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Abstract 

Background: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in 
the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of 
this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, 
forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographi‑
cally distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their 
taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map 
the cryptic diversity within the Obsoletus/Scoticus Complex.

Methods: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex 
was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to 
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Background
In 2006, northern Europe faced massive outbreaks of 
bluetongue disease (BTV), a Culicoides-borne viral infec-
tion which affects wild and domestic ruminants. This 
was followed by the emergence of Schmallenberg virus 
(SBV) in 2011, another Culicoides-borne virus, which 
also caused important economic losses for farmers of 
domestic ruminants [1]. Both, the emergence and mas-
sive spread of these diseases over the Palaearctic region 
raised questions about the vector competence of native 
Palaearctic biting midges members of the genus Culi-
coides [2, 3]. Quickly following these epizootics, studies 
confirmed Culicoides species of the subgenus Avaritia as 
the most likely vector species and particularly those of 
the Obsoletus group (see below) [3–5]. Culicoides obsole-
tus, C. scoticus, C. dewulfi and C. chiopterus are reported 
to be implicated in BTV and SBV transmission in Europe 
based on virus detection or isolation in field-collected 
populations [6]. Laboratory experimental infections have 
also confirmed the vector competence of C. obsoletus and 
C. scoticus, highlighting species variations in their com-
petence level [7].

The literature defines the Obsoletus Group as a group 
of species with a similar morphology, especially for the 
characters commonly used for the identification of these 
insect vectors, namely wing spot pattern (poorly defined 
spotted wings and a second radial cell with a light spot) 
and distinctive male genitalia [8–10]. Adults of species in 
this Group are known to be abundant, widespread across 
central and northern Europe, and are characterized by 
long seasonal occurrence [11, 12]. At present, the group 
is an artificial taxonomic entity still poorly defined, with 
no real consensus on the included species, with variable 
internal groupings and naming. Indeed, the world cata-
logue of Culicoides does not account for levels below sub-
genus and does not identify species complexes as groups 
[13]. At present, the Obsoletus Group is composed of nine 
valid species: C. obsoletus (Meigen), 1818; C. sinanoensis 

Tokunaga, 1937; C. scoticus Downes & Kettle, 1952; C. 
montanus Shakirzjanova, 1962; C. gornostaevae Mirzaeva, 
1984; C. abchazicus Dzhafarov, 1964; C. filicinus Gornos-
taeva & Gachegova, 1972; C. alachua Jamnback & Wirth, 
1963; and C. sanguisuga (Coquillet, 1901). The latter two 
are the only species belonging to this group exclusively 
present in the Nearctic region, while the others, are sym-
patric in the Palaearctic region [8]. Culicoides obsoletus is 
considered Holarctic because it is present in both Nearctic 
and Palaearctic regions [8]. Combined studies of the geo-
metric morphometry of wings, coupled with molecular 
analysis have excluded C. chiopterus and C. dewulfi from 
the Obsoletus Group, despite previously being considered 
as part of the Group, based only on morphological fea-
tures [9, 10, 14–16]. Life-cycles and trophic behaviors for 
most of the species in the Obsoletus Group are not well 
described or vary greatly. For instance, ecological niches of 
C. chiopterus and C. obsoletus are suspected to be differ-
ent, although these two species are phylogenetically very 
close within the subgenus Avaritia. Culicoides obsoletus is 
a widespread generalist species and occupies a wide range 
of larval habitats such as forest litter, silage residue, tree 
holes or manure [17]. Culicoides obsoletus shows oppor-
tunistic trophic preferences and is able to take blood meals 
on various hosts species (man, sheep, goat, cow, horse or 
rodent) and, occasionally, on birds [18]. Culicoides chiop-
terus is a more specialist species, found engorged almost 
exclusively on cattle blood with larvae associated with cat-
tle dung [19, 20].

In addition to the group, Meiswinkel et al. [21], defined 
the Obsoletus Complex to close taxa with very simi-
lar female adult morphology, including C. obsoletus, C. 
montanus and C. scoticus. Several authors have recently 
reported the existence of cryptic diversity within C. obso-
letus, namely the C. obsoletus clade ‘O2’ and C. obsoletus 
clade ‘O3’ in Sweden and Switzerland [15], and the C. 
obsoletus clade ‘dark’ in the Netherlands [21, 22]. We will 
use the term “Obsoletus/Scoticus Complex” here to refer 

Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based 
on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S 
rDNA. Species delimitation using a multi‑marker methodology was used to revise the current taxonomic scheme of 
the Obsoletus/Scoticus Complex.

Results: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade 
dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra‑specific clades 
within C. scoticus and raised questions about the taxonomic status of C. montanus.

Conclusions: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus 
Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important 
group of vector species of livestock viruses in the Palaearctic region.
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midge



Page 3 of 13Mignotte et al. Parasites Vectors          (2020) 13:265  

to the cryptic species C. obsoletus, C. scoticus and C. mon-
tanus as well as all previously described operational taxo-
nomic units in the literature (see above). The terminology 
“Obsoletus/Scoticus Complex” is written according to 
the rules defined by Harbach [23] for infrasubgeneric 
categories within the genus Anopheles. Considering that 
sympatric cryptic species may exhibit different vector 
competence and may confound epidemiological investiga-
tions, it is mandatory to assess the intra- and interspecific 
diversity within the Obsoletus/Scoticus Complex.

Given the difficulty of separating these species based 
on morphological identification, various molecular mark-
ers have been used to overcome specific identification 
problems, including 16S ribosomal DNA [24, 25], 28S 
ribosomal DNA [26], cytochrome oxidase b (cytb), the 
internal transcribed spacer region 1 (ITS1) [27] and ITS2 
rDNA [28]. However, the DNA region primarily used 
to infer phylogenetic relationships in this complex has 
been the mitochondrial cytochrome c oxidase subunit 1 
(cox1) [29]. Most of the diversity within the Obsoletus/
Scoticus Complex has been identified using cox1 [29–33]. 
Despite the diversity of markers used to characterize the 
phylogeny of the complex, few studies have used a multi-
marker approach [34]. This study, therefore, will integrate 
a multi-marker approach in order to strengthen genetic 
reconstruction of the Obsoletus/Scoticus Complex.

The Obsoletus/Scoticus Complex, as currently pre-
sented in the literature, is confused and needs taxonomic 
revision. We characterized and mapped the genetic 
diversity of the Obsoletus/Scoticus Complex along a Pal-
aearctic-Mediterranean transect covering Scandinavia to 
Canary islands (North to South) and Canary islands to 
Turkey (West to East). Our main objectives were to iden-
tify and describe the cryptic diversity observed within 
the Obsoletus/Scoticus Complex over a wide geographi-
cal area using molecular analyses and to question the tax-
onomic status of some newly described clades. In order 
to achieve these objectives, we conducted a molecular 
analysis which combined multi-marker sequencing, phy-
logenetic analyses and species delimitation to explore the 
genetic diversity of the Obsoletus/Scoticus Complex in 
the western European portion of the Palaearctic region.

Methods
Culicoides capture and morphological identification
Biting midges were collected at 68 sites located in 20 
countries in the western European portion of the Pal-
aearctic region, between 2009 and 2017, using national 
surveillance networks for Culicoides populations or local 
collections (Additional file 1: Table S1). Collections were 
made overnight with Onderstepoort Veterinary Institute 
(OVI) light traps set at farms near horses, cattle or sheep 
and all insects were stored in 70% ethanol. Morphological 

identification to the species level of adult Culicoides spp. 
was performed under a binocular microscope using the 
available identification keys [35, 36].

DNA extraction, amplification and sequencing
DNA was extracted from a total of 3883 adult females 
belonging to the Obsoletus/Scoticus Complex using 
the NucleoSpin® DNA kit RapidLyse (Macherey-
Nagel, Duren, Germany), following the manufacturer’s 
instructions. An additional step was added, before 
extraction, for all individuals (specimens were ground 
in 50 μl of 1× PBS buffer). DNA samples are available 
upon request. Fragments of cox1 were amplified for 
the 3883 individuals. After sequence cleaning, 3763 
sequences of cox1 were obtained [dataset cox1 (1)].
Fragments of 16S and 28S rDNA were amplified on 
individuals chosen to be representative of the entire 
species diversity resulting from cox1 [dataset cox1 (2)] 
to reinforce mitochondrial gene sequences. All primer 
sequences as well as the information relating to them 
are present in Additional file  2: Table  S2. PCR’s were 
performed in a 25 μl reaction volume. The PCR mix 
contained 1× Qiagen buffer, 1 mM  MgCl2, 0.25 mM 
of each dNTP, 0.2 μM of each primer, 1.25 U Qiagen 
Taq Polymerase and 0.7 ng/μl genomic DNA for all 
genes. PCR programs included one-step of 5 cycles 
before a second step with 35 cycles for 16S rDNA and 
28S rDNA. PCR amplification conditions were: an ini-
tial denaturation step at 94 °C for 5 min followed by 5 
cycles of 94 °C for 30 s; 45 °C for cox1, 42 °C for 16S 
rDNA or 55 °C for 28S rDNA for 40 s; 72 °C for 1min; 
35 cycles of 94 °C for 30 s; 51 °C for cox1, 55 °C for 
16S rDNA or 50 °C for 28S rDNA for 30 s; 72 °C for 
1 min; and a final extension step at 72 °C for 10 min. 
For each amplification reaction, negative controls 
were carried out. The PCR products were visualized 
on 1.5% agarose gels with a GelRed® Nucleic Acid Gel 
Stain, staining after migration of 90 min at 130 V by 
electrophoresis for quality control. After purifications, 
carried out by the sequencing service provider, the 
remaining 20 μl were sequenced with the same forward 
primers used for PCR (https ://www.genew iz.com).

Sequence analyses
The reference sequences of cox1 used to identify indi-
viduals to species are available in Additional file  3: 
Table  S3. A total of 3763 cox1 sequences (Additional 
file  4: Table  S4) from female adults morphologically 
identified as belonging to the Obsoletus/Scoticus 
Complex were obtained after deletion of short and 
poor-quality sequences. The cox1 alignment was used 
to identify all Culicoides to species- or clade-level 

https://www.genewiz.com
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within the complex using the reference sequences. 
Among the reference sequences used to specifically 
assign our Culicoides samples, some sequences previ-
ously identified as C. obsoletus O1 and O3 [15] were 
included in our analysis in order to cover the diver-
sity of the clades described in the literature within the 
Obsoletus/Scoticus Complex. After comparison with 
other sequences, it appears that the sequences named 
C. obsoletus O1 were actually C. obsoletus and that C. 
obsoletus O3 belongs to C. obsoletus clade dark. For 
this purpose, cox1 sequences were aligned with refer-
ence sequences [dataset cox1 (1)]. A phylogenetic tree 
based on maximum likelihood method allowed desig-
nation of a species name to each sequence if the latter 
belonged to a monophyletic clade with strong support 
(bootstrap < 900) that included a reference sequence. 
Thus, Culicoides were sequenced for markers 16S 
rDNA and 28S rDNA to support the phylogenetic 
reconstruction of the complex. All cox1 [dataset cox1 
(2)], 16S rDNA and 28S rDNA sequences were inde-
pendently aligned with the MUSCLE [37] algorithm 
available in the software GENEIOUS v.6.0.5 (Biomat-
ters, http://www.genei ous.com). Genetic diversity 
indices, haplotype and nucleotide diversity were evalu-
ated using DNASP v.5.10 [38]. Alignments with gaps 
were cleaned using the software Gblocks 0.91b [39]. 
To assess genetic distance between clades and species 
within, barcoding gap bar chart using R software was 
performed with ggplot2 [40] and ggthemes packages. 
Intra- and interspecific genetic differences based on 
the Kimura 2-Parameter (K2P) distance model [41, 42] 
were calculated with MEGAX [43]. In order to map the 
specific diversity of the Obsoletus Group, the R soft-
ware version 3.6.0 was used with the Leaflet version 
2.0.2 and shiny packages version 1.4.0.

Phylogenetic inferences
Phylogenetic trees were constructed for the three mark-
ers using maximum-likelihood (ML) and Bayesian infer-
ence (BI). Bayesian inference analyses were conducted 
on MrBayes version 3.2.6, with tree sampling every 1000 
generations in order to calculate posterior probabilities 
(PP) and 10 million generations. Optimal sequence evo-
lutionary models for each analysis were obtained with 
Bayesian information criterion (BIC) using jModel-
Test. Maximum-likelihood analyses were conducted on 
PhyML 3.0. The ML analyses were conducted with the 
best model selected using 1000 bootstrap replicates for 
each dataset to investigate the level of support at each 
node, with starting tree determined by BioNJ analysis. 
After independent analysis of each gene, alignment of 
cox1 and 16S rDNA were concatenated, and analyzed fol-
lowing ML and BI methods.

Species delimitation methods
Two species delimitation methods were applied. The 
first method was a Bayesian implementation of classical 
GMYC method, Bayesian General Mixed Yule Coalescent 
(bGMYC) [44]. The single-locus ultrametric gene trees 
used for bGMYC methods were created with BEAST 
1.8.0 [45] under a strict clock model, a Yule Process Tree 
Model of speciation, and a random starting tree. This 
analysis was carried out with default prior distribution, 
without outgroups and with 10 million generations sam-
pled every 1000 cycles with HKY + G substitution model 
for 16S rDNA, and with HKY + I for 28S rDNA [46]. The 
software TREEANNOTATOR v1.8.2 was used to find 
Ultrametric maximum clade credibility (MCC). Single-
threshold GMYC analyses were conducted with splits 
package in R.

The second species delimitation method used was the 
Bayesian Poisson Tree Processes (bPTP) through the 
web server PTP (http://speci es.h-its.org/ptp/) [47] with 
100,000 MCMC generations and a thinning parameter 
of 100 on a maximum likelihood phylogenetic tree con-
structed with cox1 and 16S rDNA genes concatenated 
with C. dewulfi as outgroup.

Results
Molecular analysis
In total, 3763 sequences were obtained for cox1, 95 for 
16S rDNA and 95 for 28S rDNA (Table 1). All sequences 
were deposited in GenBank (Additional file 4: Table S4). 
No stop codons, insertions or deletions were found in 
any of the cox1 sequences, indicating functional mito-
chondrial products.

Within the selected samples present in our data set, 
the most abundant species was C. obsoletus, with 2416 
individuals sampled, representing 68% of all Culicoides 
caught (Fig.  1). Species diversity within the complex 
varied according to the latitudes of the sampling sites 
(Fig.  1). The most sampled species in northern Europe 
(Norway and Finland) was the C. obsoletus clade O2 with 
62% (162 individuals) and 58% (147 individuals) of this 
clade, respectively, in each country. For eastern Europe 
(Latvia, Poland, Serbia, Bulgaria, Macedonia, Greece 
and Turkey) the most sampled species was C. obsole-
tus, representing, for example, 99% (162 individuals) of 
all Culicoides sampled in Greece. However, a popula-
tion in Poland (Wronka) appears to be an exception with 
100% (35 individuals) of C. obsoletus clade O2. Three 
individuals, belonging to a phylogenetic clade uniden-
tifiable by our reference sequences close to C. obsoletus 
dark, were reported from Latvia. The latter sequences 
are identical to sequences present in the BOLD database 
(accession numbers: GMGRC1056-13, GMGRC1000-
13, GMGRD2587-13) of Culicoides collected in Bavaria, 

http://www.geneious.com
http://species.h-its.org/ptp/
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Table 1 Sequence statistics for four gene fragments used to reconstruct the phylogeny of the Obsoletus/Scoticus complex

Abbreviations: n, number of individuals; h, number of haplotypes; Hd, haplotype (gene) diversity; π, nucleotide diversity; S, number of polymorphic sites; SD, standard 
deviation; bp, base pairs; BIC, Bayesian information criterion; BI, Bayesian inference

Dataset n Length (bp) S C+G (%) h Hd (SD) π (SD) Nucleotide 
model (under 
BIC)

Implemented model (BI)

cox1 (1) 3763 512–627 141 34.5 228 0.890 (0.003) 0.06299 (0.00473)

cox1 (2) 95 528–623 146 33.7 77 0.994 (0.003) 0.0921 (0.00489) TPM2uf+I+G nst = 6; rates = invgamma

16S rDNA 95 263 51 15.8 13 0.851 (0.02) 0.04791 (0.00446) HKY+G nst = 2; rates = gamma

28S rDNA 95 576 25 39.8 24 0.911 (0.015) 0.00753 (0.00099) HKY+I nst = 2; rates = propinv

Concatened genes 95 731 197 32.8 90 0.998 (0.002) 0.04594 (0.00297) TPM2uf+I+G nst = 6; rates = invgamma

Fig. 1 Map of biting midges sampling sites represented by the number of individuals per clade within the Obsoletus/Scoticus Complex. The 
different clades identified are shown in different colours. The size of circles on Europe map correspond to the number of individuals per clade 
within the cryptic species. The numbered maps on the right correspond to magnifications of some study areas. The sites of sampling too close and 
thus the pie charts this superimposed are to be taken into account in the numbered magnifications and not on the main map. Magnifications: a 
Scotland sample sites; b, c Denmark sample sites; d Balkans sample sites; e, f Morroco sample sites
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Germany. Finally, western and central Europe (Portugal, 
Spain, UK, France, Italy, Netherlands, Germany, Switzer-
land and Denmark) had the higher species diversity of all 
the species found in the Palaearctic transect. The most 
sampled species within this area was C. obsoletus with 
913 individuals, representing 64% of the Culicoides sam-
pled. However, unlike in eastern Europe, C. scoticus clade 
1 was also found in significant numbers with 386 indi-
viduals, or 27% of the samples. Culicoides obsoletus clade 
dark was rarely reported in Europe with only 26 individu-
als found in France, Denmark, Finland, Italy, Latvia, Nor-
way and Switzerland. Culicoides montanus was found in 
relatively high proportion in Morocco with 54% (80 indi-
viduals) of samples, whereas it was much rarer and more 
sporadic in European countries.

A total of 228 different cox1 haplotypes were iden-
tified. Haplotype diversity varied from 0.829 for C. 
obsoletus clade O2 to 0.517 for C. scoticus clade 1 and 
C. obsoletus clade dark (Table  2). In accordance with 
mitochondrial genes in insects [48], the GC composi-
tion ranged from 16% for 16S rDNA alignment to 39.8% 
for 28S rDNA, with a strong AT bias (Table  2). Culi-
coides obsoletus showed very high intraspecific diver-
sity with 94 different haplotypes, representing nearly 
43% of the total haplotypic diversity encountered in 
this study. The maximum interspecific genetic distance 
(Fig. 2) was reached between C. dewulfi and other tax-
onomic units, with a minimum of 17% of genetic dis-
tance between this outgroup and all other members 
inside the complex. Culicoides dewulfi is used here as 
an outgroup. Genetic distances of the same level as the 
other intraspecific distances were observed between C. 
scoticus clade 1 and C. scoticus clade 2, and between C. 
obsoletus and C. montanus, with a maximum of 2% and 
4%, respectively. Similar interspecific genetic distances, 
were observed between all the other clades within the 
complex, with a minimum of 8% distance. All species 
had mean intraspecific distances of less than 1%, other 
than C. scoticus clade 2.

Among the 228 unique cox1 haplotypes, 95 were 
selected to represent the specific diversity of the com-
plex. Using the same individuals, two alignments of 95 
sequences of 16S rDNA (Additional file  5: Figure S1.) 
and 28S rDNA were constructed. In order to compare 
tree topology and to concatenate markers, a second 
cox1 alignment of the 95 sequences was performed 
(Additional file  6: Figure S2.). The cox1 dataset had 
a greater haplotype diversity than 16S rDNA and 28S 
rDNA datasets, with 0.994 vs 0.851 and 0.911 respec-
tively. 28S rDNA was more monomorphic than cox1 
and 16S rDNA, with 25, 146 and 51 polymorphic sites, 
respectively.

Phylogenetic analysis
Information on the alignments used for the construction 
of phylogenetic trees is provided in Table 1. Species with 
confirmed taxonomic validity (C. montanus, C. obsoletus 
and C. scoticus) and cryptic taxa (C. obsoletus clade O2, 
C. obsoletus clade dark) highlighted by previous studies 
were strongly supported (bootstrap > 90%) (Fig. 3). Culi-
coides obsoletus clade O2 constituted a monophyletic 
clade with strong support (bootstrap > 90%). Culicoides 
obsoletus and C. montanus formed a monophyletic clade. 
Culicoides scoticus, another species considered valid, 
showed two phylogenetic clades, i.e. C. scoticus clade 1 
and C. scoticus clade 2. A monophyletic clade close to C. 
obsoletus clade dark, was strongly supported by bootstrap 
values. Topologies of phylogenetics trees constructed via 
maximum likelihood (Fig. 3a) and Bayesian inference (BI) 
analyses (Fig.  3b) were congruent for alignment of full 
haplotype diversity.

Species delimitation
Using the cox1 dataset and bGMYC method for spe-
cies delimitation (Fig.  4), 6 molecular operational 
taxonomic units (MOTUs) were observed: C. mon-
tanus, C. obsoletus, C. scoticus, C. obsoletus clade O2, 
C. obsoletus clade dark and Culicoides sp. within the 
Obsoletus/Scoticus Complex. Based on the 16S rDNA 

Table 2 Genetic diversity indices for mitochondrial cox1 gene segment of Culicoides spp. in the Obsoletus/Scoticus Complex

Abbreviations: n, number of individuals; h, number of haplotypes; Hd, haplotype (gene) diversity; π, nucleotide diversity; nd, not determined; S, number of 
polymorphic sites; SD, standard deviation

Species n h Hd (SD) π (SD) S C+G (%)

C. montanus 106 13 0.642 (0.039) 0.00726 (0.00317) 66 0.334

C. obsoletus 2416 106 0.773 (0.005) 0.00450 (nd) 72 0.324

C. obsoletus clade O2 512 38 0.829 (0.012) 0.00447 (nd) 53 0.310

C. obsoletus clade dark 26 6 0.517 (0.113) 0.00191 (0.00058) 7 0.315

Culicoides sp. 3 2 0.667 (0.314) 0.00749 (0.00353) 6 0.331

C. scoticus clade 1 645 61 0.562 (0.023) 0.00463 (nd) 93 0.347

C. scoticus clade 2 55 12 0.753 (0.046) 0.00499 (0.00093) 16 0.328
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dataset analysed with the same delimitation method, 
three MOTUs were characterised including (i) two 
clades within C. scoticus; (ii) Culicoides sp., C. obsoletus 
clade dark and C. obsoletus clade O2; and (iii) C. obso-
letus and C. montanus. Species delimitation with the 
28S rDNA and 16S rDNA dataset had a lower resolu-
tion compared to cox1. The 28S rDNA and 16S rDNA 
datasets were invaluable in identifying cryptic diversity 
within the Obsoletus/Scoticus Complex. Indeed, the 
tree generated with the 28S rDNA dataset showed very 
low polymorphisms and resolution signal (Additional 

file  7: Figure S3.). The bPTP method was conducted 
on concatenated dataset of cox1 and 16S rDNA genes. 
The best statistical support for species delimitation was 
for concatenated dataset with bPTP. MOTUs found 
with the concatenated alignment and cox1 were the 
same, except for the delimitation of C. montanus and 
C. obsoletus. Indeed, using molecular delineation based 
on bPTP analysis, MOTUs were observed for C. scoti-
cus, C. obsoletus clade O2, C. obsoletus clade dark, and 
Culicoides sp. Using the bPTP method we were not able 
to distinguish C. obsoletus and C. montanus as well as 
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C. scoticus clades 1 and 2, which were not classified as 
separate species by either method.

Discussion
Our study investigated the genetic diversity of the Obso-
letus/Scoticus Complex at the European level (68 sam-
pling sites across 20 Palaearctic countries with 3763 cox1 
sequences). For the first time, the sample selection covers 
the whole known western Palaearctic distribution area of 
these species. The complementary use of the mitochon-
drial 16S rDNA and nuclear 28S rDNA genes confirms 
the important level of cryptic diversity found within the 
Obsoletus/Scoticus Complex. Indeed species delimita-
tion methods allowed us to delineate five MOTUs and: (i) 
to provide evidence of the taxonomic validity of C. obso-
letus clade O2 and C. obsoletus clade dark (ii) to identify 
individuals belonging to a species not yet described or 
not present into the databases; and (iii) to question the 
taxonomic status of C. montanus.

Species assignment at the European scale showed 
variation in the distribution of the cryptic diversity of 

Obsoletus/Scoticus Complex. This result confirmed 
a previous study by Möhlmann et  al. [49], who found a 
strong latitudinal effect on the relative abundance of spe-
cies of the Obsoletus/Scoticus Complex. However, the 
previous study was carried out with few individuals from 
a relatively small number of countries and sampling sites 
[49]. This contrasts with our study, the first to be con-
ducted at a European scale with a large data set sufficient 
to provide a more precise idea of the cryptic diversity 
within the Obsoletus/Scoticus Complex. The latitudinal 
variation in the relative abundance of the different cryptic 
species in the Obsoletus/Scoticus Complex, could be due 
to a wide range of factors like different ecological niches, 
or differences in the availability of hosts and breeding 
sites [50]. For example, a study conducted in Italy showed 
that C. scoticus collection sites were dominated by areas 
of natural vegetation or forest, at medium altitudes, pref-
erably in wilder and more pristine environments [51]. 
However, the heterogeneity of Culicoides collection dates 
may also explain these variations in specific diversity 
within the complex. For instance, a study conducted in 

Fig. 3 Maximum likelihood (a) and Bayesian inference (b) phylogenetic tree using cox1 representing the haplotypic diversity within the Obsoletus/
Scoticus Complex at the European scale. Values at the nodes represent bootstrap (a) and posterior probability (b) values greater than 900 for the 
most important nodes (1000 replicates)
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Sweden, found a seasonal variation in Culicoides com-
munity structure [52]. The omnipresence of C. obsoletus 
makes it the dominant species in Europe, confirming 
its status as a generalist species, which tolerates a wide 
range of eco-climatic conditions. The dominant species 
also varies according to geographical location. For exam-
ple, C. obsoletus clade O2 is the most sampled species in 
Nordic countries while C. montanus prevails in Morocco. 
France, Italy and Spain appear to have the highest specific 
diversity of Culicoides belonging to the Obsoletus/Scoti-
cus Complex. These three countries bring together all the 
cryptic diversity known so far, except the new, unidenti-
fied, Culicoides taxon that has only been found in Latvia 
regarding our dataset. This could be due to the significant 

diversity of ecological niches as well as the high density of 
hosts in these countries and this species diversity varia-
tion is in line with general patterns of latitudinal increase 
in species richness [53].

Our phylogenetic analysis allowed us to define seven 
well supported phylogenetic clades. Some of them cor-
respond to species with taxonomic validity (C. mon-
tanus, C. obsoletus and C. scoticus), some more recently 
described phylogenetic clades (C. obsoletus clade dark 
and C. obsoletus clade O2) [52, 54] and some clades never 
described before (Culicoides sp. and C. scoticus clade 2).

Without taking into account C. scoticus, the phylo-
genetic reconstruction produced herein, confirmed 
the presence of two divergent groups; one consisting of 
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C. obsoletus and C. montanus and the other of C. obso-
letus clade dark, C. obsoletus clade O2 and a clade not 
yet described in the literature. We were unable to iden-
tify these sequences due to the absence of reference 
sequences identified at the species level in the sequence 
databases. However, three sequences, from specimens 
collected in Bavaria in Germany, present in the BOLD 
database are identical. Further sampling and sequencing 
of Culicoides from eastern Europe are necessary in order 
to associate morphological features with this new cryptic 
species. The large number of Culicoides processed dur-
ing this study made it difficult to use non-destructive 
DNA extraction techniques. Non-destructive techniques 
would be necessary to couple morphological criteria with 
genetic analysis, in order to identify this species.

We also described a second clade phylogenetically very 
close to C. scoticus, C. scoticus clade 2 [55]. However, 
given the small genetic distance observed between these 
two clades, they can be considered as intraspecific varia-
tion within C. scoticus.

According to this study, C. obsoletus clade dark appears 
as a true cryptic species, with high phylogenetic support. 
Meiswinkel et  al. [21] hypothesized that C. obsoletus 
clade dark could be C. gornostaevae Mirzaeva, 1984, but 
C. gornostaevae was significantly larger and had a distri-
bution restricted to the boreal zone of Siberia. However, 
this species has been recently reported from Norway, 
Poland and Sweden [56] but the lack of C. gornostaevae 
reference sequences in publicly available databases pre-
vented comparisons with C. obsoletus clade dark.

Culicoides obsoletus clade O2 was also strongly sup-
ported by phylogenetic and species delimitation analy-
sis, and thus could be considered a cryptic species within 
the Obsoletus/Scoticus Complex. However, our sample 
showed a high abundance of C. obsoletus clade O2 mainly 
at high latitudes, whereas it had initially been identified 
for the first time further south in the Swiss Alps [54, 56, 
57] and France.

Little is known about the ecology of C. montanus. 
We found this species over a large geographical area, 
from Morocco to a few individuals in Norway. In spite 
of this, we have identified only a very small number 
of C. montanus except in Morocco where this species 
constitutes the majority. This latter result is in accord-
ance with the fact that sites in Italy, where C. monta-
nus is predominant are characterised by a high land 
surface temperature, higher than the values registered 
in the C. obsoletus and C. scoticus sites [51]. Culicoides 
obsoletus and C. scoticus are considered to be sibling 
species because of diagnostic female morphological 
characters, which are difficult to observe or overlap 
[16], as opposed to the morphological identification 
of males which is simpler [58]. If the genetic analyses 

by Pages & Sarto [58] confirm that both C. obsole-
tus and C. scoticus are distinct species, the question 
remains open for C. montanus. Previous phylogenetic 
studies based on cox1 indeed showed limited genetic 
distance between C. obsoletus and C. montanus and in 
studies based on ITS sequences C. montanus always 
appears in one of the subclades of C. obsoletus [59]. In 
our multi-marker phylogenetic tree, C. montanus and 
C. obsoletus formed a monophyletic clade. In addi-
tion, the genetic distance between C. obsoletus and C. 
montanus was of the same order of magnitude as some 
intraspecific distances.

The number of putative species defined within the 
Obsoletus/Scoticus Complex varied depending on the 
molecular markers and species delimitation methods 
used (Fig.  4), particularly pertaining to the status of 
C. obsoletus and C. montanus. Unlike the other meth-
ods, the bGMYc method, based on cox1, distinguished 
these two species. This can be explained by the fact that 
some parameters of the analysis (i.e. priors), like differ-
ences in population size or speciation rates, can bias the 
GMYC method by overestimating the number of spe-
cies [46, 60–62]. Insufficient sampling, high gene flow 
or a recent speciation event are also likely explanations 
for the differences in results between phylogenetic trees 
and species delimitation results [63, 64]. Although sub-
ject to the same constraints, it has been shown that the 
bPTP method is significantly more robust [65]. Moreo-
ver, methods based on multiple loci improve discovery, 
resolution and stability of species delimitation [66, 67]. 
Furthermore, studies have shown that species delinea-
tion in insects is more appropriate with multilocus spe-
cies delimitation methods [68–71]. These arguments 
allowed us to validate the species delimitation scheme 
produced with the bPTP method. This analysis cou-
pled with the low level of genetic distances observed 
between C. montanus and C. obsoletus led us to ques-
tion the taxonomic status of C. montanus. This could 
be the beginning of a speciation process of C. montanus 
within the clade of C. obsoletus. Hovewer, C. montanus 
was originally described from Kazakhstan and present 
in central Asia [57]. Therefore, examination of individu-
als sampled in this geographical area could strengthen 
our conclusions.

In the light of our conclusions, in-depth morphologi-
cal analyses with the deposition of reference individuals 
will have to be carried out in order to decide whether or 
not to definitively rule out the taxonomic status of the 
cryptic species making up this complex. Indeed, although 
adult females are not morphologically distinguishable on 
a routine basis, males are easier to identify using their 
genitalia and pupal differences and can provide evidence 
of morphological differences between the species.
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Conclusions
This study provides clarification of the distribution pattern 
of species belonging to the Obsoletus/Scoticus Complex, 
using a dataset based on samples from western Palaeartic 
and Mediterranean transect. Strong variations in latitu-
dinal cryptic species diversity was observed. This study 
clarifies the phylogenetic relationships between species 
belonging to the Obsoletus/Scoticus Complex. We identi-
fied and validated five MOTUs, C. obsoletus, C. scoticus, C. 
obsoletus clade O2, C. obsoletus clade dark and a MOTUs 
corresponding to an unidentified species. The latter three 
species have not been formally described but our results 
confirm that they should be considered as species in their 
own right. More detailed studies of their morphology and 
ecology are needed to provide more detailed descriptions 
of these species. Furthermore, our results raise questions 
concerning the taxonomic status of C. montanus, which 
was previously considered as a taxonomically valid species.
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