rain�eld generator to analyze the
propagation of the rainfall uncertainty through a distributed land surface model simulating water
and energy �uxes in Sahelian ecosystems. Ensemble time/space rain�elds were generated from �eld
observations of the local AMMA-CATCH-Niger recording raingauge network. The rain�elds were
then used to force the SEtHyS-Savannah LSM, yielding an ensemble of time/space simulated �uxes.
Through informative graphical representations and innovative diagnosis metrics, these outputs were
analyzed to separate the di�erent components of �ux variability, among which was the uncertainty
represented by ensemble-wise variability. Scale dependence was analyzed for each �ux type in
the water and energy budgets, producing a comprehensive picture of uncertainty propagation for
the various �ux types, with its relationship to intrinsic space/time �ux variability. The study was
performed over a 2530 km2 domain over six months, covering an entire monsoon season and the
subsequent dry-down, using a kilometer/daily base resolution of analysis. The newly introduced
dimensionless uncertainty measure, called the uncertainty coe�cient, proved to be more e�ective in
describing uncertainty patterns and relationships than a more classical measure based on variance
fractions. Results show a clear scaling relationship in uncertainty coe�cients between rainfall and
the dependent �uxes, speci�c to each �ux type. These results suggest a higher sensitivity to rainfall
uncertainty for hydrological than for agro-ecological or meteorological applications, even though
eddy �uxes do receive a substantial part of that source uncertainty.
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1. Introduction

In the populated and expanding semiarid regions of tropical Africa, such as the Sahel, vulnerable
ecosystems and livelihoods are expected to be exposed to increasingly frequent and intense climate
extremes [1]. Yet our knowledge of how they will respond to this climate stress is poor, making
these regions hot spots for global change studies [2,3]. Monitoring soil and vegetation conditions,
including soil�vegetation�atmosphere exchanges, is especially important in the Sahel [4�6] to (i)
evaluate crop conditions and future production, to better anticipate and prevent food shortages,
(ii) estimate space�time distributions of mass and energy transfers from the land surface to the
atmosphere, to improve weather and climate predictions, (iii) improve the reliability of water resources
and risk forecasts, (iv) help improve performance of irrigation systems, where they exist, and (v)
understand the dynamics of fragile ecosystems. These are key issues in a region characterized by a
semiarid, monsoonal climate [7], with convective rainfall displaying strong variability over a wide
range of time and space scales [8], a high sensitivity of monsoon processes to surface conditions [9�14],
and essentially rainfed agriculture [15]. Documenting energy and water budgets and their variability
at various scales is crucial if we are to improve our understanding of the West African monsoon system
and its intricate relationships with local ecosystems and societies [16].

Due in particular to the strong contrasts in Sahelian rainfall, surface exchanges and conditions
are subject to rapid changes in time and space. This makes them impossible to estimate at any
signi�cant scale from measurements alone and calls for the development of reliable land surface models
(LSMs) that can be used in combination with ground and space data. Mostly for lack of appropriate
parameterization and evaluation data, few speci�c land surface modeling studies have focused on
West African ecosystems. Some surface�vegetation�atmosphere transfer schemes were tested locally
at single land-cover sites (e.g., [17�23]). The African Monsoon Multidisciplinary Analyses (AMMA)
land model intercomparison project (ALMIP) intercompared a set of global LSMs applied at a regional
scale [5] or over contrasting mesoscale sites of the AMMA-CATCH regional observatory [24,25] (please
see Appendix A for de�nitions of abbreviations and acronyms). The Suivi de l’Etat Hydrique des Sols
(SEtHyS)-Savannah model, which is used hereafter, was successfully adapted, calibrated, and validated
for the local land-cover types from the AMMA-CATCH-Niger (ACN) Sahelian site near Niamey in
South-West Niger [26], and was then gridded at the mesoscale over a 2530 km2 domain [27].

For model predictions to be useful, their uncertainties and possible biases must be investigated.
Given the importance of rainfall forcing as a driver of surface processes in the water-limited Sahel,
and the di�culty in reliably estimating its time�space distribution, a critical issue is an evaluation
of uncertainties and biases in the estimated rain�elds and their propagation through the LSMs.
Signi�cant work has been done elsewhere in this regard with rainfall�runo� models, showing for
instance that rainfall uncertainties can often, and under various conditions, largely outweigh other
sources of uncertainty in modeled stream�ow (e.g., [28,29]). The spatiotemporal representation of
rainfall is pivotal for �ood runo� estimation under various conditions (e.g., [30�34]). More contrasting
results regarding error propagation from precipitation to soil moisture were obtained with LSMs
for Oklahoma [35,36]. In Northern Germany, Bormann [37] found the highest sensitivity to rainfall
resolution for LSM outputs at monthly timescale, but warned against directly transferring their
conclusions to other model types and climate.

Rainfall uncertainty �rst depends on the data source(s) used to derive the space�time distributions
of precipitation intensity, at a resolution compatible with the land processes of interest. Several studies
evaluated various global, satellite-based, or model-derived rainfall products indirectly through their
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hydrologic predictive capabilities (e.g., [35,38�40]. Pierre et al. [41] compared such satellite products
and their e�ects when applied to a seasonal vegetation model over the Sahelian belt. Nijssen and
Lettenmaier [42] and Nikolopoulos et al. [43] investigated the e�ects of scale on the propagation of
modeled satellite rainfall error through hydrological models. Global rainfall products appear quite
promising especially for applications at large scales, but they still signi�cantly lack the accuracy and
resolution needed for smaller-scale studies, especially under convective tropical rainfall conditions.
Radar-derived rainfall is attractive especially for �ash-�ood forecasting (e.g., [44,45]), but cannot be
achieved over vast portions of the globe, including nearly all of Africa. Relatively little e�ort seems
to have been put into evaluating the impact of gauge-based rainfall uncertainty/error or estimation
methods on the full, water/energy cycling response of LSMs, and virtually none under the tropical,
West African type of conditions. For a reliable global uncertainty analysis, the structure of forcing
uncertainty needs to be expressed precisely and completely.

In this paper, we provide an analysis of the propagation of uncertainty from high-resolution
time�space distributions of rainfall inputs to the dependent surface �uxes of water and energy, through
the SEtHyS-Savannah LSM applied over a mesoscale domain in South-Western Niger. Rain distribution
is derived from a dense raingauge network using a stochastic rain�eld generator calibrated from
this data [46]. SEtHyS-Savannah is a spatially-distributed column model, with multiple sub-cell
land-use/ecosystem simulation. The study was performed over a 2530 km2 window within the ACN
area, and through a 6-month period covering a Sahelian monsoon season and the subsequent dry-down.
E�ects on the main water and energy output variables were analyzed in terms of their predictive
uncertainty, expressed through a 50-member ensemble driven by the rain�eld generator. As scales of
interest may strongly vary with application �elds (e.g., �ne spatial resolution for agronomic studies,
but �ne time resolution for weather/climate applications), a range of spatial and temporal scales were
explored in output analysis, from 1 day and 1 km2 up to the entire space/time domain. This spanning
of scales allowed us to investigate the scale dependence in �ux intrinsic variability and propagated
uncertainty as well as the interactions taking place between these properties, including the speci�c role
played by ecosystem type. To our knowledge, this study is the �rst of its kind in the vast region of
West Africa, and probably also in the entire continent.

As uncertainty analysis is a developing �eld, techniques of analysis are still required to address
the variety of situations encountered and questions raised. In its broadest sense, uncertainty in a
variable taken at a given time/space location can be de�ned as the distribution of departures of all
possible values of the variable from their mean�the variable’s expectation�at that location. Hence,
uncertainty adds yet another dimension to an already largely multidimensional modeling problem
(time, 2D space, scales, and variables), and must be analyzed in light of the entire distribution of
the mother variable itself. Such analysis calls for innovative techniques to explore and synthesize
information from large multidimensional datasets, and a case study like this one is an opportunity
to contribute to that development. Therefore, as an extension of the initial objective of assessing
uncertainty arising in modeled surface �uxes from state-of-the-art �eld-based rainfall simulation in
the Sahel, a complementary objective was to investigate new means of capturing and expressing
uncertainty meaningfully in a high-dimensional space, through innovative graphical representation
and synthetic metrics.

Section 2 describes the study case, the modeling protocol, and the methodology of output
analysis�including the metrics and naming conventions used. Results are presented and interpreted
in Section 3. Section 4 discusses and concludes on these results.

2. Materials and Methods

2.1. Study Area and Period

The study area is a 2530 km2 rectangle (0.54 � 0.39 degree in longitude/latitude) located
east of Niamey in the Fakara district of the Republic of Niger (Figure 1a). This area is part of
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the Niger mesosite (ACN) of the AMMA-CATCH long-term regional eco-hydro-meteorological
observatory [4,6,47] and includes the Wankama supersite (~2 km2) at which detailed �eld monitoring
of surface and subsurface processes has been carried out since 2005 (e.g., [22,48�53]. The area
represents the Central Sahelian conditions in the ALMIP-Phase 2 multi-site regional land surface
model intercomparison experiment [54]. It has been the topic of several other modeling exercises at
di�erent scales (e.g., [11,20,22,26,27,55�59]), and the support for development or evaluation of various
remote-sensing based surface �ux estimation methods [17,60�64].
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Figure 1. Characteristics of case study: (a) location of the study area and spatial distribution of
ecosystem types (LC)�bare soil, crops, young fallow, old fallow, other�in 2005 in study window, derived
from eight-entry classi�cation as explained in Section 2.3 (map displays dominant LC per cell whereas
pie accounts for all LCs in each cell); (b) seasonal course of leaf area index through the 2005 simulation
period: spatial mean for each vegetated LC (dash lines) and spatial range for the mixed-LC, ~1-km2

cells (shaded area); (c) maps of 2005 total precipitation: ensemble mean (left) and standard deviation
(right, hereafter denoted as �standard uncertainty� USD) from stochastic rainfall modeling in study
window (see Supplementary Material for sample rain�elds from the simulation ensemble). Black dots
in (a,c) show raingauge locations (rainfall simulation uses more raingauges outside the study window).
Spatial coordinates in decimal degrees East and North.

Cappelaere et al. [6] give a detailed description of the study area. Large sandy valleys with gentle
slopes are interspersed with small �at lateritic plateaus. Runo� is Hortonian and limited to small
endorheic catchments, of at most a few km2 area, where it collects in ponds. Land cover is an intricate
mosaic of millet crop, fallow bush (temporarily uncultivated land), and bare soil in the valleys, while
tiger bush relics and large bare soil patches occupy the plateaus. Climate is tropical semiarid, with a
short rainy season from June to September which is followed by a long, almost totally dry season [22].
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This study covers the 6-month period from 15 June to 14 December 2005 (183 days, i.e., exactly
a half-year duration), consisting of the 2005 Sahelian rainy season plus the �rst two months of the
subsequent dry season, and running roughly from the so-called African monsoon jump at the Northern
Hemisphere summer solstice [65] to the following winter solstice. The period was part of the Enhanced
Observation Period of the AMMA international �eld campaign [66], giving the study the bene�t of an
extensive set of �eld observations, for both model forcing and calibration.

2.2. Generating Stochastic Rain�elds

The ACN observatory includes a permanent network of high-resolution recording raingauges [6],
recognized as being unique in West Africa for its density and duration. Although gauge density has
varied over the years, a core set of 32 tipping-bucket gauges, evenly distributed over a total area of
160 � 120 km2 that includes the study domain (Figure 2 in Cappelaere et al. [6]), has been operating
continuously since 1990. Times series of bucket tips were processed into continuous rainfall series at
5-min resolution [67].

Based on this time- and space-rich record, methods were developed to generate
space�time rain�elds through raingauge interpolation and stochastic simulation over the ACN
observatory [46,68,69]. Despite the network density, estimating rainfall distribution in space and
time inherently comes with substantial uncertainty, which may vary strongly with input and output
resolution in both dimensions, due to the strong variability of convective Sahelian rainfall. To re�ect this
uncertainty faithfully, ensemble scenarios of equally possible rain�elds, given all available observations,
were generated using a two-step process. First, rain�elds were simulated at the event timescale over
a ~1 km (more precisely 0.1 degrees) resolution grid covering the entire domain. This was achieved
using meta-gaussian geostatistical simulation [68], with point conditioning by gauge event rainfall [46].
All 32 stations�including the 22 located outside the study domain�were used to condition the
simulated rain�elds. Fifty stochastic replications per event were simulated. These ensemble event
rain�elds were then time-disaggregated at each grid node by scaling to the stochastic event rainfall an
optimum event hyetograph shape derived by deterministic spatial interpolation from observed 5-min
rainfall intensities. The interpolation consists of either Eulerian or Lagrangian kriging, depending
on their respective performance as assessed for each event through a cross-validation scheme [69].
The conditional simulation scheme from Vischel et al. [46] has been used by others [70] to evaluate the
e�ects of rainfall uncertainty on the performance of calibrated rainfall�runo� models.

Figure 1c displays the spatial distribution of time-aggregated ensemble rainfall over the study
period, as maps of the ensemble mean and standard deviation. A sample time-aggregated rain�eld
from the simulation ensemble is provided as Supplementary Material (Figure S1).

2.3. Producing LSM Simulations

The above rain�elds were used to generate ensemble mesoscale land surface simulations with
the SEtHyS-Savannah LSM. This model was developed to simulate the energy and water processes
in conditions such as in the Sahel [26]. It was previously applied with deterministic rainfall to the
same study domain and period [27]. It is a one-dimensional, column model that makes a suitable
compromise between the level of process description and the number of input parameters for mesoscale
implementation. It uses a three-source modeling approach, as recommended by Verhoef and Allen [23]
for Sahelian ecosystems. The canopy is described as two superimposed layers, one for crops, bushes
and/or trees, and one for the grass understory. The model solves for three distinct energy budgets, one
for each canopy layer and one for the underlying soil. Fractions of incoming downward shortwave
and longwave radiation absorbed within each canopy layer are computed using a shielding factor [71].
For turbulent �uxes, an aerodynamic resistance scheme is applied to the three-source modeling
structure [26], using the Ball [72] and Collatz et al. [73,74] formulations of stomatal resistances for C3
and C4 plant types, respectively. The soil column is divided into two horizontal layers with prescribed
depths. The top layer contains roots from both vegetation layers, while the lower layer has roots from
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the top vegetation layer only. During drying, the development of a mulch sub-layer is simulated
within the topsoil layer, with a resistance to water vapor di�usivity proportional to mulch thickness.
Two separate mulch sub-layers may be simulated in case of alternating wetting/drying sequences.
In�ltration-excess runo�, taking into account a surface crust conductivity, is output directly, without
subsequent routing at any larger scale. The model was parameterized and calibrated at the plot scale,
based on �eld observations from the ACN Wankama catchment for major ecosystem types [22,53], and
on the existing literature for the South-West Niger area (e.g., [6]). Compared to Saux-Picart et al.’s
implementation [26,27], model parameters were further tuned thanks to new data including soil
moisture pro�les [75].
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Figure 2. Time courses of cell/day-scale water and energy �ux distributions for ensemble members
(dashed lines) and ensemble means (plain lines), for each �ux type (a�h). Frequency quantiles (colors,
same for ensemble members and means although shown only with plain lines in legend) and mean
(black dotted line) are taken over an 11-day moving window, thus re�ecting both spatial and short-range
temporal variability, as well as uncertainty in the members’ case. Please note the nonlinear (square-root)
vertical scale for water cycle variables (a�e), which exaggerates the recession tails for some variables
(Es, Dr).
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For the spatial distribution of model parameters and inputs other than rainfall, we kept the
approach used by Saux-Picart et al. [27]. A land-cover map was derived through unsupervised
classi�cation from a 20 m resolution SPOT-HRV image of 12 October 2005 (end of the wet season,
the best period for this purpose) and area aggregation (tiling) at the same ~1 km (0.1�) resolution
(Figure 1a), yielding land cover proportions in each km2 cell. Eight di�erent ecosystem types were
distinguished in the simulation. For simplicity of the following analysis, three of these classes�each
below 5% surface area�were aggregated as ‘other’, and the next least represented one�degraded
plateau slopes, 5.2% surface area�was integrated into the bare soil class (Figure 1a). The three other
major types are crops (millet essentially), young fallow, and old fallow (these two were discriminated on a
vegetation density basis from the SPOT image, as density increases with age [27]). Corresponding
time-dependent maps of the leaf area index (LAI) were inverted successively from seven clear-sky
SPOT-HRV images distributed along the study period, using a neural network trained against a
radiative transfer model [76], and were linearly interpolated in time (Figure 1b). For lack of reliable
space-distributed data, meteorological forcing (shortwave and longwave radiation, wind speed,
air humidity, temperature, and pressure) was taken from the observations at a 30 min timestep in the
Wankama catchment [22], and applied uniformly over the mesoscale domain. The model was run at
that time resolution for each ecosystem tile in each kilometer cell.

2.4. Analyzing Simulation Outputs

Please note that mathematical formulations of the computational steps described hereafter are
detailed in Appendix B.

2.4.1. Fluxes

Flux types analyzed in this study were (i) for the water cycle: rainfall P, runo� Q, direct soil
evaporation Es, and plant transpiration Tp (henceforth abbreviated to evaporation and transpiration,
and summing to evapotranspiration), as well as drainage Dr; and (ii) for the energy cycle: net radiation
Rn, sensible heat �ux H, and latent heat �ux LE. Ground heat �ux was considered as less signi�cant at
timescales analyzed here, hence it is not presented. Direct canopy evaporation is quite negligible in
this environment [22]. Evapotranspiration and latent heat �ux are equivalent modulo the unit latent
heat of vaporization. Whenever possible in the �gures, water and energy �uxes are displayed together
on the same graphs using this conversion factor.

2.4.2. Ecosystem Types

To simplify the presentation, only the four main ecosystem classes (LC)�bare soil, crops, young
fallow, and old fallow (Section 2.3; Figure 1a)�are shown when results are displayed for separate
ecosystem types. These four classes cover >91% of the surface area. All eight classes are accounted for,
through area-weighted tile aggregation in each cell (Appendix B), in the mixed-ecosystem outputs
which are the main results presented here. Unless otherwise speci�ed explicitly as referring to �separate
ecosystems�, �uxes are taken for �mixed ecosystems�.

2.4.3. Aggregation Scales

A large range of scales is investigated in this study, both in time and space. Over space, both
the ~1 km2 cell scale and that of the entire 2530 km2 simulated domain were considered, denoted as
the local and the meso scales, respectively. Timescales were analyzed from the daily to the half-year
scale, including intermediate scales, in particular the 10/11 day scale. Although diurnal cycles were
explicitly resolved in the simulations, sub-daily variability was not considered in the following analysis;
hence �full resolution� (or �fully-resolved� �uxes) refers to the daily/cell scale. Combinations of these
time and space scales were covered to build a comprehensive picture of scale e�ects on �uxes and
their uncertainties. Note that for all �ux types, including runo�, space and/or time upscaling from
the computational resolution were obtained by simple arithmetic averaging of raw computed �uxes
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(Appendix B). Table 1 summarizes the di�erent aggregation levels considered in the analysis along
each dimension of the simulation set.

Table 1. Glossary of �ux aggregation levels 1 over the various dimensions (xy, t, e, and LC) of the
simulation set, as considered in the analysis of results.

Dimension
Aggregation Level

«Non-Aggregated» Partially Aggregated «Aggregated»

space (xy) cell (~1-km2) - meso (2530 km2)
time (t) Day 10/11 day half-year (183 days)

ensemble (e) Member - mean (=expectation, expected �ux)

ecosystem type (LC) separate ecosystem - mixed ecosystems (cell area-weighted
average)

1 Please see Appendix B for mathematical expressions of these aggregation operations.

2.4.4. Uncertainty Measures

This section de�nes the mathematical criteria (�measures�) together with the terminology used
in the analysis to characterize uncertainty. Mathematical developments are provided in Appendix B.
In the following, the generic term �uncertainty� is synonymous with ensemble member variability,
and �ux �expectations� designate the means over the ensemble member dimension. Describing
uncertainty propagation properties in a high-dimensionality space (including, e.g., multiple �ux types
and time and space scales for both uncertainty input and outputs) requires compact measures that
e�ciently characterize uncertainties across these scales. Several synthetic uncertainty measures, both
dimensional and dimensionless, are de�ned to summarize ensemble member anomalies (departures
from �ux expectations), as well as corresponding propagation properties from rainfall to any other
�ux type.

The measures may be taken either at each point in the time/space domain at any given scale
(�elemental� measures), or lumped over one (�partial lumping�, over either time or space) or both
dimensions (�full lumping�) of the domain for that scale. Hence, they are distributed over the
non-lumped dimension(s), if any. Note that lumping a dimension is of no e�ect when the scale is
the largest in that dimension. While both �ux scale aggregation and uncertainty lumping represent a
(di�erent) type of integration over time and/or space, only the former amounts to a change in scale
as referred to in this paper, the second corresponding rather to a synthesis of multiple uncertainty
measures. Unless speci�ed as lumped, a measure is elemental.

The dimensional measure used is the uncertainty’s �rst moment, i.e., the standard deviation over
the ensemble dimension (standard deviation of ensemble members), which is referred to as �standard
uncertainty� (USD). Lumping of USD is performed by simple quadratic (root mean square) averaging,
amounting to ensemble variance aggregation (Appendix B). Two dimensionless uncertainty measures
are considered, compared and evaluated to determine which most e�ciently describes the uncertainty
generation and propagation properties. These two measures are obtained by normalizing the standard
uncertainty USD for a given time/space scale and a given level of lumping (none, or partial over
one dimension, or full over both dimensions), with either the corresponding quadratically-averaged
�ux expectation or the corresponding total standard deviation (generated by all variability sources
including uncertainty) (Appendix B). These two dimensionless measures are referred to as �uncertainty
coe�cient� (UC) and �uncertainty fraction� (UF), respectively. UC is commensurate with a coe�cient
of variation and numerically comes down to a quadratic average of elemental coe�cients of variation
(elemental UCs) weighted with corresponding expected �uxes. UF corresponds to a square-root
variance fraction, which, when squared, sums to unity with the index of ensemble similarity (W)
introduced by Koster et al. [77] and analyzed by Yamada et al. [78].

Finally, for any �ux type at any scale and any time-lumped uncertainty measure, a propagation
factor�from rainfall to that �ux type�is de�ned as the ratio of that measure to the same measure for
rainfall (see formulae in Appendix B).
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2.4.5. Analysis and Presentation of Results

Analysis of simulation outputs is presented in Section 3 as three successive steps. In the �rst
step (Section 3.1), the distributions and variability of plain �ux intensities were examined directly
at the various scales, including a global variance decomposition of the simulated ensemble set (see,
e.g., [79]). The second step (Section 3.2), speci�cally analyzed the distributions of �ux uncertainties,
using the elemental or partially-lumped uncertainty measures de�ned in Section 2.4.4. Relationships
to �ux magnitude, rainfall uncertainty, and ecosystem type were investigated. In a third and �nal
step (Section 3.3), uncertainty measures, including propagation factors, were taken fully-lumped to
synthesize their scale behavior and scaling properties.

To support this presentation, original graphical representations were devised to display as much as
possible of the multidimensional variations of �uxes and of their uncertainties, as well as relationships
between them.

3. Results

3.1. Distributions and Variability of Flux Intensities

3.1.1. Distributions of Flux Ensemble Members and Means

The study period included 80 rainy days (i.e., with rainfall recorded at one raingauge at least),
distributed from 15 June to 13 October 2005. Days with runo� (at least in a part of the domain and
members) were a subset of 53 of these rainy days. While soil evaporation started with the �rst rainfall
and essentially vanished after mid-October, substantial transpiration and latent heat �ux persisted until
early November. Drainage �rst appeared on 24 June, peaking mid-August, and remained signi�cant
until late October, then slowly decayed.

A summary description of marginal (i.e., unconditional) distributions of these variables over the
entire space�time�ensemble simulation domain is provided in Table 2 through their ranges and �rst
four statistical moments (see rows �mbr.� and �exp.� for ensemble members and means, respectively).
Flux distribution at various time/space scales (from day to half-year and from cell to meso) is depicted
through a set of three �gures (Figures 2�4), showing selected frequency quantiles for both ensemble
members and ensemble means, conditioned to time in the season for the �rst �gure and globally over
the whole time/space domain for the last two.

Figure 2 maps over time the fully-resolved (cell/day) �ux population�successively for each �ux
type�as the temporal courses of quantiles taken within a running 11-day window and the whole
spatial domain, and over the ensemble members (dashed lines) or the ensemble means (plain lines).
Hence three di�erent variability modes are highlighted: seasonality (see time variability), combined
spatial/short-timescale variability (<11 days; see quantiles for ensemble means), as well as propagated
uncertainty (see quantile di�erences between ensemble members and means). The running mean,
representing the meso/11 day-scale expected �ux, is also represented (black dotted line).

For the same fully-resolved �uxes now taken globally over the whole space/time domain, Figure 3
displays the distributions of ensemble members conditioned to the value of the ensemble mean (inner
2-D crossplots) as well as corresponding marginal distributions of ensemble members or means (top
and right 1-D whiskers, respectively). Hence the �gure decomposes the overall distribution of ensemble
members into the direct (�rst-order) e�ect of spatiotemporal variability (distribution of ensemble
means) and the rainfall uncertainty e�ect (conditional distributions), highlighting the relationship of
uncertainty to �ux magnitude.
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Table 2. Summary statistics 1 (top to bottom: range, mean, coe�cient of variation (CV), skewness, kurtosis 2) for marginal distributions of analyzed variables (inner
rows: mbr. = ensemble members, exp. = ensemble means, USD = elemental standard uncertainties) for the di�erent �ux types (left to right: P to LE) and scales (inner
columns: c,d = cell/day, m,d = meso/day, c,p = cell/half-year).

Flux Type Rainfall, P Runo�, Q Evaporation, Es Transpiration, Tp Drainage, Dr Net Radiation, Rn Sensible Heat, H Latent Heat, LE
Scale c,d m,d c,p c,d m,d c,p c,d m,d c,p c,d m,d c,p c,d m,d c,p c,d m,d c,p c,d m,d c,p c,d m,d c,p

mbr.
0 0 1.0 0 0 0 0 0 0.8 0 0 0 0 0 0 �0.8 �0.4 2.1 �6.9 �2.9 0.7 0 0.1 0.9

121 41.6 3.5 82.5 16.4 1.4 10.8 7.2 1.7 3.2 1.4 1.0 6.6 0.2 0.4 6.0 5.3 3.2 4.3 2.8 1.5 12.5 8.2 2.6

Range
(mm/d)

exp. 0 0 1.6 0 0 0.1 0 0.1 0.9 0 0 0 0 0 0 �0.5 �0.4 2.2 �6.1 �2.8 0.9 0 0.1 1.2
82.9 33.4 2.6 32.0 10.6 1.1 9.8 6.9 1.6 2.7 1.2 0.9 0.7 0.1 0.1 5.8 5.2 3.0 3.6 2.7 1.4 11.4 8.0 2.1

USD
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19.6 3.5 0.3 15.3 2.3 0.2 3.3 0.5 0.1 1.0 0.1 0.1 1.0 0.0 0.1 1.0 0.1 0.1 3.0 0.3 0.1 3.7 0.5 0.2

Mean
(mm/d)

mbr.
2.19 0.38 1.26 0.44 0.02 2.74 (78.4 W/m2) 1.12 (31.9 W/m2) 1.70 (48.5 W/m2)exp.

USD 1.22 0.33 0.22 0.42 0.12 0.11 0.29 0.07 0.07 0.06 0.01 0.03 0.017 0.004 0.016 0.11 0.02 0.04 0.19 0.04 0.05 0.34 0.08 0.09

mbr. 2.95 2.39 0.16 5.73 3.41 0.50 1.15 1.04 0.10 1.03 0.83 0.39 3.71 1.38 1.77 0.53 0.52 0.07 0.77 0.63 0.12 1.03 0.94 0.12
CV exp. 2.61 2.37 0.12 4.36 3.29 0.42 1.09 1.03 0.09 1.00 0.83 0.38 2.35 1.29 1.13 0.52 0.52 0.06 0.71 0.63 0.11 0.98 0.93 0.11

USD 2.24 2.05 0.21 3.28 2.67 0.28 1.30 1.20 0.17 1.38 1.03 0.41 2.50 1.55 0.97 1.05 0.88 0.24 1.40 1.27 0.22 1.23 1.13 0.22

mbr. 4.34 3.36 �0.02 9.02 5.41 0.83 1.47 1.29 0.02 1.04 0.29 �0.22 13.2 2.01 3.64 �0.05 �0.12 �0.60 �1.40 �1.31 0.17 1.16 0.93 0.04
Skew. exp. 3.64 3.30 �0.53 6.72 5.06 0.77 1.38 1.28 �0.01 0.96 0.28 �0.29 4.74 1.46 1.90 �0.08 �0.12 �0.69 �1.41 �1.31 0.20 1.08 0.92 �0.06

USD 2.47 2.14 �0.35 4.38 3.67 0.44 2.25 2.16 �0.61 2.44 1.15 0.22 5.53 2.21 1.34 1.61 1.02 0.20 2.94 2.60 0.03 2.11 2.03 0.04

mbr. 26.6 15.9 2.63 109. 39.1 3.74 5.12 4.65 2.82 3.41 1.74 2.22 376. 7.21 22.0 1.80 1.75 2.49 8.72 7.68 2.47 4.22 3.62 2.58
Kurt. exp. 18.6 15.3 2.06 57.9 33.1 3.41 4.95 4.64 2.64 3.15 1.73 2.18 34.5 3.68 7.93 1.80 1.75 2.46 9.18 7.74 2.35 4.10 3.61 2.21

USD 8.73 6.93 3.04 24.6 18.6 3.09 9.51 9.11 4.00 11.4 3.67 2.44 48.9 7.60 4.48 5.98 3.62 2.98 15.3 11.8 2.84 8.89 8.53 3.09
1 Unit for ranges and means is mm�day�1 (energy �uxes expressed in equivalent evaporated water, also in W�m�2 for means); other statistics are dimensionless. 2 Kurtosis expresses
tailedness and varies from 1 for a �nite, uniform distribution, to 3 for a normal distribution, and above that value for a more narrow-peaking, fatter-tailed distribution.
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Figure 3. Quantile-based frequency distributions of cell/day-scale water and energy fluxes for 
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distribution. Conditional distributions are comp uted within 1000 slices covering the range of 

ensemble means. 

Figure 3. Quantile-based frequency distributions of cell/day-scale water and energy �uxes for ensemble
means (expected �uxes; horizontal axis) and members (vertical axis), for each �ux type. The inner
2-D plot in each graph shows distributions of ensemble members conditional to means; marginal
distributions of means and members are shown along the top and right edges, respectively (for legibility,
they apply to the speci�ed fractions (%) of non-nil values in the full series). Median, quartiles, upper
and lower 5%, and min/max, are displayed with 4-level decreasing color intensity and are labeled
explicitly for marginal distributions (see, e.g., those for Rn for color intensity legend). The 1:1 black
dotted line sets the ensemble mean for any conditional ensemble members’ distribution. Conditional
distributions are computed within 1000 slices covering the range of ensemble means.

Similarly to Figure 3 but for the half-year timescale, Figure 4 shows the frequency distributions of
time-integrated, cell water (Figure 4a) and energy (Figure 4b) �uxes for ensemble members and means
(color plots in inner boxes, including both marginal distributions of members and means as well as
conditional distributions of members to means, as in Figure 3). Figure 4 also shows distributions of
these members and means conditioned to ecosystem type (1-D whiskers in outer plot areas). Finally,
small vertical grayscale bars at the center of each 2-D crossplot (inner boxes in Figure 4) depict fully
space/time-integrated member and expected �uxes (vertical and horizontal axes, respectively).
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Figure 4. Frequency distributions of time-integrated, cell-scale water (a) and energy (b) �uxes, for ensemble means (horizontally) and members (vertically) in
mixed-ecosystem cells (inner rectangles, same as Figure 3) or conditioned to individual ecosystem types (top and right outer areas for means and members, resp.).
Inner rectangles: 2-D plots of members conditioned to mean and 1-D marginal distributions (see Figure 3). Smaller gray-scaled distributions superimposed to 2-D
clouds represent corresponding spatially-(beside temporally-) integrated �uxes. Outer areas: individual ecosystem types (LCs) are 1 = bare soil, 2 = crops, 3 = young
fallow, 4 = old fallow. All distributions are displayed as quantiles (median, quartiles, upper and lower 5%, and min/max) with 4-level decreasing color intensity, as in
Figure 3. Graphs are drawn with square-scales.



Atmosphere 2020, 11, 465 13 of 35

From these three �gures, it can be seen that the e�ect of uncertainty (ensemble variability) is
generally quite signi�cant, with respect both to �ux magnitudes and to the other variability modes,
especially for the coarser resolutions. Considering changes in variability and skewness resulting
from integration over one or several of the three dimensions �time, space, and uncertainty�(Table 2,
Figures 2�4) suggests that the time dimension predominates in the variability and shape of the
fully-resolved ensemble �uxes for most �ux types. Relative weights of these three variability sources
and of their interactions are assessed quantitatively in Section 3.1.2, while space/time-scale e�ects on
uncertainty (ensemble variability) are speci�cally investigated in Sections 3.2 and 3.3. Interpretation
of Figures 2�4 in terms of patterns of �rst-order functioning of water and energy cycles in the study
domain, is developed in Appendix C.

3.1.2. Global Variance Analysis of the Simulated Flux Ensemble: Confronting Variability Sources

In this section, �ux variability in the entire, full-resolution, mixed-ecosystem simulated set is
analyzed by decomposing total �ux variance into its three orthogonal dimensions, namely time (t), space
(xy), and ensemble (e). Flux variability in these di�erent dimensions originates from corresponding
variability in model forcings, namely: (i) time dependencies in rainfall, meteorology, and vegetation
phenology, (ii) spatial variability in rainfall and ecosystem distribution, and (iii) rainfall uncertainty,
for t, xy, and e respectively. This variance decomposition allows us to compare the respective e�ects
of these di�erent sources and to highlight those due to their interactions, through lumped measures
over the whole time/space simulation domain. Analyzing temporal and spatial e�ects informs on how
�uxes scale over time and space. It also highlights the time/space scaling of the third factor’s e�ects,
namely �ux uncertainty (taken here as the fully-lumped squared standard uncertainty, USD2).

Figure 5 displays this global variance decomposition for the di�erent water and energy �uxes.
Interpretation of the various component terms is detailed in the �gure legend (right side). Taking,
for instance, the uncertainty factor �e� for each �ux type, the 1st-order uncertainty term amounts to
the time/space-independent variance, i.e., uncertainty on the fully-integrated, meso/half-year �ux.
Adding either the «t-e» or the «xy-e» 2nd-order interaction term leads to the aggregated uncertainty on
time or space-distributed �uxes, i.e., to uncertainty at meso/day or cell/half-year scales, respectively.
Including both interaction terms as well as the 3rd-order «t-xy-e» (entire «e» bars in Figure 5) provides
the �nest, cell/day scale aggregated uncertainty. Similarly, the 1st-order term for the time or space factor
represents the variance of the time-distributed (meso/day) or the space-distributed (cell/half-year)
expected �uxes, respectively (decomposition of the latter into precipitation and land-use contributions
is also reported in the �gure). Adding these two 1st-order terms and the «t-xy» interaction produces
the variance of expected fully-distributed (cell/day) �uxes. Entire time (left) or space (middle) bars
represent total temporal or spatial variance in fully-resolved ensemble �uxes, aggregated over all
ensemble members, and cells or days, respectively. Other combinations of terms provide further
meaningful expressions of partial variances in the three-factor decomposition space (see legend).

As suggested in Section 3.1.1, the time factor (time-wise variability in forcings) dominates total
variance for all variables�albeit less sharply for Dr (Figure 5). Its 1st-order component alone (time
factor without interactions with space and uncertainty, i.e., ensemble- and space-averaged �uxes)
even exceeds the other factors’ total variance except for Q and Dr. The relative e�ect of uncertainty
on time variability is comparatively lower than that on space variability (see next paragraph). The
space factor comes next in importance in the variance budget, but with a lesser 1st-order contribution
(cell/half-year expectations), and mostly 2nd-order interaction with time (cell/day expectations) and
3rd-order interaction (full resolution ensemble). Direct interaction with uncertainty is less substantial,
yielding moderate added spatial variability from expectations to ensemble at the cell/half-year scale
(max. factor 2.4, for Dr). The uncertainty-induced spatial variability increase is always higher at daily
scale (factor up to 8.8, for P), due to the 3rd-order term. Decomposition of spatial variability alone
(1st-order term, i.e., for cell/half-year expectations) between precipitation and land-use largely varies
with �ux type (Figure 5). While the land-use factor dominates strongly for Tp and Rn, and to a lesser
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degree for Q, the two factors are rather balanced for Dr and H, and precipitation dominates only for Es
and LE, not to speak of P itself. Note that this e�ect of land use (and hence the whole spatial variability)
is largely tempered by the mixed-ecosystem composition of cells.

For the uncertainty factor, 1st-order terms (meso/half-year uncertainty) are much smaller than the
interaction terms. Second-order interaction�hence downscaling�with time is stronger than with
space for P, Q, and to a lesser extent Es and H, weaker for Dr, and similar for Tp and Rn. Further
separating the spatial factor into its precipitation and land-use induced components, con�rms (not in
�gure) that this interaction of space with uncertainty arises from the �rst component (precipitation)
alone essentially, albeit also from the 3rd-order interaction with the two spatial components for Dr.
Most important, however, is the 3rd-order interaction with both time and space, which dominates by
far the composition of ensemble variability. These successive jumps in the magnitude of component
uncertainty terms when moving from �rst to second and to third order induce very strong scale
dependence of total uncertainty for all �ux types.

Variance decomposition highlights the relationships existing between the variance components
induced by the di�erent factors. For instance, the decrease in variable uncertainty with spatial
upscaling from cell/half-year to meso/half-year scales is identical to the decrease in spatial variability
between ensemble members and their expectations at cell/half-year scale (see Figure 5 legend, common
2nd-order term to the uncertainty and space factors, in green). The same holds between the time
and uncertainty factors (light-blue 2nd-order term), or between time and space (dark blue 2nd-order
term), or still between the three for the 3rd-order term (gray). Also, considering the di�erent types
of variability simultaneously allows us to compare their respective magnitudes. For instance, it can
be seen that uncertainty comes relatively close to spatial variance in the ensemble set (ratio � 30%)
for P, Q, Dr, and Es at cell/day or cell/half-year scale, also for daily LE, H, and Rn. It is smaller for Tp
at both timescales and for the energy �uxes at a half-year scale. This ratio generally decreases with
time upscaling and falls below 4% for Tp and Rn at cell/half-year scale. If comparing now with spatial
variability of expected �uxes: (i) at cell/day scale, uncertainty comes out larger for P, Q, Dr, Es, and
similar for LE and H; (ii) at cell/half-year scale, it is still larger for Dr and similar (ratio of 47%�72%) for
P, Q, and Es.

3.2. Patterns of Distributed Uncertainties

3.2.1. Distributions of Elemental Uncertainty

A �rst picture of the distribution of ensemble �ux anomalies arising from rainfall uncertainty�the
departures of ensemble members from expected �uxes�is provided by the deviations of frequency
quantiles from the 1:1 line in Figures 3 and 4, in relation to ensemble means, for the various �ux
types at cell/day and cell/half-year scales, respectively. The time-dependence of uncertainty-generated
anomalies at cell/daily-scale is depicted by the deviations of frequency quantiles from means in Figure 2.
Ensemble anomalies can be condensed to the elemental (unlumped) standard uncertainties USD,
to characterize the distribution of uncertainties over the time/space simulation domain for the various
time and space scales. Figure 6 displays the frequency distributions at full, cell/day resolution of this
elemental USD, both conditioned to ensemble means and as marginal distributions over the whole
domain. Figure 7 shows, for the cell/half-year scale, the direct scatter of elemental USD against means,
with color intensity mapping by the rainfall uncertainty coe�cient UC (Section 2.4), as well as their
marginal distributions both for the ecosystem mosaic and for individual ecosystems. Table 2 gives
summary statistics of elemental USD at various scales.



Atmosphere 2020, 11, 465 15 of 35

Atmosphere 2020, 11, x FOR PEER REVIEW 15 of 37 

 

 

Figure 5. Three-�•�Š�Œ�•�˜�›�1�û�•�’�–�Ž�1��t���ð�1�œ�™�Š�Œ�Ž�1��xy���ð�1�ž�—�Œ�Ž�›�•�Š�’�—�•�¢�1��e���ü�1�•�Ž�Œ�˜�–�™�˜�œ�’�•�’�˜�—�1�˜�•�1�•�˜�•�Š�•�1�Ÿ�Š�›�’�Š�—�Œ�Ž�1�•�˜�›�1�Ž�—�œ�Ž�–�‹�•�Ž�ð�1�•�ž�•�•�¢-resolved water, and energy fluxes. Uncolored segments refer to 

1st-order components for each factor, while colored segments represent higher-order terms, i.e., interactions between factors as defined at the top right corner in graph box and explained in the 

legend column (right). Note that variances are displayed log -scaled, hence distorting the equality of interaction terms shared by interacting factors �/ to the point that some segments may not be 

clearly visible for all factors (see e.g., the time factor, left bars). All variances are expressed in (mm·day �º�W)2 on the left axis and inside graph box, and in equivalent ( W·m �º�X)2 on the right axis. 

Component values are written vertically inside or to the right of one instance of each component segment; total variance for each factor is displayed horizontally above the corresponding full 

bar; entire variance for each flux type (sum of one instance of each of the seven component terms) is displayed at figure top, below flux type name. Italic percentages in first-order segments for 

space factor (central bars) give a further decomposition of these terms between spatial rainfall and ecosystem effects, respectively (interactions of the two effects are very small for all variables 

but Dr  (20% of total), and were split equally between them).  

Figure 5. Three-factor (time ‘t’, space ‘xy’, uncertainty ‘e’) decomposition of total variance for ensemble, fully-resolved water, and energy �uxes. Uncolored segments
refer to 1st-order components for each factor, while colored segments represent higher-order terms, i.e., interactions between factors as de�ned at the top right corner
in graph box and explained in the legend column (right). Note that variances are displayed log-scaled, hence distorting the equality of interaction terms shared
by interacting factors�to the point that some segments may not be clearly visible for all factors (see e.g., the time factor, left bars). All variances are expressed in
(mm�day�1)2 on the left axis and inside graph box, and in equivalent (W�m�2)2 on the right axis. Component values are written vertically inside or to the right of one
instance of each component segment; total variance for each factor is displayed horizontally above the corresponding full bar; entire variance for each �ux type (sum of
one instance of each of the seven component terms) is displayed at �gure top, below �ux type name. Italic percentages in �rst-order segments for space factor (central
bars) give a further decomposition of these terms between spatial rainfall and ecosystem e�ects, respectively (interactions of the two e�ects are very small for all
variables but Dr (20% of total), and were split equally between them).
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Figure 6. Frequency distributions of elemental standard uncertainties (USD) for cell/day-scale water
and energy �uxes. Inner 2-D plots show USD quantiles conditional to expected �uxes (ensemble
means); marginal USD distributions are shown along right edges, those for expected �uxes along top
edges (same as Figure 3). Display conventions as in Figure 3.

3.2.2. Relating Flux Uncertainty to Flux Magnitude

The �gures displaying ensemble member variability (Figures 3 and 4) or standard uncertainty
(Figures 6 and 7) versus expected �uxes, suggest that space/time distributions of uncertainty are
strongly imprinted by those of the underlying �ux magnitudes. This is also hinted at by the general
relative similarity in dimensionless statistics (especially coe�cient of variation and skewness, see
Table 2) between the �uxes�ensemble members and means�and their uncertainties, for any given
�ux type and scale.

At both timescales�daily or half-year�uncertainties generally grow with �ux magnitudes, more
or less clearly depending on �ux type. On a daily scale however (Figure 6), for most �ux types, they
tend to level o� for large magnitudes or even to decrease for the largest ones. At least part of this
originates from this e�ect being present in P, meaning that rain�elds are likely to be better constrained
by the raingauge network for the strong events than for those with lower daily intensities. This results
in a saturation-type e�ect on extreme member values for most �ux types, which limits the di�erences
in the range between the marginal distributions of means and members (Figure 2).
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Figure 7. Elemental standard uncertainty (USD) for time-integrated, cell-scale water (a) and energy (b) �uxes. Inner boxes show USD versus expected �ux in all cells
(2-D plots, one point per cell) as well as marginal frequency distributions of USD (quantile whiskers, on the right within the box) and expectation (on the top within the
box), in mixed-ecosystem cells. Color darkness in scatterplots maps the rainfall uncertainty coe�cient (UC) in each cell. Vertical (horizontal) whiskers in the right (top)
outer area represent quantiles of USD (expectations) for individual ecosystem types (LCs; 1: bare soil; 2: crops; 3: young fallow; 4: old fallow), similarly to Figure 4.
Quantile display conventions are as in Figure 3.
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A particularly strong relationship�from �ux magnitude to standard uncertainty�is obtained for
P, Q, and also Dr when only the time dimension is expounded (i.e., meso/day or space-lumped cell/day
scales�not shown). Conversely, when the space dimension is made explicit (cell resolution, no spatial
lumping), the geometrical relationship to the gauge network layout also comes into play, as it controls
the degree of source uncertainty and hence blurs the relationship to �ux magnitude.

Except for Rn, uncertainties in daily �uxes (Figures 3 and 6) generally tend to be comparatively
lower for the most frequent �ux magnitudes (see, e.g., the case of H).

When intercomparing �ux types, Figure 7 highlights at cell/half-year scale the stronger response
to rainfall uncertainty in relative uncertainty (uncertainty coe�cient UC, represented by the slope from
the origin in Figure 7) for Q and especially Dr compared with Es and Tp. Uncertainties are ampli�ed
relative to P for Q and Dr but attenuated for Es and Tp. Similarly, for energy budget components, LE
and H display much higher relative sensitivity to rainfall uncertainty than Rn. It is shown in Section 3.3
that, taken relative to �ux magnitude (i.e., as UC) as well as to its space/time variability (i.e., as UF),
uncertainty is comparatively highest for Dr and lowest for Rn at all scales. It is also shown that UC
makes the most powerful dimensionless uncertainty measure, and is therefore used intensively in
the following.

3.2.3. Relationship to Rainfall Uncertainty: Uncertainty Propagation Patterns

The color darkness patterns in Figure 7 provide evidence of a relationship in �ux USD, and even
more so in �ux UC (slope from the origin), to rainfall UC, for most �ux types at the cell/half-year
scale. The �ux uncertainty-to-expectation relationship at cell/daily scale is also well structured by the
cell/half-year rainfall UC for Q and Dr but less so for the other �ux types (not shown). This section
further analyzes the relationship in UCs between rainfall and each dependent �ux type, when projected
either in the temporal or the spatial dimension. In time-wise analysis, time-distributed �uxes are
considered either integrated over space (mesoscale) or at cell scale with the uncertainty measure
being lumped over space. Conversely, the space-wise analysis considers both daily cell �uxes with
time-lumped uncertainty and time-integrated cell �uxes.

� Time-wise analysis (temporal patterns).

Figure 8 displays the seasonal courses of space-independent UCs for 10-day �uxes taken either
at cell (space-lumped UCs, Figure 8a) or meso (space-integrated �uxes, Figure 8b) spatial resolution.
Despite the di�erent space scales, note the similarity in shapes between the two graphs. The source,
rainfall uncertainty follows a time pattern that is roughly opposite to that of the �ux itself (Figure 2a),
which is a consequence of P uncertainty scaling tightly with magnitude (Section 3.2.2) according to a
concave (roughly square-root) relationship. Q closely follows the P pattern, with a relatively constant
ampli�cation factor of around 2 and 3 for cell and mesoscale �uxes (Figure 8a,b), respectively. The P
pattern can be seen as propagating with more or less distortion/smoothing and lag to most of the
other �ux types. Only Dr appears to be less connected to the P pattern, with a much smoother course
presumably due to a more time-integrative response of this �ux type to rainfall. Logically, Es and LE
show a high correlation, as do, less expectedly, Tp, and Rn (with uncertainty in Rn essentially coming
from the upwelling thermal radiation). The abrupt hollow in the curves for several �ux types after
Julian day 280 is due to some light late-season rainfall with no injected uncertainty (as can be seen
in Figure 2a). Note that despite the di�erent behaviors, �ux type ranking remains overall relatively
time-invariant. Amplitudes of ranges in UC largely vary with �ux type, e.g., for cell-scale �uxes
(Figure 8a), from a factor of ~3 for P and Q to as much as ~7 for Tp.
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� Space-wise analysis (spatial patterns).

Using again the UC dimensionless measure, Figure 9 displays the spatially-variable (one point
per cell) relationship to rainfall uncertainty of all water and energy �ux uncertainties, for daily-scale
�uxes (time-lumped measure, Figure 9a) or half-year �uxes (Figure 9b). On both graphs, diagonal
projection to the right or top graduated axes provides the ratio of the two confronted UC values, i.e.,
the corresponding UC propagation factor. For time-integrated �uxes (Figure 9b), quantile distributions
of the propagation factor are also drawn on the right side of the graph (with diagonal reading), for the
mixed-ecosystem cells as well as for individualized ecosystems.

It can be seen that for both timescales the relationships of �ux-to-rainfall uncertainties are fairly
to very strong, depending on �ux type. Dr is the least strong, including a few points scattered away
from the main cloud: this is likely due to this �ux acting as a residual from all other water cycling
processes, hence integrating all variability sources that a�ect the various other �uxes. Because of
spatial independence in simulated �ux processes (no interaction between cells, unlike over time;
spatial relationships stem from forcings only), �ux uncertainty in a given cell depends on the rainfall
ensemble for that cell only. Figure 9 shows that this dependence is rather well summarized using the
UC uncertainty measure applied to rainfall and to the various dependent �uxes.

With daily scale �uxes, even for �ux types for which the relationship is very strong (e.g., Es),
the corresponding propagation ratio generally varies somewhat with the level of P uncertainty, e.g.,
decreasing from ~0.9 to ~0.5 (i.e., increased attenuation) for Es when rainfall UC sweeps the recorded
range (0.15�0.7). Only for Q is the trend slighter, and opposite (propagation ratio increasing from
slightly below to slightly above 2). Relationships generally appear even stronger and propagation
ratios more invariant (linear relationship) when �uxes are considered at the time-integrated scale.

Given the generally moderate variations in propagation ratios for any given individual �ux
type in Figure 9 (especially 9b), compared to di�erences between �ux types, a clear hierarchy in the
uncertainty measure emerges over space between �ux types. This hierarchy, which varies somewhat
with the timescale, is hence well summarized by the fully-lumped UC, which is mapped as big circles
in Figure 9 for both timescales. These are well centered within the corresponding space-resolving
clouds�except for Dr for reasons explained above. Hence the analysis of fully-lumped measures as
developed in Section 3.3 can be considered to largely represent the properties of space-distributed
variables as well, especially in terms of propagation e�ects.

Note that for both timescales, UC propagation for spatially-distributed �uxes come out nearly
everywhere as ampli�cation for Q and Dr but attenuation for all other �uxes, with only very rare
exceptions for Dr at daily scale and Tp at half-year scale. This quasi-invariance also holds over time for
the 10-day scale (Figure 8).

The maps in Figure 10 illustrate how the spatial patterns in time-lumped UC of daily-scale P
propagate to the other �ux types. The marked pothole structure of P uncertainty is largely preserved
for Es and LE as well as for H, Rn, and Q and to a lesser extent for Tp, but is considerably blurred in Dr.
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Figure 9. Cell-scale uncertainty propagation: spatially-distributed relationships between uncertainty coe�cients UC on �ux and rainfall (one point per cell), for two
timescales: (a) daily cell �uxes, with time-lumped UCs; (b) elemental UCs for time-integrated cell �uxes. Open circles indicate fully lumped UC values. On each
graph, the diagonal axis (right-then-top graduations) represents the ratio of the two plotted measures, i.e., the propagation factor. Whiskers at right represent quantile
distributions of propagation factor (diagonal axis) for mixed-ecosystem cells (in inner box) and individual ecosystems (rightmost box; 1: bare soil; 2: crops; 3: young
fallow; 4: old fallow).
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spatial coordinates as in Figure 1). Black dots show raingauge locations within the study domain.

3.2.4. E�ects of Ecosystem Type on Uncertainty

The discussion of distributed uncertainties has so far considered a cell as an integrated mix of
multiple ecosystems. This subsection discusses the information characterizing the di�erent ecosystem
types for time-integrated �uxes in Figures 7 and 9b.

In terms of USD (Figure 7), signi�cantly higher values among ecosystem types are obtained for
the following combinations: bare soil for Q, crops for Dr, old fallow for LE and H. All of these four
combinations but the last one�old fallow with H�also correspond to the highest �ux magnitudes of
all ecosystem types, for the given �ux type (Figure 7, top). Conversely, statistically lower USD among
ecosystem types is obtained from bare soil for all energy components (Rn, H, and LE), all of which
also correspond to lower �ux magnitudes. This property of bare soil could also be extended to Tp and
Dr, but in this case, �ux magnitudes are irrelevant or insigni�cant for those �ux types. Di�erences in
evaporation USD between cover types are not signi�cant, despite larger di�erences in �ux magnitude.
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In terms of the relative uncertainty UC, it can be seen in Figure 9b that distributions of UC
propagation factors are lowest from bare soil for Q, Es, and Rn, from crop �elds for Dr and Tp (values
for these latter �ux types are not quite meaningful for bare soil, see above), and from both cover types
for H. Es from bare soil even displays, in statistical terms, both the lowest USDs (slightly) and the
highest �ux magnitudes of all ecosystem types (Figure 7). Conversely, relative sensitivity is statistically
highest from the old fallow type for Dr (but with very low �ux magnitude) and H, from both young and
old fallow for Tp and Rn, and the crop type for Q (lowest USD but also lowest magnitude). Propagation
factor distributions are hardly distinguishable between these three vegetated ecosystem types for Es,
and to a lesser extent for Rn. For Q, di�erences between all types are much smaller in the middle of the
wet spells than in the drier spells (not shown).

3.3. Scaling of Fully-Lumped Uncertainty Measures and Propagation Factors

The global variance analysis of Section 3.1.2 (more precisely, the combinations of variance
component terms for the �e� factor in Figure 5) as well as the uncertainty statistics in Table 2, indicate
the e�ects of scale on the uncertainty measures. They suggest for instance a predominance of timescale
over space scale e�ects for some �ux types. This section analyzes quantitatively these scale e�ects,
for both standard and non-dimensional fully-lumped uncertainty measures as well as for corresponding
propagation factors. For dimensionless uncertainty, both UC and the uncertainty fraction UF are
considered and compared.

� Uncertainty measures.

Figure 11a�c (top three graphs) display the scale dependency for the three uncertainty measures
USD, UC, and UF, respectively. Time and space scales are combined multiplicatively in a single scale
measure�of dimension [T]. [L]2�along the horizontal axis, and include intermediate timescales.
This combination of dimensions stems from considering the count of additive aggregation operations
applied to full-resolution �ux values when upscaling these �uxes.

While USDs logically decrease steadily with any upscaling for all �ux types (Figure 11a), this is
also true with UCs (although very mildly for time upscaling of Dr, Figure 11b), but not with UFs for
which patterns of variation strongly vary depending on time and space scales (Figure 11c).

Rankings of �ux types in USD are invariant with scales, namely in decreasing order: P (the
source uncertainty), Q, Es, H, Rn, Tp, and Dr. These rankings change when considering dimensionless
uncertainty UC and UF, however, as with USD they remain relatively stable across scales, and also
between the two dimensionless measures (Figure 11b,c; high: Dr and Q; low: Rn, Es, and Tp; P
intermediate). Only H moves from rather low in UC to intermediate in UF, and even high for some
large timescales. This relative similarity in �ux type rankings for the two dimensionless uncertainty
measures UC and UF, and the much more stable, regular behavior of UC across scales that contrasts with
the loss of signi�cance of UF for the largest scales, justify that only UC was used as the dimensionless
measure in Section 3.2.3. Also note that for all scales, the spread in UC across �ux types is larger than
that in UF.

Figure 11a,b suggests that, for any given �ux type, the time scaling e�ect (slope of plain lines
in the log space) on USD or UC is nearly independent of the space scale (two plain lines, for cell or
meso), and vice-versa. If these scale e�ects are approximated as power relationships of (standard or
dimensionless) uncertainty ratio ru to scale ratio s over the scale ranges, then combined time and space
scaling can be written as:

ru � (st) � t (sxy)� xy (1)

where st and sxy denote given time and space scaling ratios, ru is the corresponding ratio for the
uncertainty measure, and � t and � xy are the mean time and space scaling exponents for the considered
uncertainty measure and �ux variable. Table 3 displays the values of these exponents (as the mean �
the half range-width), estimated from the line vertices (full-scale ranges) in Figure 11a,b. The generally
small range-widths testify to the independence suggested above.
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Figure 11. Scaling with time-and-space of lumped uncertainty in water and energy �uxes and corresponding propagation factors. Lumped uncertainty measures
plotted are, top: (a) standard uncertainty USD, in mm�day�1 and equivalent W�m�2 (cf. Table 2’s caption), (b) uncertainty coe�cient UC, and (c) uncertainty fraction
UF; bottom: same as (a�c) expressed as propagation ratios concerning rainfall (d�f). De�nitions of these various measures are detailed in Section 2.4; the combined
time-and-space scale (day�km2) of the x-axis is explained in Section 3.3. From left to right along the x-axis of each graph, dots correspond to cell.day, cell.half-year,
meso.day, and meso.half-year scales, respectively. Hence, plain lines amount to time scaling (from day to half-year) of the cell-(left) and meso-(right) scale uncertainty,
while dashed lines represent spatial scaling (from cell to meso) of daily (left) and time-integrated (right) uncertainty. Intermediate scales are displayed for time but not
for space. Upper tips of stacked color bars at extreme left in (a) indicate the values of overall expected �ux for each corresponding �ux type.
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Table 3. Time and space scaling exponents (� t and � xy in Equation (1)) for the di�erent �ux types
and uncertainty measures (standard uncertainty and uncertainty coe�cient). For each �ux type and
measure, are displayed: the arithmetic mean and, in brackets, �the half-range-width between the two
relevant lines in Figure 11a or Figure 11b (each exponent being computed over the full line range).

Standard Uncertainty, USD Uncertainty Coe�cient, UC

Space (� xy) Time (� t) Space (� xy) Time (� t)

rainfall, P �0.186 (�0.007) �0.507 (�0.010) �0.180 (�0.012) �0.319 (�0.018)
runo�, Q �0.186 (�0.002) �0.491 (�0.002) �0.163 (�0.010) �0.236 (�0.015)

evaporation, Es �0.206 (�0.006) �0.382 (�0.009) �0.204 (�0.008) �0.310 (�0.012)
transpiration, Tp �0.218 (�0.007) �0.224 (�0.011) �0.208 (�0.006) �0.172 (�0.009)

drainage, Dr �0.230 (�0.003) �0.140 (�0.004) �0.174 (�0.001) �0.043 (�0.001)
net radiation, Rn �0.207 (�0.002) �0.231 (�0.003) �0.207 (�0.002) �0.208 (�0.003)
sensible heat, H �0.207 (�0.008) �0.367 (�0.012) �0.204 (�0.010) �0.332 (�0.015)
latent heat, LE �0.205 (�0.005) �0.339 (�0.007) �0.203 (�0.006) �0.277 (�0.009)

The space scaling e�ect is quite invariant across the di�erent �ux types for both USD and UC
(Figure 11a,b, respectively), and rather similar between these two uncertainty measures (Table 3).
For USD, the time scaling e�ect is stronger than space scaling for the �ux types with the largest USDs
(P, Q, Es, LE, and H), and vice-versa for Dr. Fluxes with intermediate USD (Rn, Tp) display comparable
time and space e�ects. Except for Dr and to a lesser extent Tp, di�erences between time and space
scaling are smaller for UC than for USD. Note the very small time scaling e�ect for drainage UC.

The departure from a value of �0.5 of exponents for USD (�rst two columns in Table 3 and
Figure 11a) re�ects the degree of autocorrelation in �ux anomalies over space or time (a �0.5 exponent
would correspond to no autocorrelation and a null exponent to perfect correlation with homoscedasticity;
see Appendix D). Thus it can be seen that ensemble anomalies in P appear fully independent over
time for scales from daily upwards, due to independent simulation of rain events (Section 2.2). This
is also the case to a slightly smaller degree for Q, presumably due to a slight memory e�ect through
antecedent moisture conditions for runo� generation (see, e.g., [80]). Tp and even more so Dr anomalies
are logically the most time-autocorrelated, because of the much longer response times associated with
these �ux types. Hence it is the system’s processes that induce time-correlation in anomalies (through
correlation in �uxes), as rainfall is devoid of such correlation over the range of timescales considered.
Conversely, rainfall appears to be the main source of spatial autocorrelation for the simulated system,
resulting in inverse �ux type rankings (the only other possible source of spatial �ux correlation being
land use, which appears much less e�ective in this respect than does rainfall).

While it could be seen in Figure 9 that Es and H have very close UCs at cell scale, Figure 11b
shows that this is true at all scales, and Figure 8 that it holds over a large part of the season when the
measure is resolved over time. Transpiration UC is not very di�erent in magnitude, with a change in
ranking versus the above when timescale changes, but not when space scale changes.

� Propagation factors.

The bottom graphs in Figure 11d�f display similarly, for each of the above three uncertainty
measures, the scaling with time and space of the uncertainty propagation factor for each �ux type, i.e.,
the ratio of the corresponding uncertainty measure value to that of rainfall.

When considering USD (Figure 11d), propagation factors are as expected all below unity, the highest
being for Q at a nearly scale-independent value of ~0.5: USDs in Q are about half those in P. For the
other �ux types, USD propagation factors slightly decrease with space scale but sharply increase with
the timescale, ranging 0.01�0.16 for daily �uxes versus 0.07�0.30 for half-year �uxes (lower bounds for
Dr, upper bounds for Es). This re�ects the generally faster USD decrease with the timescale for rainfall
than for these other �uxes (see also Table 3).

With UC, Figure 11e shows that the propagation e�ect (either ampli�cation or attenuation)
is consistent over the whole range of time and space scales for all �ux types: Dr and Q produce
ampli�cation at all scales, while all others produce attenuation. Ampli�cation increases with scale for
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Dr (from a factor ~2 to ~10 over timescales) and to a lesser extent for Q (from <2 to <3). Attenuation
is stable and similar for Es and H (~0.4�0.5), but decreases (rising <1 propagation factors) with time
upscaling for Tp (from ~0.3 to >0.6) and Rn (in the ~0.07�0.16 range).

When comparing propagation of the two dimensionless measures UC and UF (Figure 11e,f), the
same observations made in the previous sub-section for the comparison of UC and UF logically hold
for their respective propagation factors. Additionally, besides the already-noted general similarity
in rankings for �ne scales and its decay with increasing scales due to UF scale instability (especially
over time), this behavior applies when considering the nature (attenuation versus ampli�cation) of the
propagation (Figure 11f). This property further promotes UC as a better dimensionless measure of
uncertainty patterns across the range of time and space scales.

4. Discussion and Conclusions

Using (i) a stochastic time/space rain�eld generator, conditioned to raingauge records and re�ecting
the induced rainfall uncertainty, and (ii) the SEtHyS-Savannah land surface model�both calibrated
against AMMA-CATCH �eld-data�a �ne-resolution, ensemble simulation of water and energy surface
�uxes was produced over a 2530-km2 domain in South-West Niger for the 2005 monsoon season and
subsequent dry-down (six-month total duration).

A detailed analysis of water�including rainfall P�and energy �ux variabilities in the time, space,
and ensemble dimensions was performed over a wide range of time and space scales, from the day
and kilometer up to the entire simulated time/space domain. Variability in the ensemble dimension
re�ected the propagation of P uncertainty. Sources of spatial �ux variability were rainfall and land use
(ecosystem types), those of temporal variability were rainfall, meteorology, and vegetation phenology.
Variability was described in the form of both distributions of simulated �uxes and their �rst-order
statistical moments (variances/standard deviations), including global variance analysis of the simulated
ensemble set.

The global variance analysis allowed characterizing the respective weights of, and interactions
between, the three main sources of variability, namely spatial (from cell to meso) and temporal (daily
to seasonal) variability in model forcings (rainfall, meteorology, and ecosystem type) as well as rainfall
uncertainty. Interaction terms were found to be especially important, making, for example, spatial
variability substantially higher when accounting for full �ux uncertainty than when considering
ensemble means�i.e., expected �uxes�only, especially at the daily scale. The e�ect of ecosystem type
on �ux variability was found to be signi�cant for all �ux types, but not generally exceeding the rainfall
uncertainty e�ect. Respective weights of land use versus rainfall in �rst-order spatial �ux variability
varied greatly with �ux type.

Uncertainty patterns were further investigated using synthetic measures of ensemble variability,
taken either at each node of the time�space domain for a given scale or lumped over one or both
time�space dimensions at that scale. In addition to a dimensional measure represented by the ensemble
standard deviation�denoted as standard uncertainty (USD)�two dimensionless measures were
used. Denoted as uncertainty coe�cient (UC) and uncertainty fraction (UF), they were obtained by
normalizing USD with the quadratic mean �ux or with the total standard deviation in the simulated
set for that �ux type, respectively.

For most �ux types, space/time distributions of uncertainty were found to be highly imprinted by
the distributions of �ux magnitudes, with a generally positive relationship between the two variables.
This relationship tended to level o� for the largest magnitudes at the daily scale, starting with P.

The relationship of �ux uncertainty to P uncertainty was investigated by analyzing the distributions
over time or space of UC propagation patterns�from rainfall to the various �ux types�using the
UC measure lumped over the non-analyzed�time or space�dimension (if applicable). This analysis
highlighted general invariance over space in propagation direction (ampli�cation versus attenuation)
for all �ux types at any timescale, with propagation factors showing less variation within a �ux type
than between �ux types, for whichever daily-scale or time-integrated �uxes. Hence, with the relative
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exception of Dr that shows some more dispersion, the spatially-distributed UC for any dependent
�ux type appears to scale smoothly with that of P, irrespective of other local properties (land use and
rainfall magnitude). In the time dimension, rainfall uncertainty at a given time logically impacts the
various �uxes over a period of time, dependent on �ux type. Interpretation of UC time series generally
suggests that propagation includes a strong time-lag type of e�ect with a lag ranging from <1 day
for runo� Q to several days for Tp. Only for Dr does the P uncertainty propagate into a completely
transformed signal, suggesting large di�usion over time of instant source uncertainty.

Finally, the strong general consistency in distributed uncertainty patterns over time and space for
the various �ux types allowed us to summarize the e�ects of time and space scales using the fully
domain-lumped, dimensional, and dimensionless uncertainty measures. For USD as well as UC, the
ranking of the �ux types was more or less scale-independent, with: (i) highest values of USD for P
and Q, and lowest for Rn, Tp, and Dr in decreasing order, and (ii) highest values of UC for Dr and Q,
lowest for Rn. Both measures display a highly regular scaling behavior for all variables, characterized
by a steady decrease with both time and space scales. The scaling in one dimension was suggested to
be nearly independent of the other dimension and to closely follow a power law. Dimensionless UC
also displays a high degree of scaling invariance between �ux types and between the two�time and
space�dimensions, with exponents in the range �0.163 to �0.204 over space and �0.172 to �0.332
over time (except for Dr). Exponent values for USD-scaling give information on the degree of time
or space autocorrelation in uncertainty on the various �ux types, showing a general inverse ranking
of �ux types for space and time, with P at one end (highest autocorrelation in space, lowest in time)
and Dr at the other end (vice-versa). Expectedly, many of the above regularities in scaling patterns
were preserved in the uncertainty propagation factors. For the uncertainty coe�cient UC, propagation
shows ampli�cation for Q (in the ~2�3 range) and�even more so�Dr (~2�10), but attenuation for all
other �ux types (0.3�0.6 for Tr, Es, LE, and H, and only ~0.1 for Rn). Hence, hydrological applications
of land surface modeling appear to be the most exposed to Sahelian rainfall uncertainty, but, even
though to a lesser extent, agronomic, ecological, and meteorological applications are also quite sensitive
through the still substantial response in the eddy �uxes (Tr, Es, LE, and H). Uncertainty in the energy
budget turns out much smaller for the available energy than for its partitioning into the turbulent heat
�uxes. The highly-sensitive response of the area’s Hortonian runo� to P uncertainty was previously
illustrated using a rainfall�runo� model [46].

Compared to the USD and UC measures, the other dimensionless measure UF, which is directly
related to the W coe�cient of Koster et al. [77], shows a much less regular behavior, in relation to the
loss of signi�cance of this measure when scales increase towards the time/space domain size. This
suggests that the newly introduced lumped uncertainty coe�cient UC could be a more e�cient metric
across the full range of scales, making a powerful measure of relative uncertainty for the various
�ux types.

Compared to a more standard sensitivity analysis of rainfall error propagation, the advantage
of the stochastic ensemble method used here is that it explicitly accounts for the time and space
dependence structure of P uncertainty, thus allowing us to derive global uncertainty estimates and
uncertainty properties at any time/space scale included in the study domain. Limitations of this study
include the single year of analysis which does not permit evaluating how results may vary over years or
decades, as well as the disconnection between the meteorological and rainfall forcings that may induce
some inconsistencies during rain events (unusually high evaporation conditions leading in particular
to very strong negative H by artefact oasis e�ect). However, these particular situations are seen as too
rare (<1% of time�space domain) to signi�cantly a�ect our conclusions on uncertainty propagation.

Although there might be some risk in extrapolating the uncertainty propagation and scaling
relationships obtained here beyond the levels of rainfall uncertainty and scales encountered in this study
or outside the environment explored, the plots obtained do provide a reference for these relationships
in the Sahelian context. As a spatial location with respect to the raingauge network stands as a major
driver of time-lumped uncertainty of P and then of most dependent �uxes (Figure 10), a relationship
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could be sought between UCs for these �uxes and a synthetic indicator of this relative location, such as
the geometrical component in kriging variance, that would allow generalizing the mapping of UC for
the various �ux types.

Finally, besides the quanti�cation of uncertainties, an additional, valuable advantage of
uncertainty-re�ecting ensemble simulation is that it allows for unbiased estimation of �ux expectations,
by ensemble averaging. Conversely, as illustrated by Vischel et al. [46], using deterministic�even
though unbiased�rain�elds when these are uncertain, may lead to substantial biases in simulated
�uxes, that strongly a�ect their inferred time/space distributions. These biases arising from the
simulation with the unbiased ensemble mean rain�eld, as well as those produced with presumably
biased alternative, deterministic rainfall interpolation methods, are being quanti�ed, using the ensemble
mean �uxes as the reference.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/5/465/s1,
Figure S1: Sample time-aggregated member rain�elds from the stochastic simulation ensemble.
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Appendix A

Glossary of abbreviations, acronyms, terms, and symbols used in the paper.

� t and � xy Power-law scaling exponents over time and space (Equation (1)), for either the standard
uncertainty USD or the uncertainty coe�cient UC (values in Table 3, Section 3.3,
interpretation in Appendix D)

ACN AMMA-CATCH-Niger
AMMA African Monsoon Multidisciplinary Analyses, an international research programme
AMMA-CATCH AMMA Couplage de l’Atmosph–re Tropicale et du Cycle Hydrologique, a long-term �eld

observatory (www.amma-catch.org)
ALMIP AMMA land model intercomparison project

(www.umr-cnrm.fr/amma-moana/amma_surf/almip)
Dr Drainage below the root zone
Es Direct soil evaporation
fully-resolved at cell-day resolution (i.e., coarser in time that actual model computation resolution)
half-year the full, 183-day study period (15 June to 14 December 2005)
H Sensible heat �ux
LC Ecosystem/Land Cover type
LE Latent heat �ux
LSM Land Surface Model
meso scale the scale of the entire, 2530-km2 study area
P, Q Rainfall, runo�
SEtHyS-Savannah LSM �Suivi de l’Etat Hydrique des Sols�, version dedicated to dry savannah modelling
Tp Plant transpiration
SPOT-HRV High resolution visible images from the SPOT satellite system

http://www.mdpi.com/2073-4433/11/5/465/s1
www.amma-catch.org
www.amma-catch.org
www.umr-cnrm.fr/amma-moana/amma_surf/almip
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UC, uncertainty
coe�cient

The non-dimensional uncertainty measure de�ned as the ratio of the standard uncertainty
USD (below) to the quadratic-mean �ux expectation at the same scale (see Section 2.4 and
Appendix B)

UF, uncertainty
fraction

The non-dimensional uncertainty measure de�ned as the ratio of the standard uncertainty
USD (below) to the overall standard deviation of the entire multidimensional simulated
ensemble set for the same �ux type and scale (see Section 2.4 and Appendix B)

USD, standard
uncertainty

The dimensional uncertainty measure computed as the ensemble standard deviation for
the considered �ux type and scale (see Section 2.4 and Appendix B)

Appendix B

This appendix provides the mathematical expressions of the various �ux operations and measures
used to synthesize ensemble distributions in the simulated set, for a given �ux type f taken at a given
scale in xy,t.

Although measures are developed for mixed-ecosystem �uxes hereafter, elemental and
time-lumped uncertainties displayed for individual ecosystem �uxes in Figure 4, Figure 7, and Figure 9
are computed with identical expressions, only with additional LC indexing.

(a) Mathematical expressions of aggregated �uxes and ensemble-derived measures: expectation, uncertainty
measures, propagation factors (see notation conventions in (b))

� Mixed-ecosytem �ux of type f for ensemble member eat space/time location (xy,t) taken at a given
space/time resolution:

f (xy,t,e) = MLC (a(xy,LC)�f (xy,t,e,LC)),

with a(xy,LC) the areal fraction of ecosystem LC at location xy. For (xy,t)-resolution upscaled from
full resolution (cell,day):

f (xy,t,e) = Mcell-to-xy; day-to-t (f (cell,day,e))

� Flux expectation: Ef (xy,t) ~ Me (f (xy,t,e))
� Uncertainty measures and associated propagation factors:

(b) Notation conventions used in (a).

� Uf
d1(d2) is the value of measure U for �ux type f, taken at a given location in a subspace of

dimension(s) d2, with measure-lumping over dimension(s) d1.
� Operators Md, Qd, and SDd designate the arithmetic mean, the quadratic mean, and the standard

deviation, respectively, applied over the dimension(s) {d}.

Notes: (i) �ux type P is rainfall; (ii) if the scale for a dimension, xy and/or t, corresponds to the
maximum degree of aggregation of �uxes f in that dimension (i.e., the domain width in that dimension)
then lumping is of no e�ect in that dimension.

Appendix C

In this appendix, the �ux distributions depicted by Figures 2�4 are interpreted to highlight some
patterns of �rst-order functioning of water and energy cycles in the study domain.
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From Figure 2, it can be seen that:

- The simulation period displays the typical annual dynamics of the Sahelian climate, with a
~four-month monsoon season followed by a long, completely dry season (until the �rst 2006
rainfall, in May, although only represented up to mid-December).

- Superimposed onto the general two-season annual cycle, the wet season pro�le is characterized
by a succession of wetter and drier periods, up to a nearly monthly wavelength in rainfall. Such
sub-seasonal alternations are also quite typical of the Sahelian monsoon regime.

- This sub-seasonal P pro�le propagates quite directly in time to Q as well as to Es and LE, and even
to Dr despite the di�usion. It also, albeit more mildly, a�ects the Tp signal by modulating the
unimodal LAI seasonality (Figure 1b) but with some phase inversion relative to P. This inversion
may be explained at least in part by the competition for energy with the direct soil evaporation
process [22], with preemption of available energy by the latter in wetter periods at the expense of
transpiration. Conversely, Tp is also less a�ected by dry spells as roots can draw on deeper water.
The sub-seasonal P modulation propagates with considerable attenuation to H (and with general
phase opposition relative to LE, due to energy balancing) and to Rn.

- Figures 2�4 reveal the relative weights of the various �ux types in the water and energy balances
at the di�erent scales. When integrated over time (Figure 4), a clear hierarchy in �ux types arises:

- For water �uxes (Figure 4a), cell-scale ensemble members or means for Es are all greater than
those for the other rainwater-redistributing �uxes at the same location, for single or mixed land
covers. The range of ensemble mesoscale Es is 225�234 mm, against 379�419 mm for P, with a ratio
of 57.4% for the expected �uxes. Dr is the opposite, being lowest in all cells, with an expectation
of 7.3%� of P at mesoscale and an ensemble range of 1.9�5.0 mm (note however that Dr recedes
only slowly after the study period into the dry season, meaning that the ratio would be somewhat
higher over a full year period). Q and Tp have intermediate magnitudes, the latter being generally
the higher except in bare soil cells; mesoscale expectations are 17.6% and 20.1% of P, with ranges
of 62�83 mm and 77�83 mm, respectively. Es being substantially higher than Tp agrees with the
climatological analysis by Velluet et al. [22] for this area. This overall hierarchy holds throughout
the period for expected �uxes at the 11-day/mesoscale (dotted running-mean curve in Figure 2),
with only Tp and Q alternating in ranking: the latter predominates during the more pronounced,
�rst two wet spells, while the opposite occurs for the weaker last two wet spells.

- Among energy �uxes at the cell/half-year scale (Figure 4b), LE is nearly everywhere higher
than H, although the reverse occurs mainly�but still infrequently�for the cropland cover.
Corresponding mesoscale expectations are 62% and 41% of Rn (=78.4 W�m�2), respectively.

- Relative weights of overall mean water and energy balance components are remarkably similar
to those obtained by Velluet et al. [22], despite the di�erences in domain extent (space and time),
data and tools, etc.

The e�ect of ecosystem type on the water and energy �uxes distributions is signi�cant (distributions
di�er from one another and the mixed-ecosystem situation) for all �ux types. However, these di�erences
do not generally exceed the rainfall uncertainty e�ect (ensemble spread), except for speci�c ecosystem
and �ux type combinations (Figure 4). This is the case in particular with: (i) the bare soil ecosystem, for
Rn and of course Tp, as well as to a slightly lesser degree for Q, and H and LE; (ii) the crops ecosystem,
for Q, Dr, Rn, and H; and (iii) Tp from old fallow. Dr �ux is signi�cant under crops, but is barely so for
young and especially old fallow, and is nil for bare soil. Overall, young fallow is the ecosystem that best
represents the integrated mosaic of all ecosystems. For most �ux types, bare/degraded soil and crops
are the land-cover types producing the opposite extreme �uxes. These are, in means: highest Q and Es,
and lowest LE, H, Rn, Dr and of course Tp for bare soil, and vice-versa for crops (note however that
Tp and LE are still higher for old fallow than for the crop). Relative e�ects of land use and of spatial
variability in rainfall on variances of expected time-integrated �uxes are described in the following
section and �gure.
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Appendix D

Interpretation of time and space scaling exponents � t and � xy (Equation (1)) for standard
uncertainty USD.

When a �ux variable f is aggregated with a scale ratio s (the number of aggregated locations,
either cells or timesteps) in the time or space dimension:

fs,k = [
X

ik=1,s fo,ik]/s

with fs,k the upscaled �ux at location k for that upper scale s, fo,ik the unscaled �ux at initial-scale
location ik within s-scale location k, and

P
ik the sum over locations ik.

Then the ensemble variance of the upscaled variable writes:

Var(fs,k) = [
X

ik Var(fo,ik) + 2
X

ik, jk Cov(fo,ik, fo,jk)]/s2

with Var(fo,ik) and Cov(fo,ik, fo,jk) the ensemble variance of fo,ik and covariance of fo,ik and fo,jk, respectively.
Denoting ns the number of locations k at scale s, the standard uncertainty USD at scale s is:

USDs = Var(fs)1/2 = {
X

k Var(fs,k)/ns}1/2

Given that the standard uncertainty at initial scale o can be written as:

USDo = Var(fo)1/2 = {
X

i Var(fo,i)/no}1/2 = {
X

k

X
ik Var(fo,ik)/no}1/2

with no the total number of locations i at scale o (no = ns�s), then the USD scaling ratio ru = USDs/USDo
simpli�es to:

ru = {[1 + 2/no�
X

k

X
ik, jk Cov(fo,ik, fo,jk)/Var(fo)]/s}1/2

Introducing cross-correlation coe�cients R(fo,ik, fo,jk), ru becomes:

ru = {[1 + 2/no�
X

k

X
ik, jk R(fo,ik, fo,jk) SD(fo,ik) SD(fo,jk)/Var(fo) ]/s}1/2 (A1)

with SD(fo,ik) the standard deviation of fo,ik.
If fo displays no autocorrelation (R(fo,ik, fo,jk) = 0, for any ik , jk), then ru = s�1/2, hence � = �0.5.
If fo displays perfect autocorrelation (R(fo,ik, fo,jk) = 1, for any ik,jk) with homoscedasticity (uniform

variance), then
ru = {[1 + 2/no�ns�s(s�1)/2]/s}1/2 = 1 = s0, hence � = 0.

In the general case (partially autocorrelated and/or heteroscedastic f 0), R values are between ~0
and 1, hence Equation (A1) identi�es with Equation (1) (ru = s� with � increasing between ~�0.5 and 0
with R, i.e., with the degree of autocorrelation in the unscaled variable f 0.

Only in the physically unrealistic case of signi�cant anti-correlation in f (substantially negative R
values), could the exponent � fall signi�cantly below the �0.5 threshold.
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