A. Nel, T. Xia, L. Mädler, and N. Li, Toxic potential of materials at the nanolevel, Science, vol.311, pp.622-629, 2006.

T. Xia, N. Li, and A. E. Nel, Potential health simpact of nanoparticles, Annu Rev Public Health, vol.30, pp.137-50, 2009.

A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, V. Goetz et al., Titanium dioxide nanoparticles in food and personal care products, Environ Sci Technol, vol.46, pp.2242-50, 2012.

Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall et al., Applications and implications of nanotechnologies for the food sector, Food Addit Contam Part A Chem Anal Control Expo Risk Assess, vol.25, pp.241-58, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00577429

P. R. Srinivas, M. Philbert, T. Q. Vu, Q. Huang, J. L. Kokini et al., Nanotechnology research: applications in nutritional sciences, J Nutr, vol.140, pp.119-143, 2010.

M. Hwang, E. J. Lee, S. Y. Kweon, M. S. Park, J. Y. Jeong et al., Risk assessment principle for engineered nanotechnology in food and drug, Toxicol Res, vol.28, pp.73-82, 2012.

M. Mercier-bonin, B. Despax, P. Raynaud, E. Houdeau, and M. Thomas, Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles, Crit Rev Food Sci Nutr, vol.58, pp.1023-1055, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01595691

J. M. Radziwill-bienkowska, P. Talbot, J. Kamphuis, V. Robert, C. Cartier et al., Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging, Front Microbiol, vol.9, p.794, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01824423

P. Talbot, J. M. Radziwill-bienkowska, J. Kamphuis, K. Steenkeste, S. Bettini et al., Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection, J Nanobiotechnology, vol.16, p.53, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624418

M. G. Rooks and W. S. Garrett, Gut microbiota, metabolites and host immunity, Nat Rev Immunol, vol.16, pp.341-52, 2016.

J. Tomas, L. Wrzosek, N. Bouznad, S. Bouet, C. Mayeur et al., Primocolonization is associated with colonic epithelial maturation during conventionalization, FASEB J, vol.27, pp.645-55, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003327

J. Natividad and E. F. Verdu, Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications, Pharmacol Res, vol.69, pp.42-51, 2013.

Y. Belkaid and T. W. Hand, Role of the microbiota in immunity and inflammation, Cell, vol.157, pp.121-162, 2014.

Y. Belkaid and O. J. Harrison, Homeostatic Immunity and the Microbiota, Immunity, vol.46, pp.562-76, 2017.

J. Ni, G. D. Wu, L. Albenberg, and V. T. Tomov, Gut microbiota and IBD: causation or correlation?, Nat Rev Gastroenterol Hepatol, vol.14, pp.573-84, 2017.

E. F. Verdu, H. J. Galipeau, and B. Jabri, Novel players in coeliac disease pathogenesis: role of the gut microbiota, Nat Rev Gastroenterol Hepatol, vol.12, pp.497-506, 2015.

M. L. Richard, G. Liguori, B. Lamas, G. Brandi, G. Da-costa et al., Mucosa-associated microbiota dysbiosis in colitis associated cancer, Gut Microbes, vol.9, pp.131-173, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628590

A. S. Meijnikman, V. E. Gerdes, M. Nieuwdorp, and H. Herrema, Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans, Endocr Rev, vol.39, pp.133-53, 2018.

C. S. Rosenfeld, Microbiome Disturbances and Autism Spectrum Disorders, Drug Metab Dispos, vol.43, pp.1557-71, 2015.

T. G. Dinan and J. F. Cryan, Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration, J Physiol, vol.595, pp.489-503, 2017.

M. Minemura and Y. Shimizu, Gut microbiota and liver diseases, World J Gastroenterol, vol.21, pp.1691-702, 2015.

. Efsa-ans-panel, Scientific opinion on the re-evaluation of silver (E 174) as food additive, EFSA J EFSA Journal, vol.14, p.4364, 2016.

R. J. Peters, G. Van-bemmel, Z. Herrera-rivera, H. P. Helsper, H. J. Marvin et al., Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles, J Agric Food Chem, vol.62, pp.6285-93, 2014.

Y. Yang, K. Doudrick, X. Bi, K. Hristovski, P. Herckes et al., Characterization of food-grade titanium dioxide: the presence of nanosized particles, Environ Sci Technol, vol.48, pp.6391-400, 2014.

. Efsa-ans-panel, Re-evaluation of titanium dioxide (E 171) as a food additive, EFSA J, vol.14, pp.4545-83, 2016.

S. Dekkers, P. Krystek, R. J. Peters, D. Lankveld, B. G. Bokkers et al., Presence and risks of nanosilica in food products, Nanotoxicology, vol.5, pp.393-405, 2011.

R. Peters, E. Kramer, A. G. Oomen, Z. E. Rivera, G. Oegema et al., Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive, ACS Nano, vol.6, pp.2441-51, 2012.

. Efsa-ans-panel, Re-evaluation of silicon dioxide (E 551) as food additive, EFSA J, vol.16, pp.5070-88, 2018.

Y. Wang, L. Yuan, C. Yao, L. Ding, C. Li et al., A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives, Nanoscale, vol.6, pp.15333-15375, 2014.

C. Huttenhower, D. Gevers, R. Knight, S. Abubucker, J. Badger et al., Structure, function and diversity of the healthy human microbiome, Nature, vol.486, pp.207-221, 2012.

J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

P. B. Eckburg, E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen et al., Diversity of the human intestinal microbial flora, Science, vol.308, pp.1635-1643, 2005.

R. M. Stilling, T. G. Dinan, and J. F. Cryan, Microbial genes, brain & behaviourepigenetic regulation of the gut-brain axis, Genes Brain Behav, vol.13, pp.69-86, 2014.

S. R. Gill, M. Pop, R. T. Deboy, P. B. Eckburg, P. J. Turnbaugh et al., Metagenomic analysis of the human distal gut microbiome, Science, vol.312, pp.1355-1364, 2006.

A. M. O'hara and F. Shanahan, The gut flora as a forgotten organ, EMBO Rep, vol.7, pp.688-93, 2006.

A. Amedei, F. Boem, and . I've, Gut A Feeling: Microbiota Impacting the Conceptual and Experimental Perspectives of Personalized Medicine, Int J Mol Sci, vol.19, 2018.

F. Baquero and C. Nombela, The microbiome as a human organ, Clin Microbiol Infect, vol.18, issue.4, pp.2-4, 2012.

J. R. Marchesi, D. H. Adams, F. Fava, G. D. Hermes, G. M. Hirschfield et al., The gut microbiota and host health: a new clinical frontier, Gut, vol.65, pp.330-339, 2016.

G. Clarke, R. M. Stilling, P. J. Kennedy, C. Stanton, J. F. Cryan et al., Minireview: Gut microbiota: the neglected endocrine organ, Mol Endocrinol, vol.28, pp.1221-1259, 2014.

K. Smith, K. D. Mccoy, and A. J. Macpherson, Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota, Semin Immunol, vol.19, pp.59-69, 2007.

B. Lamas, M. Michel, N. Waldschmitt, H. Pham, V. Zacharioudaki et al., Card9 mediates susceptibility to intestinal pathogens through microbiota modulation and control of bacterial virulence, Gut, vol.67, pp.1836-1880, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02786832

E. Moens and M. Veldhoen, Epithelial barrier biology: good fences make good neighbours, Immunology, vol.135, pp.1-8, 2012.

N. Kamada, S. Seo, G. Y. Chen, and G. Núñez, Role of the gut microbiota in immunity and inflammatory disease, Nat Rev Immunol, vol.13, pp.321-356, 2013.

J. K. Nicholson, E. Holmes, J. Kinross, R. Burcelin, G. Gibson et al., Host-gut microbiota metabolic interactions, Science, vol.336, pp.1262-1269, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726159

T. Suzuki, S. Yoshida, and H. Hara, Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability, Br J Nutr, vol.100, pp.297-305, 2008.

L. Peng, Z. Li, R. S. Green, I. R. Holzman, and J. Lin, Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers, J Nutr, vol.139, pp.1619-1644, 2009.

B. Han, B. Sheng, Z. Zhang, A. Pu, J. Yin et al., Aryl Hydrocarbon Receptor Activation in Intestinal Obstruction Ameliorates Intestinal Barrier Dysfunction Via Suppression of MLCK-MLC Phosphorylation Pathway, Shock, vol.46, pp.319-347, 2016.

. Abrams-gd, H. Bauer, and . Sprinz-h, Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice, Lab Invest, vol.12, pp.355-64, 1963.

C. Reinhardt, M. Bergentall, T. U. Greiner, F. Schaffner, G. Ostergren-lundén et al., Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling, Nature, vol.483, pp.627-658, 2012.

M. Banasaz, E. Norin, R. Holma, and T. Midtvedt, Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG, Appl Environ Microbiol, vol.68, pp.3031-3035, 2002.

M. Alam, T. Midtvedt, and A. Uribe, Differential cell kinetics in the ileum and colon of germfree rats, Scand J Gastroenterol, vol.29, pp.445-51, 1994.

T. W. Shirkey, R. H. Siggers, B. G. Goldade, J. K. Marshall, M. D. Drew et al., Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig, Exp Biol Med (Maywood), vol.231, pp.1333-1378, 2006.

B. P. Willing and A. G. Van-kessel, Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig, J Anim Sci, vol.85, pp.3256-66, 2007.

M. Danielsen, H. Hornshøj, R. H. Siggers, B. B. Jensen, A. G. Van-kessel et al., Effects of bacterial colonization on the porcine intestinal proteome, J Proteome Res, vol.6, pp.2596-604, 2007.

H. Kozakova, J. Kolinska, Z. Lojda, Z. Rehakova, J. Sinkora et al., Effect of bacterial monoassociation on brush-border enzyme activities in exgerm-free piglets: comparison of commensal and pathogenic Escherichia coli strains, Microbes Infect, vol.8, pp.2629-2668, 2006.

R. M. Jones, L. Luo, C. S. Ardita, A. N. Richardson, Y. M. Kwon et al., Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species, EMBO J, vol.32, pp.3017-3045, 2013.

P. A. Swanson, A. Kumar, S. Samarin, M. Vijay-kumar, K. Kundu et al., Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases, Proc Natl Acad Sci, vol.108, pp.8803-8811, 2011.

B. Stockinger, D. Meglio, P. Gialitakis, M. Duarte, and J. , The aryl hydrocarbon receptor: multitasking in the immune system, Annu Rev Immunol, vol.32, pp.403-435, 2014.

J. M. Wong, S. R. De, C. W. Kendall, A. Emam, and D. J. Jenkins, Colonic health: fermentation and short chain fatty acids, J Clin Gastroenterol, vol.40, pp.235-278, 2006.

M. Comalada, E. Bailón, O. De-haro, F. Lara-villoslada, J. Xaus et al., The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype, J Cancer Res Clin Oncol, vol.132, pp.487-97, 2006.

A. Orchel, Z. Dzierzewicz, B. Parfiniewicz, L. Weglarz, and T. Wilczok, Butyrateinduced differentiation of colon cancer cells is PKC and JNK dependent, Dig Dis Sci, vol.50, pp.490-498, 2005.

J. A. Foster, M. Lyte, E. Meyer, and J. F. Cryan, Gut Microbiota and Brain Function: An Evolving Field in Neuroscience, Int J Neuropsychopharmacol, vol.19, 2016.

C. Llorente and B. Schnabl, The gut microbiota and liver disease, Cell Mol Gastroenterol Hepatol, vol.1, pp.275-84, 2015.

M. Mazagova, L. Wang, A. T. Anfora, M. Wissmueller, S. A. Lesley et al., Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice, FASEB J, vol.29, pp.1043-55, 2015.

J. F. Cryan and T. G. Dinan, Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour, Nat Rev Neurosci, vol.13, pp.701-713, 2012.

L. Desbonnet, G. Clarke, F. Shanahan, T. G. Dinan, and J. F. Cryan, Microbiota is essential for social development in the mouse, Mol Psychiatry, vol.19, pp.146-154, 2014.

P. Luczynski, S. Whelan, C. O'sullivan, G. Clarke, F. Shanahan et al., Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus, Eur J Neurosci, vol.44, pp.2654-66, 2016.

A. E. Hoban, R. M. Stilling, F. J. Ryan, F. Shanahan, T. G. Dinan et al., Regulation of prefrontal cortex myelination by the microbiota, Transl Psychiatry, vol.6, p.774, 2016.

V. Braniste, M. Al-asmakh, C. Kowal, F. Anuar, A. Abbaspour et al., The gut microbiota influences blood-brain barrier permeability in mice, Sci Transl Med, vol.6, pp.263-158, 2014.

D. Erny, H. De-angelis, A. L. Jaitin, D. Wieghofer, P. Staszewski et al., Host microbiota constantly control maturation and function of microglia in the CNS, Nat Neurosci, vol.18, pp.965-77, 2015.

N. Sudo, Y. Chida, Y. Aiba, J. Sonoda, N. Oyama et al., Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice, J Physiol (Lond), vol.558, pp.263-75, 2004.

S. A. Buffington, D. Prisco, G. V. Auchtung, T. A. Ajami, N. J. Petrosino et al., Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring, Cell, vol.165, pp.1762-75, 2016.

T. Zelante, R. G. Iannitti, C. Cunha, D. Luca, A. Giovannini et al., Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22, Immunity, vol.39, pp.372-85, 2013.

B. Lamas, M. L. Richard, V. Leducq, H. Pham, M. Michel et al., CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands, Nat Med, vol.22, pp.598-605, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314089

V. Rothhammer, I. D. Mascanfroni, L. Bunse, M. C. Takenaka, J. E. Kenison et al., Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor, Nat Med, vol.22, pp.586-97, 2016.

M. Beaumont, A. M. Neyrinck, M. Olivares, J. Rodriguez, R. De et al., The gut microbiota metabolite indole alleviates liver inflammation in mice, FASEB J, p.201800544, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02627416

S. Sakakibara, T. Yamauchi, Y. Oshima, Y. Tsukamoto, and T. Kadowaki, Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice, Biochem Biophys Res Commun, vol.344, pp.597-604, 2006.

H. Endo, M. Niioka, N. Kobayashi, M. Tanaka, and T. Watanabe, Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis, PLoS One, vol.8, p.63388, 2013.

S. De-kivit, M. C. Tobin, C. B. Forsyth, A. Keshavarzian, and A. L. Landay, Regulation of Intestinal Immune Responses through TLR Activation: Implications for Proand Prebiotics, Front Immunol, vol.5, p.60, 2014.

V. Delgado-rizo, M. A. Martínez-guzmán, L. Iñiguez-gutierrez, A. García-orozco, A. Alvarado-navarro et al., Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol, vol.8, p.81, 2017.

A. Cassard, P. Gérard, G. Perlemuter, and . Microbiota, Liver Diseases, and Alcohol. Microbiol Spectr, vol.5, 2017.

A. J. Macpherson and T. Uhr, Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria, Science, vol.303, pp.1662-1667, 2004.

J. L. Coombes, K. Siddiqui, C. V. Arancibia-cárcamo, J. Hall, C. Sun et al., A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic aciddependent mechanism, J Exp Med, vol.204, pp.1757-64, 2007.

T. W. Lebien and T. F. Tedder, B lymphocytes: how they develop and function, Blood, vol.112, pp.1570-80, 2008.

H. Ohno, Intestinal M cells, J Biochem, vol.159, pp.151-160, 2016.

F. Sommer and F. Bäckhed, The gut microbiota--masters of host development and physiology, Nat Rev Microbiol, vol.11, pp.227-265, 2013.

H. Chung, S. Pamp, J. A. Hill, N. K. Surana, S. M. Edelman et al., Gut immune maturation depends on colonization with a host-specific microbiota, Cell, vol.149, pp.1578-93, 2012.

V. Gaboriau-routhiau, S. Rakotobe, E. Lécuyer, I. Mulder, A. Lan et al., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity, vol.31, pp.677-89, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02666267

I. I. Ivanov, K. Atarashi, N. Manel, E. L. Brodie, T. Shima et al., Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell, vol.139, pp.485-98, 2009.

K. M. Telesford, W. Yan, J. Ochoa-reparaz, A. Pant, C. Kircher et al., A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function, Gut Microbes, vol.6, pp.234-276, 2015.

J. L. Round and S. K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota, Proc Natl Acad Sci USA, vol.107, pp.12204-12213, 2010.

H. Sokol, B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-humarán et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proc Natl Acad Sci, vol.105, pp.16731-16737, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00652961

E. Quévrain, M. A. Maubert, C. Michon, F. Chain, R. Marquant et al., Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease, Gut, vol.65, pp.415-440, 2016.

N. M. Breyner, C. Michon, S. De, V. Boas, P. B. Chain et al., Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-?B Pathway, Frontiers in microbiology. Front Microbiol, vol.8, p.114, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604976

M. Levy, C. A. Thaiss, and E. Elinav, Metabolites: messengers between the microbiota and the immune system, Genes Dev, vol.30, pp.1589-97, 2016.

D. R. Donohoe, N. Garge, X. Zhang, W. Sun, T. M. O'connell et al., The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metab, vol.13, pp.517-543, 2011.

R. Corrêa-oliveira, J. Fachi, A. Vieira, F. T. Sato, and M. A. Vinolo, Regulation of immune cell function by short-chain fatty acids, Clin Transl Immunology, vol.5, p.73, 2016.

A. Gurav, S. Sivaprakasam, Y. D. Bhutia, T. Boettger, N. Singh et al., Slc5a8, a Na+?coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions, Biochem J, vol.469, pp.267-78, 2015.

B. Lamas, J. M. Natividad, and H. Sokol, Aryl hydrocarbon receptor and intestinal immunity, Mucosal Immunol, vol.11, pp.1024-1062, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625696

A. Agus, J. Planchais, and H. Sokol, Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease, Cell Host Microbe, vol.23, pp.716-740, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01821219

H. U. Lee, Z. E. Mcpherson, B. Tan, A. Korecka, and S. Pettersson, Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system, J Mol Med, vol.95, pp.29-39, 2017.

C. F. Mcgee, S. Storey, N. Clipson, and E. Doyle, Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles, Ecotoxicology, vol.26, pp.449-58, 2017.

S. Timmusk, G. Seisenbaeva, and L. Behers, Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria, Sci Rep, vol.8, p.617, 2018.

J. Li, S. Yang, R. Lei, W. Gu, Y. Qin et al., Oral administration of rutile and anatase TiO 2 nanoparticles shifts mouse gut microbiota structure, Nanoscale, vol.10, pp.7736-7781, 2018.

K. Williams, J. Milner, M. D. Boudreau, K. Gokulan, C. E. Cerniglia et al., Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats, Nanotoxicology, vol.9, pp.279-89, 2015.

A. B. Javurek, D. Suresh, W. G. Spollen, M. L. Hart, S. A. Hansen et al., Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles, Sci Rep, vol.7, p.2822, 2017.

H. Chen, R. Zhao, B. Wang, C. Cai, L. Zheng et al., The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice, Nanoimpact, vol.8, pp.80-88, 2017.

S. Van-den-brule, J. Ambroise, H. Lecloux, C. Levard, R. Soulas et al., Dietary silver nanoparticles can disturb the gut microbiota in mice, Part Fibre Toxicol, vol.13, p.38, 2016.

T. Xia, W. Lai, M. Han, M. Han, X. Ma et al., Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets, Oncotarget, vol.8, pp.64878-91, 2017.

?. Yausheva, S. Miroshnikov, and ?. Sizova, Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts, Environ Sci Pollut R, vol.25, pp.18109-18129, 2018.

Y. Feng, L. Min, W. Zhang, J. Liu, Z. Hou et al., Zinc Oxide Nanoparticles Influence Microflora in Ileal Digesta and Correlate Well with, Blood Metabolites. Front Microbiol, vol.8, p.992, 2017.

P. Das, J. A. , E. O. Emma, A. Virginia, and K. , Nanosilver-Mediated Change in Human Intestinal Microbiota, J Nanomed Nanotechnol, p.5, 2014.

W. Dudefoi, K. Moniz, E. Allen-vercoe, M. Ropers, and V. K. Walker, Impact of food grade and nano-TiO2 particles on a human intestinal community, Food Chem Toxicol, vol.106, pp.242-251, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608185

N. Hadrup, K. Loeschner, A. Bergström, A. Wilcks, X. Gao et al., Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats, Arch Toxicol, vol.86, pp.543-51, 2012.

L. A. Wilding, C. M. Bassis, K. Walacavage, S. Hashway, P. R. Leroueil et al., Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome, Nanotoxicology, vol.10, pp.513-533, 2016.

S. Bettini, E. Boutet-robinet, C. Cartier, C. Coméra, E. Gaultier et al., Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon, Sci Rep, vol.7, p.40373, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508951

A. Taylor, I. Marcus, R. Guysi, and S. Walker, Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota, Environ Eng Sci, vol.32, pp.602-614, 2015.

W. G. Kreyling, U. Holzwarth, C. Schleh, J. Kozempel, A. Wenk et al., Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2, Nanotoxicology, vol.11, pp.443-53, 2017.

K. Jones, J. Morton, I. Smith, K. Jurkschat, A. Harding et al., Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles, Toxicol Lett, vol.233, pp.95-101, 2015.

J. Shen, Y. Chen, Z. Wang, A. Zhou, M. He et al., Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets, Br J Nutr, vol.111, pp.2123-2157, 2014.

M. Tsugita, N. Morimoto, and M. Nakayama, SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses, Part Fibre Toxicol, vol.14, p.11, 2017.

B. C. Schanen, A. S. Karakoti, S. Seal, D. R. Drake, W. L. Warren et al., Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct, ACS Nano, vol.3, pp.2523-2555, 2009.

M. Winter, H. Beer, V. Hornung, U. Krämer, R. P. Schins et al., Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells, Nanotoxicology, vol.5, pp.326-366, 2011.

S. N. Shah, Z. Shah, M. Hussain, and M. Khan, Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem, Bioinorg Chem Appl, p.4101735, 2017.

M. I. Setyawati, C. Y. Tay, and D. T. Leong, Mechanistic Investigation of the Biological Effects of SiO 2 , TiO 2 , and ZnO Nanoparticles on Intestinal Cells, Small, vol.11, pp.3458-68, 2015.

M. Lucarelli, A. M. Gatti, G. Savarino, P. Quattroni, L. Martinelli et al., Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles, Eur Cytokine Netw, vol.15, pp.339-385, 2004.

S. S. Mano, K. Kanehira, and A. Taniguchi, Comparison of cellular uptake and inflammatory response via toll-like receptor 4 to lipopolysaccharide and titanium dioxide nanoparticles, Int J Mol Sci, vol.14, pp.13154-70, 2013.

P. Chen, K. Kanehira, and A. Taniguchi, Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles, Sci Technol Adv Mater, vol.14, p.15008, 2013.

B. Andersson-willman, U. Gehrmann, Z. Cansu, T. Buerki-thurnherr, H. F. Krug et al., Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production, Toxicol Appl Pharmacol, vol.264, pp.94-103, 2012.

J. Palomäki, P. Karisola, L. Pylkkänen, K. Savolainen, and H. Alenius, Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells, Toxicology, vol.267, pp.125-156, 2010.

R. Zhu, Y. Zhu, M. Zhang, Y. Xiao, X. Du et al., The induction of maturation on dendritic cells by TiO2 and Fe (3) O (4)@TiO (2) nanoparticles via NF-?B signaling pathway, Mater Sci Eng C Mater Biol Appl, vol.39, pp.305-319, 2014.

R. J. Vandebriel, J. P. Vermeulen, E. Van, J. B. De, L. M. Verhagen et al., The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo, Part Fibre Toxicol, vol.15, p.9, 2018.

J. Batt, M. Milward, I. Chapple, M. Grant, H. Roberts et al., TiO2 nanoparticles can selectively bind CXCL8 impacting on neutrophil chemotaxis, Eur Cell Mater, vol.35, pp.13-24, 2018.

B. N. Feltis, A. Elbaz, P. F. Wright, G. A. Mackay, T. W. Turney et al., Characterizing the inhibitory action of zinc oxide nanoparticles on allergictype mast cell activation, Mol Immunol, vol.66, pp.139-185, 2015.

M. M. Johnson, R. Mendoza, A. J. Raghavendra, R. Podila, and J. M. Brown, Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation, Sci Rep, vol.7, p.43570, 2017.

K. Babin, F. Antoine, D. M. Goncalves, D. Girard, and . Tio2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils, Toxicol Lett, vol.221, pp.57-63, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01130206

N. Sabziparvar, Y. Saeedi, M. Nouri, N. Bozorgi, A. S. Alizadeh et al., Investigating the Interaction of Silicon Dioxide Nanoparticles with Human Hemoglobin and Lymphocyte Cells by Biophysical, Computational, and Cellular Studies, J Phys Chem B, vol.122, pp.4278-88, 2018.

K. Kang and J. Lim, Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles, Immune Netw, vol.12, pp.104-116, 2012.

H. C. Winkler, J. Kornprobst, P. Wick, L. M. Von-moos, I. Trantakis et al., MyD88-dependent pro-interleukin-1? induction in dendritic cells exposed to food-grade synthetic amorphous silica, Part Fibre Toxicol, vol.14, p.21, 2017.

H. L. Herd, K. T. Bartlett, J. A. Gustafson, L. D. Mcgill, and H. Ghandehari, Macrophage silica nanoparticle response is phenotypically dependent, Biomaterials, vol.53, pp.574-82, 2015.

T. Hirai, Y. Yoshioka, H. Takahashi, K. Ichihashi, T. Yoshida et al., Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells, Biochem Biophys Res Commun, vol.427, pp.553-559, 2012.

J. Desai, O. Foresto-neto, M. Honarpisheh, S. Steiger, D. Nakazawa et al., Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin, Sci Rep, vol.7, p.15003, 2017.

H. Chang, C. Ho, C. S. Yang, W. Chang, M. Tsai et al., Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation, Exp Toxicol Pathol, vol.65, pp.887-96, 2013.

L. R. Silva and D. Girard, Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1? and IL-8, Toxicol Lett, vol.259, pp.11-20, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01351548

B. C. Heng, X. Zhao, E. C. Tan, N. Khamis, A. Assodani et al., Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles, Arch Toxicol, vol.85, pp.1517-1545, 2011.

D. Gümü?, A. A. Berber, A. K. Aksoy, and H. , In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes, Cytotechnology, vol.66, pp.317-342, 2014.

E. Yang, S. Kim, J. S. Kim, and I. Choi, Inflammasome formation and IL-1? release by human blood monocytes in response to silver nanoparticles, Biomaterials, vol.33, pp.6858-67, 2012.

M. Ghosh, J. Manivannan, S. Sinha, A. Chakraborty, S. K. Mallick et al., In vitro and in vivo genotoxicity of silver nanoparticles, Mutat Res, vol.749, pp.60-69, 2012.

E. Park, Y. J. Kim, Y. Choi, K. Park, and K. , Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism, Toxicol In Vitro, vol.24, pp.872-880, 2010.

A. A. Aldossari, J. H. Shannahan, R. Podila, and J. M. Brown, Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation, Toxicol In Vitro, vol.29, pp.195-203, 2015.

N. B. Alsaleh, I. Persaud, and J. M. Brown, Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor, PLoS One, vol.11, p.167366, 2016.

R. Burcelin, Gut microbiota and immune crosstalk in metabolic disease, Mol Metab, vol.5, pp.771-81, 2016.

V. Lazar, L. Ditu, G. G. Pircalabioru, I. Gheorghe, C. Curutiu et al., Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol, vol.9, p.1830, 2018.

A. M. Gatti, Biocompatibility of micro-and nano-particles in the colon, Part II. Biomaterials, vol.25, pp.385-92, 2004.

P. Ruiz, B. Morón, H. Becker, S. Lang, K. Atrott et al., Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome, Gut, vol.66, pp.2015-310297, 2016.

J. J. Powell, C. C. Ainley, R. S. Harvey, I. M. Mason, M. D. Kendall et al., Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue, Gut, vol.38, pp.390-395, 1996.

T. Z. Hummel, A. Kindermann, P. C. Stokkers, M. A. Benninga, and F. J. Ten-kate, Exogenous pigment in Peyer patches of children suspected of having IBD, J Pediatr Gastroenterol Nutr, vol.58, pp.477-80, 2014.

G. Janer, M. Del-molino, E. Fernández-rosas, E. Fernández, and A. , Vázquez-Campos S. Cell uptake and oral absorption of titanium dioxide nanoparticles, Toxicol Lett, vol.228, pp.103-113, 2014.

E. Brun, F. Barreau, G. Veronesi, B. Fayard, S. Sorieul et al., Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia, Part Fibre Toxicol, vol.11, p.13, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00971511

K. Loeschner, N. Hadrup, K. Qvortrup, A. Larsen, X. Gao et al., Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate, Part Fibre Toxicol, vol.8, p.18, 2011.

C. M. Nogueira, W. M. De-azevedo, M. L. Dagli, S. Toma, A. Leite et al., Titanium dioxide induced inflammation in the small intestine, World J Gastroenterol, vol.18, pp.4729-4764, 2012.

T. Toda and S. Yoshino, Amorphous nanosilica particles block induction of oral tolerance in mice, J Immunotoxicol, vol.13, pp.723-731, 2016.

Y. Xu, H. Tang, H. Wang, and Y. Liu, Blockade of oral tolerance to ovalbumin in mice by silver nanoparticles, Nanomedicine (Lond), vol.10, pp.419-450, 2015.

J. Li, H. Chen, B. Wang, C. Cai, X. Yang et al., ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling, Sci Rep, vol.7, p.43126, 2017.

J. Wang, G. Zhou, C. Chen, H. Yu, T. Wang et al., Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicol Lett, vol.168, pp.176-85, 2007.

X. Zhao, Y. Ze, G. Gao, X. Sang, B. Li et al., Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice, PLoS One, vol.8, p.59378, 2013.

Y. Wang, Z. Chen, T. Ba, J. Pu, T. Chen et al., Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles, Small, vol.9, pp.1742-52, 2013.

J. Kim, C. Kim, R. M. Ignacio, D. Kim, M. E. Sajo et al., Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge, Int J Nanomedicine, vol.9, issue.2, pp.183-93, 2014.

T. Yoshida, Y. Yoshioka, H. Takahashi, K. Misato, T. Mori et al., Intestinal absorption and biological effects of orally administered amorphous silica particles, Nanoscale Res Lett, vol.9, p.532, 2014.

E. Park, E. Bae, J. Yi, Y. Kim, K. Choi et al., Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles, Environ Toxicol Pharmacol, vol.30, pp.162-170, 2010.

M. Vijay-kumar, J. D. Aitken, F. A. Carvalho, T. C. Cullender, S. Mwangi et al., Metabolic syndrome and altered gut microbiota in mice lacking Tolllike receptor 5, Science, vol.328, pp.228-259, 2010.

Y. Lu, J. Chen, J. Zheng, G. Hu, J. Wang et al., Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas, Sci Rep, vol.6, p.26337, 2016.

R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, Microbial ecology: human gut microbes associated with obesity, Nature, vol.444, pp.1022-1025, 2006.

P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.444, pp.1027-1058, 2006.

H. Sokol, P. Seksik, J. P. Furet, O. Firmesse, I. Nion-larmurier et al., Low counts of Faecalibacterium prausnitzii in colitis microbiota, Inflamm Bowel Dis, vol.15, pp.1183-1192, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00657435

D. Mariat, O. Firmesse, F. Levenez, V. Guimar?es, H. Sokol et al., The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age, BMC Microbiol, vol.9, p.123, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00657910

N. Voreades, A. Kozil, and T. L. Weir, Diet and the development of the human intestinal microbiome, Front Microbiol, vol.5, p.494, 2014.

J. M. Natividad, A. Agus, J. Planchais, B. Lamas, A. C. Jarry et al., Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome, Cell Metab, vol.28, pp.737-786, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895943

J. G. Leblanc, F. Chain, R. Martín, L. G. Bermúdez-humarán, S. Courau et al., Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria, Microb Cell Fact, vol.16, p.79, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607301

E. Pessione, Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows, Front Cell Infect Microbiol, vol.2, p.86, 2012.

G. Rizzatti, L. R. Lopetuso, G. Gibiino, C. Binda, and A. Gasbarrini, Proteobacteria: A Common Factor in Human Diseases, Biomed Res Int, p.9351507, 2017.

N. Shin, T. W. Whon, and J. Bae, Proteobacteria: microbial signature of dysbiosis in gut microbiota, Trends Biotechnol, vol.33, pp.496-503, 2015.

K. Takahashi, A. Nishida, T. Fujimoto, M. Fujii, M. Shioya et al., Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease, Digestion, vol.93, pp.59-65, 2016.

D. N. Frank, A. L. St-amand, R. A. Feldman, E. C. Boedeker, N. Harpaz et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases, Proc Natl Acad Sci, vol.104, pp.13780-13785, 2007.

B. P. Willing, J. Dicksved, J. Halfvarson, A. F. Andersson, M. Lucio et al., A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes, Gastroenterology, vol.139, pp.1844-54, 2010.

T. Wang, G. Cai, Y. Qiu, N. Fei, M. Zhang et al., Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers, ISME J, vol.6, pp.320-329, 2012.

P. J. Turnbaugh, M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan et al., A core gut microbiome in obese and lean twins, Nature, vol.457, pp.480-484, 2009.

J. D. Forbes, G. Van-domselaar, and C. N. Bernstein, Microbiome Survey of the Inflamed and Noninflamed Gut at Different Compartments Within the Gastrointestinal Tract of Inflammatory Bowel Disease Patients, Inflamm Bowel Dis, vol.22, pp.817-842, 2016.

C. Favier, C. Neut, C. Mizon, A. Cortot, J. F. Colombel et al., Fecal beta-Dgalactosidase production and Bifidobacteria are decreased in Crohn's disease, Dig Dis Sci, vol.42, pp.817-839, 1997.

W. Chen, F. Liu, Z. Ling, X. Tong, and C. Xiang, Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer, PLoS One, vol.7, p.39743, 2012.

L. Mira-pascual, R. Cabrera-rubio, S. Ocon, P. Costales, A. Parra et al., Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers, J Gastroenterol, vol.50, pp.167-79, 2015.

A. Schwiertz, D. Taras, K. Schäfer, S. Beijer, N. A. Bos et al., Microbiota and SCFA in lean and overweight healthy subjects, Obesity (Silver Spring), vol.18, pp.190-195, 2010.

L. Chatelier, E. Nielsen, T. Qin, J. Prifti, E. Hildebrand et al., Richness of human gut microbiome correlates with metabolic markers, Nature, vol.500, pp.541-547, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190602

D. Gevers, S. Kugathasan, L. A. Denson, Y. Vázquez-baeza, W. Van-treuren et al., The treatment-naive microbiome in new-onset Crohn's disease, Cell Host Microbe, vol.15, pp.382-92, 2014.

M. Joossens, G. Huys, M. Cnockaert, D. Preter, V. Verbeke et al., Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives, Gut, vol.60, pp.631-638, 2011.

H. Zhang, J. K. Dibaise, A. Zuccolo, D. Kudrna, M. Braidotti et al., Human gut microbiota in obesity and after gastric bypass, Proc Natl Acad Sci USA, vol.106, pp.2365-70, 2009.

A. D. Kostic, D. Gevers, C. S. Pedamallu, M. Michaud, F. Duke et al., Genomic analysis identifies association of Fusobacterium with colorectal carcinoma, Genome Res, vol.22, pp.292-300, 2012.

C. Kasai, K. Sugimoto, I. Moritani, J. Tanaka, Y. Oya et al., Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing, BMC Gastroenterol, vol.15, p.100, 2015.

R. E. Ley, F. Bäckhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight et al., Obesity alters gut microbial ecology, Proc Natl Acad Sci USA, vol.102, pp.11070-11075, 2005.

M. A. Hildebrandt, C. Hoffmann, S. A. Sherrill-mix, S. A. Keilbaugh, M. Hamady et al., High-fat diet determines the composition of the murine gut microbiome independently of obesity, Gastroenterology, vol.137, pp.1716-1740, 2009.

T. L. Weir, D. K. Manter, A. M. Sheflin, B. A. Barnett, A. L. Heuberger et al., Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults, PLoS One, vol.8, p.70803, 2013.

M. Ferrer, A. Ruiz, F. Lanza, S. Haange, A. Oberbach et al., Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure, Environ Microbiol, vol.15, pp.211-237, 2013.

D. P. Patil, D. P. Dhotre, S. G. Chavan, A. Sultan, D. S. Jain et al., Molecular analysis of gut microbiota in obesity among Indian individuals, J Biosci, vol.37, pp.647-57, 2012.

S. O. Noor, K. Ridgway, L. Scovell, E. K. Kemsley, E. K. Lund et al., Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota, BMC Gastroenterol, vol.10, p.134, 2010.

H. Takaishi, T. Matsuki, A. Nakazawa, T. Takada, S. Kado et al., Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease, Int J Med Microbiol, vol.298, pp.463-72, 2008.

F. J. Verdam, S. Fuentes, J. C. De, E. G. Zoetendal, R. Erbil et al., Human intestinal microbiota composition is associated with local and systemic inflammation in obesity, Obesity (Silver Spring), vol.21, pp.607-622, 2013.

L. Zhu, S. S. Baker, C. Gill, W. Liu, R. Alkhouri et al., Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH, Hepatology, vol.57, pp.601-610, 2013.

A. Durbán, J. J. Abellán, N. Jiménez-hernández, A. Latorre, and A. Moya, Daily follow-up of bacterial communities in the human gut reveals stable composition and host-specific patterns of interaction, FEMS Microbiol Ecol, vol.81, pp.427-464, 2012.

H. Sokol, V. Leducq, H. Aschard, H. Pham, S. Jegou et al., Fungal microbiota dysbiosis in IBD, Gut, vol.66, pp.1039-1087, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01270909

N. Wu, X. Yang, R. Zhang, J. Li, X. Xiao et al., Dysbiosis signature of fecal microbiota in colorectal cancer patients, Microb Ecol, vol.66, pp.462-70, 2013.

S. Kang, S. E. Denman, M. Morrison, Z. Yu, J. Dore et al., Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray, Inflamm Bowel Dis, vol.16, pp.2034-2076, 2010.

C. Manichanh, L. Rigottier-gois, E. Bonnaud, K. Gloux, E. Pelletier et al., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach, Gut, vol.55, pp.205-216, 2006.

S. Tims, C. Derom, D. M. Jonkers, R. Vlietinck, W. H. Saris et al., Microbiota conservation and BMI signatures in adult monozygotic twins, ISME J, vol.7, pp.707-724, 2013.

J. Furet, L. Kong, J. Tap, C. Poitou, A. Basdevant et al., Differential adaptation of human gut microbiota to bariatric surgeryinduced weight loss: links with metabolic and low-grade inflammation markers, Diabetes, vol.59, pp.3049-57, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02668840

Q. Zhu, J. Z. Wu, W. Gao, R. Guo, B. Gao et al., Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer, PLoS One, vol.9, p.90849, 2014.

T. Sen, C. R. Cawthon, B. T. Ihde, A. Hajnal, P. M. Dilorenzo et al., Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity, Physiol Behav, vol.173, pp.305-317, 2017.

A. B. Hall, M. Yassour, J. Sauk, A. Garner, X. Jiang et al., A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients, Genome Med, vol.9, p.103, 2017.

J. Geng, Q. Song, X. Tang, X. Liang, H. Fan et al., Co-occurrence of driver and passenger bacteria in human colorectal cancer, Gut Pathog, vol.6, p.26, 2014.

P. Seksik, L. Rigottier-gois, G. Gramet, M. Sutren, P. Pochart et al., Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon, Gut, vol.52, pp.237-279, 2003.

B. Chassaing and A. Darfeuille-michaud, The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases, Gastroenterology, vol.140, pp.1720-1728, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650688

H. Sokol, P. Lepage, P. Seksik, J. Doré, and P. Marteau, Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis, J Clin Microbiol, vol.44, pp.3172-3179, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666617

H. M. Martin, B. J. Campbell, C. A. Hart, C. Mpofu, M. Nayar et al., Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer, Gastroenterology, vol.127, pp.80-93, 2004.

G. Pickert, C. Neufert, M. Leppkes, Y. Zheng, N. Wittkopf et al., STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing, J Exp Med, vol.206, pp.1465-72, 2009.

G. F. Sonnenberg, L. A. Fouser, and D. Artis, Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22, Nat Immunol, vol.12, pp.383-90, 2011.

C. Stelter, R. Käppeli, C. König, A. Krah, W. Hardt et al., Salmonella-induced mucosal lectin RegIII? kills competing gut microbiota, PLoS One, vol.6, p.20749, 2011.

X. Wang, N. Ota, P. Manzanillo, L. Kates, J. Zavala-solorio et al., Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes, Nature, vol.514, pp.237-278, 2014.

M. S. Geier, R. N. Butler, and G. S. Howarth, Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer?, Cancer Biol Ther, vol.5, pp.1265-1274, 2006.

A. Metidji, S. Omenetti, S. Crotta, Y. Li, E. Nye et al., The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity, Immunity, vol.49, pp.353-62, 2018.

K. Gronke, P. P. Hernández, J. Zimmermann, C. Klose, M. Kofoed-branzk et al., Interleukin-22 protects intestinal stem cells against genotoxic stress, Nature, 2019.

I. M. Urrutia-ortega, L. G. Garduño-balderas, N. L. Delgado-buenrostro, V. Freyre-fonseca, J. Flores-flores et al., Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model, Food Chem Toxicol, vol.93, pp.20-31, 2016.

H. Proquin, M. J. Jetten, M. Jonkhout, L. G. Garduño-balderas, and J. J. Briedé,

T. M. Kok, Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171), Food Chem Toxicol, vol.111, pp.153-65, 2018.

H. Proquin, M. J. Jetten, M. Jonkhout, L. G. Garduño-balderas, and J. J. Briedé,

T. M. Kok, Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer, Sci Rep, vol.8, p.9738, 2018.

S. Shoaie, F. Karlsson, A. Mardinoglu, I. Nookaew, S. Bordel et al., Understanding the interactions between bacteria in the human gut through metabolic modeling, Sci Rep, vol.3, p.2532, 2013.

H. V. Lin, A. Frassetto, E. J. Kowalik, A. R. Nawrocki, M. M. Lu et al., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms, PLoS One, vol.7, p.35240, 2012.

A. V. Hartstra, K. E. Bouter, F. Bäckhed, and M. Nieuwdorp, Insights into the role of the microbiome in obesity and type 2 diabetes, Diab Care, vol.38, pp.159-65, 2015.

K. Harris, A. Kassis, G. Major, and C. J. Chou, Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?, J Obes, p.879151, 2012.

K. L. Zambell, M. D. Fitch, and S. E. Fleming, Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells, J Nutr, vol.133, pp.3509-3524, 2003.

Y. Xiong, N. Miyamoto, K. Shibata, M. A. Valasek, T. Motoike et al., Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41, Proc Natl Acad Sci USA, vol.101, pp.1045-50, 2004.

L. K. Brahe, A. Astrup, and L. H. Larsen, Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?, Obes Rev, vol.14, pp.950-959, 2013.

A. Vrieze, N. E. Van, F. Holleman, J. Salojärvi, R. S. Kootte et al., Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, Gastroenterology, vol.143, pp.913-919, 2012.

W. Scheppach, H. Sommer, T. Kirchner, G. M. Paganelli, P. Bartram et al., Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis, Gastroenterology, vol.103, pp.51-57, 1992.

P. Vernia, G. Monteleone, G. Grandinetti, G. Villotti, D. Giulio et al., Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study, Dig Dis Sci, vol.45, pp.976-81, 2000.

D. Sabatino, A. Morera, R. Ciccocioppo, R. Cazzola, P. Gotti et al., Oral butyrate for mildly to moderately active Crohn's disease, Aliment Pharmacol Ther, vol.22, pp.789-94, 2005.

P. Vernia, A. Marcheggiano, R. Caprilli, G. Frieri, G. Corrao et al., Short-chain fatty acid topical treatment in distal ulcerative colitis, Aliment Pharmacol Ther, vol.9, pp.309-322, 1995.

Y. Tang, Y. Chen, H. Jiang, G. T. Robbins, and D. Nie, G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer, Int J Cancer, vol.128, pp.847-56, 2011.

R. B. Canani, M. D. Costanzo, L. Leone, M. Pedata, R. Meli et al., Potential beneficial effects of butyrate in intestinal and extraintestinal diseases, World J Gastroenterol, vol.17, pp.1519-1547, 2011.

T. O. Keku, S. Dulal, A. Deveaux, B. Jovov, and X. Han, The gastrointestinal microbiota and colorectal cancer, Am J Physiol Gastrointest Liver Physiol, vol.308, pp.351-63, 2015.

D. R. Donohoe, D. Holley, L. B. Collins, S. A. Montgomery, A. C. Whitmore et al., A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota-and butyratedependent manner, Cancer Discov, vol.4, pp.1387-97, 2014.

M. X. Byndloss, E. E. Olsan, F. Rivera-chávez, C. R. Tiffany, S. A. Cevallos et al., Microbiota-activated PPAR-? signaling inhibits dysbiotic Enterobacteriaceae expansion, Science, vol.357, pp.570-575, 2017.

N. Fei and L. Zhao, An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice, ISME J, vol.7, pp.880-884, 2013.

F. A. Carvalho, O. Koren, J. K. Goodrich, M. E. Johansson, I. Nalbantoglu et al., Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice, Cell Host Microbe, vol.12, pp.139-52, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02652647

N. Maharshak, C. D. Packey, M. Ellermann, S. Manick, J. P. Siddle et al., Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation, Gut Microbes, vol.4, pp.316-340, 2013.

W. S. Garrett, C. A. Gallini, T. Yatsunenko, M. Michaud, A. Dubois et al., Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis, Cell Host Microbe, vol.8, pp.292-300, 2010.

W. S. Garrett, G. M. Lord, S. Punit, G. Lugo-villarino, S. K. Mazmanian et al., Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system, Cell, vol.131, pp.33-45, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02348663

M. G. Rooks, P. Veiga, L. H. Wardwell-scott, T. Tickle, N. Segata et al., Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission, ISME J, vol.8, pp.1403-1420, 2014.

J. C. Arthur, E. Perez-chanona, M. Mühlbauer, S. Tomkovich, J. M. Uronis et al., Intestinal inflammation targets cancer-inducing activity of the microbiota, Science, vol.338, pp.120-123, 2012.

J. C. Arthur, R. Z. Gharaibeh, M. Mühlbauer, E. Perez-chanona, J. M. Uronis et al., Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer, Nat Commun, vol.5, p.4724, 2014.

J. Suez, T. Korem, D. Zeevi, G. Zilberman-schapira, C. A. Thaiss et al., Artificial sweeteners induce glucose intolerance by altering the gut microbiota, Nature, vol.514, pp.181-187, 2014.

B. Chassaing, O. Koren, J. K. Goodrich, A. C. Poole, S. Srinivasan et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature, vol.519, pp.92-98, 2015.

Y. Liang, J. Zhan, D. Liu, M. Luo, J. Han et al., Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota, Microbiome, vol.7, p.19, 2019.

A. Rodriguez-palacios, A. Harding, P. Menghini, C. Himmelman, M. Retuerto et al., The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn's Disease-Like Ileitis, Inflamm Bowel Dis, vol.24, pp.1005-1025, 2018.

E. Viennois, D. Merlin, A. T. Gewirtz, and B. Chassaing, Dietary Emulsifier-Induced Low-Grade Inflammation Promotes Colon Carcinogenesis, Cancer Res, vol.77, pp.27-40, 2017.

R. Ebabe-elle, S. Gaillet, J. Vidé, C. Romain, C. Lauret et al., Dietary exposure to silver nanoparticles in Sprague-Dawley rats: effects on oxidative stress and inflammation, Food Chem Toxicol, vol.60, pp.297-301, 2013.

Z. Chen, Y. Wang, L. Zhuo, S. Chen, L. Zhao et al., Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration, Toxicol Lett, vol.239, pp.123-153, 2015.

H. Hu, L. Li, Q. Guo, J. S. Zhou, Y. Oh et al., A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice, Food Chem Toxicol, vol.95, pp.175-87, 2016.

. Efsa-ans-panel, Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health, EFSA J, vol.16, pp.5327-95, 2018.