J. P. Davis and L. L. Dean, Peanut composition, flavor and nutrition, Peanuts: Genetics, Processing, and Utilization, pp.289-345, 2016.

, Food and Agriculture Organization -Statistical Database, p.12, 2019.

L. Husted, Cytological Studies an the Peanut, Arachis. Cytologia (Tokyo), vol.5, pp.109-117, 1933.

L. Husted, Cytological Studies an the Peanut, Arachis. II. Cytologia (Tokyo), vol.7, pp.396-423, 1936.

G. L. Stebbins, Self Fertilization and Population Variability in the Higher Plants, Am. Nat, vol.91, pp.337-354, 1957.

J. G. Seijo, G. I. Lavia, A. Fernandez, A. Krapovickas, D. Ducasse et al., Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae), Am. J. Bot, vol.91, pp.1294-1303, 2004.

M. Grabiele, L. Chalup, G. Robledo, and G. Seijo, Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences, Plant Syst. Evol, vol.298, pp.1151-1165, 2012.

G. Kochert, T. Halward, W. D. Branch, and C. E. Simpson, RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species, TAG Theor. Appl. Genet. Theor. Angew. Genet, vol.81, pp.565-570, 1991.

G. Kochert, H. T. Stalker, M. Gimenes, L. Galgaro, C. R. Lopes et al., Cytogenetic Evidence on the Origin and Evolution of Allotetraploid Domesticated Peanut, Arachis hypogaea (Leguminosae), Am. J. Bot, vol.83, pp.1282-1291, 1996.

G. Seijo, G. I. Lavia, A. Fernández, A. Krapovickas, D. A. Ducasse et al., Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH, Am. J. Bot, vol.94, 1963.

T. M. Halward, H. T. Stalker, E. A. Larue, and G. Kochert, Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species, Genome, vol.34, pp.1013-1020, 1991.

T. Halward, T. Stalker, E. Larue, and G. Kochert, Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.), Plant Mol. Biol, vol.18, pp.315-325, 1992.

G. He and C. S. Prakash, Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.), Euphytica, vol.97, pp.143-149, 1997.

V. Subramanian, S. Gurtu, R. N. Rao, and S. N. Nigam, Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay, Genome, vol.43, pp.656-660, 2000.

S. N. Raina, V. Rani, T. Kojima, Y. Ogihara, K. P. Singh et al., RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species, Genome, vol.44, pp.763-772, 2001.

M. A. Gimenes, C. R. Lopes, and J. F. Valls, Genetic relationships among Arachis species based on AFLP, Genet. Mol. Biol, vol.25, pp.349-353, 2002.

S. R. Milla, T. G. Isleib, and H. T. Stalker, Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers, Genome, vol.48, pp.1-11, 2005.

L. M. Cuc, E. S. Mace, J. H. Crouch, V. D. Quang, T. D. Long et al., Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea), BMC Plant Biol, vol.8, p.55, 2008.

S. D. Tanksley, S. Grandillo, T. M. Fulton, D. Zamir, Y. Eshed et al., Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium, Theor. Appl. Genet, vol.92, pp.213-224, 1996.

T. M. Fulton, S. Grandillo, T. Beck-bunn, E. Fridman, A. Frampton et al., Advanced backcross QTL analysis of a Lycopersicon esculentum× Lycopersicon parviflorum cross, Theor. Appl. Genet, vol.100, pp.1025-1042, 2000.

A. Gur and D. Zamir, Unused natural variation can lift yield barriers in plant breeding, PLoS Biol, 2004.

M. Causse, P. Duffé, M. Gomez, M. Buret, R. Damidaux et al., A Genetic Map of Candidate Genes and QTLs Involved in Tomato Fruit Size and Composition, J. Exp. Bot, vol.55, pp.1671-1685, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02679748

J. Xiao, J. Li, S. Grandillo, S. N. Ahn, L. Yuan et al., Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, vol.150, pp.899-909, 1998.

P. Moncada, C. P. Martínez, J. Borrero, M. Chatel, H. Gauch et al., Quantitative trait loci for yield and yield components in an Oryza sativa×Oryza rufipogon BC2F2 population evaluated in an upland environment, Theor. Appl. Genet, vol.102, pp.41-52, 2001.

M. J. Thomson, T. H. Tai, A. M. Mcclung, X. Lai, M. E. Hinga et al., Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson, TAG Theor. Appl. Genet. Theor. Angew. Genet, vol.107, pp.479-493, 2003.

E. M. Septiningsih, J. Prasetiyono, E. Lubis, T. H. Tai, T. Tjubaryat et al., Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon, TAG Theor. Appl. Genet. Theor. Angew. Genet, vol.107, pp.1419-1432, 2003.

J. Li, J. Xiao, S. Grandillo, L. Jiang, Y. Wan et al., QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice, Genome, vol.47, pp.697-704, 2004.

M. M. Shah, K. S. Gill, P. S. Baenziger, Y. Yen, S. M. Kaeppler et al., Molecular Mapping of Loci for Agronomic Traits on Chromosome 3A of Bread Wheat, Crop Sci, vol.39, pp.1728-1732, 1999.

A. Börner, E. Schumann, A. Fürste, H. Cöster, B. Leithold et al., Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat, Triticum aestivum L.). Theor. Appl. Genet, vol.105, pp.921-936, 2002.

X. Q. Huang, H. Cöster, M. W. Ganal, and M. S. Röder, Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat, Triticum aestivum L.). Theor. Appl. Genet, vol.106, pp.1379-1389, 2003.

A. B. Chaim, I. Paran, R. C. Grube, M. Jahn, R. Van-wijk et al., QTL mapping of fruit-related traits in pepper (Capsicum annuum), Theor. Appl. Genet, vol.102, pp.1016-1028, 2001.

G. U. Rao, A. Ben-chaim, Y. Borovsky, and I. Paran, Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens, TAG Theor. Appl. Genet. Theor. Angew. Genet, vol.106, pp.1457-1466, 2003.

N. Dwivedi, R. Kumar, R. Paliwal, U. Kumar, S. Kumar et al., QTL mapping for important horticultural traits in pepper (Capsicum annuum L.), J. Plant Biochem. Biotechnol, vol.24, pp.154-160, 2015.

H. T. Stalker, S. P. Tallury, P. Ozias-akins, D. Bertioli, and S. L. Bertioli, The value of diploid peanut relatives for breeding and genomics, Peanut Sci, vol.40, pp.70-88, 2013.

S. Sharma, M. K. Pandey, H. Sudini, H. D. Upadhyaya, and R. K. Varshney, Harnessing Genetic Diversity of Wild Arachis Species for Genetic Enhancement of Cultivated Peanut, Crop Sci, vol.57, pp.1121-1131, 2017.

A. P. Fávero, C. E. Simpson, J. F. Valls, and N. A. Vello, Study of the Evolution of Cultivated Peanut through Crossability Studies among Arachis ipaënsis, A. duranensis, and A. hypogaea, Crop Sci, vol.46, pp.1546-1552, 2006.

N. Mallikarjuna, Production of hybrids between Arachis hypogaea and A. chiquitana (section Procumbentes). Peanut Sci, vol.32, pp.148-152, 2005.

N. Mallikarjuna and D. Hoisington, Peanut improvement: Production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Secur, vol.1, pp.457-462, 2009.

N. Mallikarjuna, S. Senthilvel, and D. Hoisington, Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.), Genet. Resour. Crop Evol, vol.58, pp.889-907, 2011.

J. Rami, S. C. Leal-bertioli, D. Foncéka, M. C. Moretzsohn, D. J. Bertioli et al., Alien Gene Transfer in Crop Plants

A. Pratap and J. Kumar, , vol.2, pp.253-279, 2014.

H. T. Stalker, Utilizing wild species for peanut improvement, Crop Sci, vol.57, pp.1102-1120, 2017.

E. D. Nagy, Y. Chu, Y. Guo, S. Khanal, S. Tang et al., Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene, Mol. Breed, vol.26, pp.357-370, 2010.

S. C. Leal-bertioli, U. Cavalcante, E. G. Gouvea, C. Ballén-taborda, K. Shirasawa et al., Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection, G3 Genes Genomes Genet, vol.5, pp.1403-1413, 2015.

S. C. Leal-bertioli, M. C. Moretzsohn, P. A. Roberts, C. Ballén-taborda, T. C. Borba et al., Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut, Genes Genomes Genet, vol.6, pp.377-390, 2016.

C. M. Rick and R. T. Chetelat, Utilization of related wild species for tomato improvement, Acta Hortic, pp.21-38, 1995.

D. Jordan, D. Butler, B. Henzell, J. Drenth, and L. Mcintyre, Diversification of Australian sorghum using wild relatives, New Directions for a Diverse Planet, Proceedings of the 4th International Crop Science Congress, 2004.

D. Fonceka, H. Tossim, R. Rivallan, H. Vignes, I. Faye et al., Fostered and left behind alleles in peanut: Interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding, BMC Plant Biol, vol.12, 2012.

S. D. Tanksley, Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild, Science, vol.277, pp.1063-1066, 1997.

D. Zamir, Improving plant breeding with exotic genetic libraries, Nat. Rev. Genet, vol.2, pp.983-989, 2001.

D. Foncéka, Elargissement de la base génétique de l'arachide cultivée (# Arachis hypogaea#): Applications pour la construction de populations, l'identification de QTL et l'amélioration de l'espèce cultivée, p.12, 2010.

D. Fonceka, H. Tossim, R. Rivallan, H. Vignes, E. Lacut et al., Construction of Chromosome Segment Substitution Lines in Peanut (Arachis hypogaea L.) Using a Wild Synthetic and QTL Mapping for Plant Morphology, PLoS ONE, vol.7, 2012.

,. Van-rossum, F. Van-eeuwijk, M. Boer, M. Malosetti, D. Bustos-korts et al., Single Trial Analysis (STA) of Field Trials, p.12, 2019.

T. Hothorn, F. Bretz, and P. Westfall, Simultaneous Inference in General Parametric Models, Biom. J, vol.50, pp.346-363, 2008.

W. Yan, M. S. Kang, and . Biplot, Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists, 2003.

, Breeding Management System | Integrated Breeding Platform | Plant Breeding Software, 2020.

Y. Eshed and D. Zamir, Introgressions fromLycopersicon pennellii can improve the soluble-solids yield of tomato hybrids, Theor. Appl. Genet, vol.88, pp.891-897, 1994.

S. Mccouch, Diversifying selection in plant breeding, PLoS Biol, 2004.

A. G. Gutiérrez, S. J. Carabalí, O. X. Giraldo, C. P. Martínez, F. Correa et al., Identification of a Rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines, BMC Plant Biol, vol.10, issue.6, 2010.

X. Ma, Y. Fu, X. Zhao, L. Jiang, Z. Zhu et al., Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing, Sci. Rep, 2016.

B. P. Swamy and N. Sarla, Yield-enhancing quantitative trait loci (QTLs) from wild species, Biotechnol. Adv, vol.26, pp.106-120, 2008.

J. E. Board, M. S. Kang, and B. G. Harville, Path Analyses Identify Indirect Selection Criteria for Yield of Late-Planted Soybean, Crop Sci, vol.37, 1997.

D. J. Bertioli, S. B. Cannon, L. Froenicke, G. Huang, A. D. Farmer et al., The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut, Nat. Genet, vol.48, pp.438-446, 2016.

M. E. Ferguson, P. J. Bramel, and S. Chandra, Gene diversity among botanical varieties in peanut (Arachis hypogaea L.), Crop Sci, vol.44, pp.1847-1854, 2004.

L. H. Rieseberg, M. A. Archer, and R. K. Wayne, Transgressive segregation, adaptation and speciation, Heredity, vol.83, pp.363-372, 1999.

U. Vega and K. J. Frey, Transgressive segregation in inter and intraspecific crosses of barley, Euphytica, vol.29, pp.585-594, 1980.

J. R. Nguepjop, H. Tossim, J. M. Bell, J. Rami, S. Sharma et al., Evidence of Genomic Exchanges between Homeologous Chromosomes in a Cross of Peanut with Newly Synthetized Allotetraploid Hybrids. Front, Plant Sci, 1635.

S. Leal-bertioli, K. Shirasawa, B. Abernathy, M. Moretzsohn, C. Chavarro et al., Tetrasomic Recombination Is Surprisingly Frequent in Allotetraploid Arachis, Genetics, vol.199, pp.1093-1105, 2015.

J. Clevenger, Y. Chu, C. Chavarro, G. Agarwal, D. J. Bertioli et al., Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut, Mol. Plant, vol.10, pp.309-322, 2017.

W. D. Beavis, W. D. Beavis, W. D. Beavis, and W. D. Beavis, The Power and Deceit of QTL Experiments: Lessons from Comparative QTL Studies, ScienceOpen, 1994.

V. A. Fasoula, D. K. Harris, and H. R. Boerma, Validation and Designation of Quantitative Trait Loci for Seed Protein, Seed Oil, and Seed Weight from Two Soybean Populations, Crop Sci, vol.44, pp.1218-1225, 2004.

J. J. Keurentjes, L. Bentsink, C. Alonso-blanco, C. J. Hanhart, . Blankestijn-de et al., Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population, Genetics, vol.175, pp.891-905, 2007.

J. L. Wan, H. Q. Zhai, J. M. Wan, H. Yasui, and A. Yoshimura, Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines, vol.30, pp.893-898, 2003.

D. Sun, L. Jiang, Y. Zhang, X. Cheng, H. Zhai et al., Detection of QTL associated with rice stripe resistance in cultivar IR24, Acta Agron Sin, vol.33, pp.25-30, 2007.

L. Irzykowska and B. Wolko, Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum, J. Appl. Genet, vol.45, pp.297-306, 2004.

G. M. Timmerman-vaughan, A. Mills, C. Whitfield, T. Frew, R. Butler et al., Linkage Mapping of QTL for Seed Yield, Yield Components, and Developmental Traits in Pea, Crop Sci, vol.45, pp.1336-1344, 2005.

S. Ayaz, B. A. Mckenzie, G. D. Hill, and D. L. Mcneil, Variability in yield of four grain legume species in a subhumid temperate environment. II. Yield components, © 2020 by the authors. Licensee MDPI, vol.142, pp.21-28, 2004.