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Contracting Under Unverifiable Monetary Costs∗

Nicolas Quérou † Antoine Soubeyran‡ Raphael Soubeyran§

Abstract. We consider a contracting relationship where the agent’s effort induces monetary

costs, and limits on the agent’s resource restrict his capability to exert effort. We show that,

the principal finds it best to offer a sharing contract while providing the agent with an up-front

financial transfer only when the monetary cost is neither too low nor too high. Thus, unlike in

the limited liability literature, the principal might find it optimal to fund the agent. Moreover,

both incentives and the amount of funding are non-monotonic functions of the monetary cost.

These results suggest that an increase in the interest rate may affect the form of contracts dif-

ferently, depending on the initial level of the former. Using the analysis, we provide and discuss

several predictions and policy implications.
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1 Introduction

Most of the literature on contracts assumes that the agent’s effort cost is non-monetary, while

there are many contracting relationships where this cost is at least partially pecuniary. For

instance, this is the case for issues related to corporate social responsibility (Baron, 2007, Heyes

and Martin, 2016) such as payment schemes for environmental services (see Alix-Garcia and

Wolff, 2014). This is also consistent with cases where the agent is a profit-seeking company, and

this agent’s actions involve unverifiable monetary costs: Among other examples, subcontractors

operating at arm’s length face this type of costs, as in the automobile industry (Kawasaki and

McMillan, 1987) or for construction projects. Even researchers working on a project funded by a

public or private institution may declare spending more hours on this project than they actually

do. In all these cases, the agent’s effort implies non-monetary and monetary costs, which are

often unverifiable due to high costs of monitoring or lack of expert knowledge.

The existence of monetary costs raises a number of general questions regarding the optimal

contract between a principal and an agent. When is it in the principal’s best interest to provide

incentives or to fund an agent whose wealth is limited? What is the best incentive/funding

structure to manage such a relationship? What is the effect of the magnitude of monetary costs

on the specifics of the optimal contract? We attempt to answer these and related questions.1

In our environment the agent takes an unobserved costly action, which produces a stochastic

output. The principal provides incentives by paying the agent based on the observed output

and by providing him with, or by requiring, an up-front payment. Unlike in standard models,

we consider that the agent’s effort induces monetary costs (as well as non monetary costs, as

in the standard setting). This cost can be covered by the agent’s choice to undertake financial

investments, while the principal can indirectly cover it through financial transfers to the agent.

In this context, the agent’s budget constraint restricts the set of feasible actions. Thus, the

lower the level of wealth of the agent, including transfer from or to the principal, the lower the

maximum effort level that the agent can provide. The principal and the agent are both risk

neutral, so that the only distortion comes from the budget constraint, which limits the agent’s

set of feasible actions. When the budget constraint binds, the up-front payment and the effort

become rivals. The agent cannot pay a large up-front payment and supply a high effort level.

We obtain several results that do not exist in the polar case of strictly non-monetary costs,

even under limited liability, which is actually consistent with standard models used in Lewis

and Sappington (2000a,b, 2001). We first show that funding is sometimes optimal, but that it

prevents the principal to get the full returns of the project. Second, the link between monetary

costs and funding is not straightforward: funding is optimal if and only if the agent’s wealth

is sufficiently small and the monetary cost is neither too low nor too high. Indeed, when the

monetary cost is small enough the agent can cover the full monetary cost of the project and,

when this cost is sufficiently large, the principal has incentives to induce a decrease in the

monetary costs through a decrease in the agent’s share of profits, which allows the agent to also

cover the monetary costs of the project.

Third, the optimal contract exhibits interesting features: the incentive part decreases as the

1Fagart and Fluet (2013) study the validity of the first-order approach when the agent’s utility is non-separable
in the agent’s income and effort cost. There is no wealth constraint in their setting.
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magnitude of the monetary costs increases up to a threshold value, and it then increases for

larger values of these costs. Fourth, up to a threshold value of the monetary cost, the optimal

bonus and the transfer both increase as the value of the project increases. When the monetary

cost moves above this threshold, the bonus paid to the agent increases, while the transfer received

from the agent decreases, as the project value increases. Fifth, we analyze welfare effects, and

show that a larger monetary cost has a negative effect on the surplus of both parties.

We then discuss several predictions and policy implications. Our model predicts that pay-

ment for environmental services programs should not necessarily be more likely to fund projects

when opportunity costs get larger. Moreover, an increase in the interest rate may notably affect

the optimal contract design: depending on its initial level, an increase in the interest rate may

(i) lead to an increase or a decrease in the strength of incentives (ii) increase or decrease the

financial transfer (iii) affect the qualitative nature of the transfer (funding to or payment from

the agent). The model also provides a rationale for the fact that outside financing and profit

sharing be parts of the optimal contract when monetary costs are partially unobservable.2

Finally, we discuss several extensions. We prove that our setting differs from the classical

notion of limited liability, and we highlight the robustness of our results when the agent can

borrow money from the principal, and when self-funding can be used as an outside option.

The present paper is related to the literature on moral hazard (Arrow, 1963; Pauly, 1968).

The closest contributions are Lewis and Sappington (2000a,b, 2001), where the focus is on how

constraints on the agent’s wealth impede on the efficient allocation of resources by limiting the

optimal tailoring of the reward structure.3 In these contributions, the agent’s effort does not

induce any monetary cost, and we obtain novel results: we prove the optimality of funding, show

that funding occurs for intermediate values of the monetary cost, highlight the non-monotonic

effect of this cost on incentives, and that funding and incentives may be complementary.

This work also highlights the optimal trade-off between funding and incentives.4 Unlike

most of the literature on financial contracts (see Bester, 1987 and Innes, 1990), we consider that

the investment level is endogenous. We thus contribute to the important question of optimal

contracting when both investment policy choices and effort are made privately by the agent.

The effect of monetary costs induced by the agent’s effort is conceptually different from the

notion of limited liability (see Macho-Stadler and Pérez-Castrillo, 2018, and Sappington, 1983).5

Limited liability might either bound the feasible payments from the principal to the agent (which

must lie above an exogenous threshold, see Jewitt et al., 2008, and Poblete and Spulber, 2012)

or the agent’s ex-post payoff. We show this conceptual difference in Section 5.6

The remainder of the paper proceeds as follows. The model is provided in Section 2, and

the analysis in Section 3. (Policy) implications are discussed in Section 4. Section 5 discusses

some of the assumptions. Finally, Section 6 concludes. All proofs are provided in an appendix.

2Here profit sharing is equivalent to a share of proceeds in case the project is successful.
3Agents are assumed to make bond payments at the outset of the relationship, even though the principal can

promise to return some portion of the initial bond in Lewis and Sappington (2001).
4Azam and Laffont (2003) study aid contracts and Cordella and Dell’Ariccia (2007) focus on the comparison

of budget support and project aid. These articles do not study the optimal mix.
5See also Ohlendorf and Schmitz (2012) or Chassang (2013) for recent contributions.
6Laffont and Matoussi (1995) consider a moral hazard problem in which the agent has limited budget for a

verifiable input. There is no potential relationship between wealth and effort level. Che and Gale (2000) study
selling mechanisms with limited budget under adverse selection and Burkett (2015) consider the case with budget
manipulation by the agent (see also Benôıt and Krishna, 2001).
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2 The Model

Consider a principal and an agent who may enter into a relationship to develop a project. The

outcome of the project can be either a success or a failure. If successful, the relationship yields

returns V > 0, while failure results in zero return. The agent’s effort e, e ∈ [0, 1], determines

the probability of success p(e) = e of the relationship. The agent incurs both a monetary cost

K(e) = θ e
2

2 , with θ ≥ 0 and a non monetary cost D(e) = ψ e
2

2 with ψ ≥ 0 when exerting effort

e ≥ 0. He has a limited budget B ≥ 0. The principal is the residual claimant of the output.

The contractual relationship between the principal and the agent has several features. The

agent’s effort is not verifiable, thus the contract is only based on the success or failure of the

project. It specifies both an up-front payment from the principal to the agent, T (which may

be negative or positive), and a bonus paid to the agent, w, only in case of success. If the agent

rejects the contract he consumes his wealth, B. If he accepts the contract, the principal “pays”

him the up-front payment T , which is possibly a payment from the agent to the principal.7 The

principal’s problem is thus as follows:8

Max
T,w,e

EuP = e (V − w)− T, (P0)

such that the following conditions hold:

e = arg max
{e≥0|B+T≥θ e2

2
}

{
ew +B + T − ψe

2

2
− θe

2

2

}
, (IC0)

EuA = ew +B + T − ψe
2

2
− θe

2

2
≥ B, (PC0)

Expression (P0) reflects the fact that the principal’s expected net return is the difference between

the expected surplus from the project and the rent that accrues to the agent, that is, the bonus

w and the up-front payment, T . Condition (PC0) corresponds to the participation constraint.

Condition (IC0) corresponds to the incentive constraint, which ensures that the effort level

provides the maximal payoff to the agent. This incentive constraint is novel as it includes

a budget constraint, B + T ≥ θ e
2

2 . Specifically, it guarantees that the agent cannot bear a

monetary cost of effort that exceeds the sum of his budget and the up-front payment. When

θ = 0, exerting effort induces a purely non-monetary cost, the agent’s effort level and the up-

front payment received from the principal are not linked through the budget constraint, which

corresponds to B + T ≥ 0 here. This is entirely similar to the problem analyzed in Lewis and

Sappington (2000a,b, 2001). By contrast, when θ > 0, exerting effort induces a monetary cost:

the agent’s effort level and the up-front payment received from the principal are linked through

the budget constraint B+T ≥ θ e22 . The agent’s effort is then bounded above by

√
2(B+T )

θ . This

upper bound increases as the agent’s budget increases, as the transfer the agent receives from

the principal increases, and as the monetary cost θ decreases.9 A focus will be put on how the

7As in a notable part of the literature we consider that the parties’ outside options yield zero return. We will
discuss the robustness of our results when outside options yield positive returns in Section 5.

8Jelovac and Kembou-Nzale (2020) consider a similar type of problem in a joint production setting, where a
contract specifies a transfer from the principal to the agent and the principal’s input in the joint production.

9Unlike most models of financial contracts, which consider adverse selection problems and focus on issues of
risk sharing, the focus is on problems raised by potentially endogenous monetary investments in a moral hazard
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monetary cost affects the optimal contract compared to the benchmark case where θ = 0.

3 Analysis

We first characterize the first-best situation, as this will be the benchmark for the analysis.

3.1 The First-best Situation

The first best effort level maximizes the joint payoff of the agent and the principal:

Max
e≥0

J = eV − ψe
2

2
− θe

2

2
(1)

The interior solution is given by

eFB =
V

ψ + θ
(2)

Effort level eFB increases in project value V , and decreases in costs θ and ψ.

3.2 A Simplified Problem

Before characterizing the solution to problem (P0), let us introduce the simpler optimization

problem (P):

Max
T,w,e

EuP = e (V − w)− T, (P)

such that the following conditions hold:

e =
w

ψ + θ
, (IC)

EuA = ew +B + T − ψe
2

2
− θe

2

2
≥ B, (PC)

B + T ≥ θe
2

2
. (BC)

The difference with initial problem (P0) is that the budget constraint B+T ≥ θ e22 is consid-

ered independently from the incentive constraint. Now, we proceed in two steps to characterize

the solution to problem (P0). First, when the budget is large enough, we show that the princi-

pal induces the first-best outcome by using one out of two feasible contracts. Second, when the

budget is not too large, we show that the solution to (P0) is the same as that of problem (P).

We can then focus on this simplified setting to characterize the solution (see Appendix B).10

3.3 Optimal Management: Motivating versus Funding

We now assume that the effort is non contractible, and the agent faces budget constraint (BC).

setting. A moral hazard model of financial contracts is provided in Section 6 in Bester (1987), but it assumes
perfect competition between principals, risk-averse agents, and exogenous monetary investment.

10The approach follows a similar idea than the first-order approach (Mirrlees, 1976, Rogerson, 1985, Kirkegaard,
2017), with the difference that there is a new constraint on the agent’s side that must be accounted for.
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3.3.1 No Funding in Polar Cases

When the agent’s budget is large enough (above B2(θ), that we define below), the principal

induces the first-best outcome by relying on one of the two following options.11 First, the agent

could be made residual claimant for all returns from the project (w = V ), then the effort level

is first best (e = V
ψ+θ ) and the principal receives an up-front payment from the agent equal to

the expected surplus (T = −JFB = −1
2
V 2

ψ+θ < 0). In this case, the budget constraint is not

binding. Second, the principal could specify w =
(
ψ+θ
V

)
B + ψ

2

(
V
ψ+θ

)
and require a transfer

T = θ
2

(
V
ψ+θ

)2
− B.12 In this case the budget constraint is binding. Both options lead to the

same effort and the same payoffs for both parties. The budget constraint must be such that the

wealth of the agent is larger than the expected surplus gross of monetary cost:

B ≥ JFB + θ
(eFB)2

2
= eFBV − ψ (eFB)2

2
. (3)

Let B2(θ) denote the right hand side in (3). It can be written as follows:

B2(θ) =
ψ + 2θ

2

(
V

ψ + θ

)2

. (4)

Condition (3) holds when V is sufficiently low and the cost parameters are sufficiently large.

Intuitively, the expected surplus gross of monetary cost G = J + θ (e)
2

2 decreases when the value

of the project decreases and when the non monetary cost parameter ψ increases. Moreover,

since the agent bears the monetary cost, the optimal effort level (eFB = V
ψ+θ ) is lower than the

effort that maximizes the expected surplus gross of monetary cost (e = V
ψ ). Thus, the expected

surplus gross of monetary cost G increases when e increases at e = eFB. Since the first best

effort level eFB decreases when θ increases, G decreases when θ increases. So, when the mone-

tary cost is sufficiently large, the principal can implement the first best and there is no funding

T < 0. Thus, we obtain:

Proposition 1: If the agent’s budget is large enough (B ≥ B2(θ)) or, equivalently, if the

monetary cost is large enough (θ ≥ 0 if B ≥ V 2

2ψ and θ ≥ θ2 ≡
V 2−2ψB+V

√
V 2−2ψB

2B if B ≤ V 2

2ψ ),

the optimal up front payment is a transfer from the agent to the principal, T ∗ ≤ 0.

Hence, there is no funding when the monetary cost parameter is large enough. Combining this

result with the fact that the no-funding property also holds when θ = 0 (Lewis and Sappington

(2000a)),13 we can make the following observation:

Remark: There is no funding in the polar cases where θ = 0 or where θ is large enough.

In Subsection 3.3.2, we will show that no funding may also hold when θ is small.

11See Appendix B.
12This option is optimal provided B > B2(θ) so T ≤ 0 is satisfied.
13Indeed, when B < B2(θ), we have T = θ e

2

2
−B. Hence, if θ = 0 we have T = −B < 0.
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3.3.2 Funding

We now assume that B < B2(θ) holds. In this case, the budget constraint is necessarily binding,

T = θ e
2

2 − B, and the transfer from the principal to the agent covers the monetary cost net of

the agent’s wealth (see Appendix B). Notice that the incentive constraint can be replaced by

e = w
ψ+θ . The principal’s program can be rewritten as follows:

Max
e,w

EuP = eV − ψ + θ

2
e2 −

[
ew − ψ

2
e2 −B

]
, (P’)

such that the following conditions hold:

e =
w

ψ + θ
, (IC’)

EuA = ew − ψ

2
e2 ≥ B. (PC’)

The principal will receive a transfer from the agent if θ e
2

2 ≤ B holds. He will provide funding

if the monetary cost is larger than the agent’s wealth, θ e
2

2 > B. Compared to the first best

situation, the principal has incentives to choose a low bonus w to induce a low effort level and

in turn a low monetary cost, e∗ < eFB. We now define the following thresholds:

B1(θ) =
ψ + 2θ

2

(
V

2ψ + 3θ

)2

< B2(θ); B0(θ) =
θ

2

(
V

2ψ + 3θ

)2

< B1(θ).

The basic properties of the optimal contract are as follows:

Lemma 1: When B < B2(θ) holds, the optimal contract exhibits the following properties:

(i) Inefficiency: the effort exerted by the agent is strictly lower than the first best effort level,

0 < e∗ < eFB.

(ii) Shared returns: the optimal contract specifies the share of profits w∗ = ψ+θ
2ψ+3θV < V when

0 ≤ B < B1(θ) holds and w∗ = (ψ + θ)
√

2B
ψ+2θ < V when B1(θ) ≤ B < B2(θ) is satisfied.

(iii) Rents: the agent gets a strictly positive surplus when 0 ≤ B < B1(θ) while he does not get

any rent when B1(θ) ≤ B < B2(θ) is satisfied.

(iv) Funding: the up-front transfer is a payment from the principal to the agent (T ∗ > 0) only

when 0 ≤ B < B0(θ).

When the agent exerts the first-best effort level, the principal cannot ask for an up-front

payment larger than T = θ
2

(
eFB

)2 − B < 0, and the agent gets a large rent, which is not

optimal. When B1(θ) ≤ B < B2(θ) the optimal values of the bonus and of the transfer are

fully characterized by the binding participation and budget constraints.14 This explains why

the agent gets no rent unlike in the first sub-case. Notice that B1(θ) ≤ B ensures that the

agent’s participation constraint is binding, and B < B2(θ) ensures that the budget constraint is

binding. Due to the discussion provided in Lemma 1, the most important result is that funding

may be optimal (i.e. T ∗ > 0) when 0 ≤ B < B0(θ).
15 We now characterize the situations in

14When 0 ≤ B < B1(θ) holds the incentive part of the contract is increasing in the value of the project,
consistently with Holmstrom (1979).

15We show that this conclusion is not consistent with the classical notion of limited liability in Section 5.
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which this occurs. To do so, we first discuss how the optimal bonus is affected by a change in

the monetary cost.

Proposition 2: There exists a threshold θ1 satisfying 0 ≤ θ1 ≤ θ2 and such that, when the mon-

etary cost θ increases, the optimal bonus w∗ decreases for θ < θ1 and increases for θ1 < θ ≤ θ2.16

Figure 1: Monetary cost and incentives

θ

w∗

0 θ1

If constraint (PC’) is not binding, the optimal bonus is w∗ = ψ+θ
2ψ+3θV , which decreases when

θ increases. Indeed, the budget constraint (BC) is binding and the principal has to bear the

exceeding monetary cost (T = θ e
2

2 −B), thus he will choose to induce a lower effort level -using

a lower bonus- when the monetary cost is larger.

Using the incentive constraint (IC’), constraint (PC’) can be written as w ≥ w = (ψ + θ)
√

2B
ψ+2θ .

Thus, the bonus is bounded below, and the lower bound increases when θ increases. This result

is not due to the quadratic specification. Indeed, the incentive constraint characterizes the effort

level as a function of (w, θ), e(w, θ) = w
ψ+θ . The lower bound w is such that the participation

constraint is binding, EuA(w, e(w, θ)) = B. It then suffices to highlight that EuA(w, e(w, θ))

increases when the bonus increases, and that it decreases when the monetary cost increases.

Regarding the effect of the bonus, we know that e = w
ψ+θ , which is lower than e = w

ψ

that maximizes the agent’s expected surplus (EuA = ew − ψ
2 e

2). Since this expected surplus

is increasing for e up to w
ψ , this expected surplus increases when e increases as long as the

incentive constraint holds. As a consequence, the indirect effect ∂EuA

∂e
∂e
∂w is positive. Since the

direct effect ∂EuA

∂w is also positive, the overall effect is positive. Finally, it is easily checked that

EuA(w, e(w, θ)) decreases when the monetary cost θ increases. Indeed, an increase in θ affects

the agent’s expected surplus only through the effort level, and this indirect effect ∂EuA

∂e
∂e
∂θ is

negative. We also deduce that the participation constraint is not binding when the monetary

cost θ is sufficiently low (θ < θ1) and it is binding otherwise (θ1 < θ ≤ θ2).
17 Then, using

e∗ = w∗

ψ+θ and Proposition 2, when the budget constraint is binding while the participation

constraint is not binding (θ < θ1), the effort level decreases when θ increases. When both the

budget and the participation constraints are binding (θ1 < θ ≤ θ2), we know that the agent’s

expected surplus increases when the effort level increases. Moreover, when the participation

constraint is binding, the optimal bonus increases when θ increases. All together, the optimal

16Formally, B < B1(θ) and θ ≥ 0 ⇔ 0 ≤ θ < θ1 and B < V 2

8ψ
, where θ1 =

V 2−12ψB+V
√
V 2−6ψB

18B
.

17Recall that the case in which the monetary cost is larger than θ2 has been studied in the previous section. In
this case, the participation constraint is binding while the budget constraint is not.
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effort decreases when θ increases, so that the participation constraint remains binding. Thus,

the effect of a larger θ on T ∗ = θ (e
∗)2

2 −B is non-monotonic. We obtain:

Proposition 3: When B < B2(θ) holds, funding is optimal (i.e. T ∗ > 0) if and only if

the agent’s wealth is sufficiently small and the monetary cost is neither too low nor too high:

B < V 2

48ψ and

V 2 − 24Bψ − V
√
V 2 − 48Bψ

36B
< θ <

V 2 − 24Bψ + V
√
V 2 − 48Bψ

36B
. (5)

When the monetary cost parameter is small enough, the agent can cover the full monetary

cost of the project. When the monetary cost parameter is sufficiently large, the principal has

sufficiently strong incentives to decrease the monetary cost through a decrease in the agent’s

share of profits, which allows him to cover the full monetary cost of the project (B ≥ θ (e
∗)2

2 ).

When the monetary cost parameter value is neither too low nor too high, the principal’s incen-

tives to decrease the monetary cost of the project are not as strong, and he will provide funds

(see Figure 2).

Figure 2: Monetary cost and funding

B1

T∗ > 0

0
θ

B

Before moving on to the next subsection, we finally characterize the cases where funding or no

funding occurs. Indeed
V 2−24Bψ−V

√
V 2−48Bψ

36B is positive whenever B < V 2

48ψ is satisfied. Moreover

V 2−24Bψ+V
√
V 2−48Bψ

36B < θ1 holds as this is equivalent to V 2 + 2V
√
V 2 − 6ψB > V

√
V 2 − 48ψB

which always holds whenever B ≤ V 2

48ψ is satisfied. All together, we have:

0 <
V 2 − 24Bψ − V

√
V 2 − 48Bψ

36B
<
V 2 − 24Bψ + V

√
V 2 − 48Bψ

36B
< θ1 < θ2

Combining Propositions 1 and 3, we thus conclude that no funding occurs when: the budget

is large enough (B ≥ V 2

48ψ ); the budget and the monetary cost are small enough (B < V 2

48ψ and

θ ≤ V 2−24Bψ−V
√
V 2−48Bψ

36B ); the budget is small enough and the monetary cost is sufficiently

large (B < V 2

48ψ and θ ≥ V 2−24Bψ+V
√
V 2−48Bψ

36B ).

3.4 The effect of the project value

Given that the optimal contract stipulates, in some cases, an up-front payment to the agent and

a bonus payment, we analyze the effect of the project value on the optimal contract.

Proposition 4: (i) If θ ≥ θ2, optimal incentives and transfer to the agent are “substitutes”

as regards the value of the project: incentives increase, and transfer decreases, as this value

9



increases. Formally, ∂wFB

∂V > 0 and ∂TFB

∂V < 0.

(ii) If θ < θ2, optimal incentives and transfer to the agent are “complementary” as regards the

value of the project: as this value increases, the incentives and the transfer increase. Formally,
∂w∗

∂V ≥ 0 and ∂T ∗

∂V ≥ 0.

When the budget constraint is binding, both the agent’s share of profits and the transfer

from the principal to the agent increases with the value of the project. When the value of the

project increases, the marginal value of effort increases. Thus the principal induces a larger

effort from the agent which in turn generates a larger monetary cost. Since the agent’s budget

constraint is binding, the principal has to make a larger transfer to the agent.

3.5 Welfare Effects

We now analyze how changes in the magnitude of monetary costs affect the surplus distribution.

Proposition 5: A larger θ has a negative effect on the surplus of both parties.

When θ2 ≤ θ the principal gets the full surplus EuP = JFB = 1
2
V 2

ψ+θ , which decreases when θ

increases. When θ ≤ θ2, the principal’s surplus decreases when θ increases, and this property is

fairly general. Indeed, this expected surplus can be defined as EuP (w, e(w, θ), θ) = e(V −w)−θ e22
where e(w, θ) = w

ψ+θ . Hence, the optimal bonus w∗ is such that the optimality condition
∂EuP

∂w + ∂EuP

∂e
∂e
∂w=0 is satisfied. We moreover know that ∂e

∂w > 0 and ∂EuP

∂w < 0, and then
∂EuP

∂e > 0. Thus, an increase in θ has a direct effect and an indirect effect (through the effect of

θ on the effort level) on the principal’s expected surplus, which are both negative.

When θ2 ≤ θ or θ1 < θ ≤ θ2, the agent gets no rent. When θ < θ1 the agent’s expected

surplus decreases when θ increases, and this property is fairly general. Indeed, an increase in

θ has two indirect effects on expected surplus EuA(w∗, e∗) = e∗w∗ − ψ (e∗)2

2 . The first indirect

effect goes through e∗ and we know that it is negative. The second indirect effect goes through

w∗, and is given by ∂EuA

∂w∗
∂w∗

∂θ which, using Proposition 2, is known to be negative. All together,

the agent’s expected surplus decreases when θ increases.

4 Policy Implications

The implications of the analysis apply generically to situations where the agent’s action involves

unverifiable monetary costs, which is the case for many important settings. We first notice

that our model provides implications for the emergence of outside financing. Another empirical

implication is that outside financing is more frequent when the interest rate is neither too low

nor too high. Now, we choose to describe most of the implications of the analysis in the context

of the design of payments for environmental services18 for expositional simplicity, and because

this is getting increasing attention in discussions related to corporate social responsibility.

Payments for Environmental Services (PES) are contracts stipulating conditional payments

to resource owners, which are effective if pre-defined conservation targets are achieved. Our

model can be reinterpreted in the context of PES as follows. A forest owner (the agent) contracts

18See Alix-Garcia and Wolff (2014) for a survey.
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with a private company or a Non-Governmental Organization (the principal) on a given share

of land over a given period of time.19 The organization values the plot of land, and the value of

the project corresponds here to the organization benefit if the plot of forest is conserved during

the period of time (its value is zero if the plot of forest is not conserved). Ex-ante, there is a

given number of trees on this land, which is (imperfectly) measured thanks to satellite imagery

or to an expert visual evaluation. The contract stipulates that the forest owner receives an

up-front payment and gets an additional payment if the plot of land under contract is detected

as conserved at the end of the period.20 Some trees can be removed because of accidental fire or

unexpected tree disease, and some trees can also be cut by the forest owner.21 It may be difficult

and costly to assess whether trees were destroyed because of natural hazard or because of the

owner’s will. The owner chooses the number of trees that he cuts during the given period of

time, and the remaining trees are conserved: he thus chooses the magnitude of his conservation

effort. The owner gets a benefit from cutting trees, and must get incentives to conserve any

number of them. The probability that the plot of land is declared to be “conserved” (thus, that

the outcome of the project is successful) increases with the number of trees conserved. A typical

owner is often financially constrained: he has a limited level of wealth, but needs to use some

amount of money in order to live during the period covered by the contract. The owner may

also need to switch to other economic activities (e.g. intensive farming), which requires buying

capital (production technologies) and/or acquiring specific knowledge related to these economic

activities. If the owner does not accept the contract, he cuts the forest and consumes his wealth.

Within this setting we now discuss the issue of effective program design. Indeed, since forest

owners face monetary opportunity costs, their level of wealth is constrained and may restrict the

range of conservation actions they can undertake. As explained in Jayachandran (2013), a major

drawback is that this instrument does not take into account the short-term large opportunity

costs that liquidity constrained forest owners may face. However, Alix-Garcia and Wolff (2014)

argue that contracts vary from 5 years in Mexico to 20 years in Ecuador, and that PES programs

tend to pay at the end of each contract year and not at the end of the contract. In the present

setting, there is a possibility that the funding organization provides wealth-constrained owners

with funding at the outset of the relationship. Our findings support the statement that it is

in the best interest of the organization involved in the program to offer a contract stipulating

both (i) revenue sharing and (ii) a positive transfer at the outset of the relationship to owners

characterized by low levels of wealth. However, Proposition 3 provides an argument for limiting

the use of up-front payments to situations in which the interest rate is neither too low nor too

high. Furthermore, our results also imply that an increase in the interest rate - depending on

its initial level - may lead to an increase or to a decrease in the optimal additional payment.

19The discussion is consistent for the generic case of a natural resource.
20Regarding end-of-period payments, we refer to Munoz-Pina et al. (2008).
21For instance, in Brazil, farmers convert forests into cattle pasture land (Simonet et al., 2018).
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5 Discussions

5.1 Limited liability

Lemma 1 shows that a mix of incentives and funding may be optimal. We now show that this is

incompatible with the classical notion of limited liability. We consider the same setting except

that there is no monetary cost and we assume limited liability: the size of the financial transfer

(in case money is transferred from the agent to the principal) is bounded from above. This

is the version of limited liability that allows for a meaningful comparison: if one assumes that

the agent simply cannot transfer money to the principal, then we rule out the possibility that

funding would emerge endogenously. The principal’s problem is thus as follows:

Max
T,w,e

EuF = e (V − w)− T, (P)

e ∈ arg max
e≥0

{
ew +B + T − ψe

2

2

}
, (IC)

ew +B + T − ψe
2

2
≥ B, (PC)

T +B ≥ −t̄ (BC)

where t̄ > 0 denotes the agent’s liability limit. We obtain here:

Proposition 6: Under limited liability, it is not optimal for the principal to provide funding,

that is: T ∗ ≤ 0 is always satisfied.

This result highlights a notable difference with the classical notion of limited liability: this

weak notion of limited liability is incompatible with the optimality of a mix of incentives and

funding. The main difference is that the existence of a monetary cost makes the budget constraint

binding at the optimal contract, and the transfer becomes an endogenous function of the agent’s

wealth: for sufficiently low budget levels, the optimal contract stipulates funding.

5.2 What if the agent could borrow money from the principal?

One way to relax the wealth constraint is to allow the agent to borrow from the principal. If this

is possible,22 what if the agent can repay the borrowed money after getting the bonus? We now

explain that this additional option does not change the findings of our analysis. Let us consider

that the agent can borrow money from the principal. The agent gets some fund at the outset of

the project and may have to make a monetary transfer to the principal at the end of the project.

This specific transfer may be conditional on the success or failure of the project. Let us denote

Rs ≥ 0 and Rf ≥ 0 the amount of money the agent has to repay the principal ex-post if the

project succeeds or fails, respectively. In this case, the principal has to take the agent’s ex-post

budget constraint into account. Then, it is easily checked that, redefining the bonus and the

transfer from the principal to the agent as w′ ≡ w − (Rs − Rf ) and T ′ ≡ T − Rf and noticing

that, as long as w′ ≥ 0 is satisfied, which is valid under our assumptions (otherwise the agent

22In cases where institutions are weak, it may be quite difficult to ensure repayments of borrowed money, and
this might severely restrict the option to borrow.
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would not exert effort), the more stringent budget constraint is the ex-post budget constraint

when the project fails. The principal’s objective function, the participation and the incentive

constraints can also be rewritten using w′ and T ′ instead of w and T . It is then easily checked

that the principal’s problem is identical to the one introduced in the body of the article.

5.3 Self-funding as an outside option

So far the principal-agent relationship is exogenously given. This might be true if the relationship

occurs within a given organization, or when the principal brings not only money but certain

knowledge skills. The agent cannot initiate the project on his own: his outside option is equal to

zero. By contrast, if the principal only brings money, then the relationship must be voluntarily

chosen by the agent when he has positive initial wealth: indeed, he could rely on it to fund his

project. Would the agent not be better off starting the project with just the effort afforded by

his own wealth, instead of going to contract with a principal who will extract rents from him?

If the agent relies on self-funding, his problem is

Max
e≥0

EuA = eV +B − ψe
2

2
− θe

2

2

such that B ≥ θ e
2

2 holds. The solution is then given by eSF =
√

2B
θ when B < θ

2

(
V
ψ+θ

)2
is

satisfied and by eSF = V
ψ+θ = eFB when B ≥ θ

2

(
V
ψ+θ

)2
is satisfied. If self-funding constitutes

the outside option, the participation constraint writes as follows:

ew + T +B − ψ

2
e2 − θ

2
e2 ≥

√
2B

θ

[
V − ψ

2

√
2B

θ

]

when B < θ
2

(
V
ψ+θ

)2
is satisfied, and

ew + T +B − ψ

2
e2 − θ

2
e2 ≥ V 2

2 (ψ + θ)
+B

when B ≥ θ
2

(
V
ψ+θ

)2
holds. We obtain the following result:

Proposition 7: The optimal contract (w∗, T ∗) is characterized as follows:

• For B < θ
2

(
V
ψ

)2 [
1−
√

(2ψ+3θ)2−ψ(ψ+2θ)
2ψ+3θ

]2
w∗ = ψ+θ

2ψ+3θV and T ∗ = θ
2

(
V

2ψ+3θ

)2
−B > 0

• For B ∈] θ2

(
V
ψ

)2 [
1−
√

(2ψ+3θ)2−ψ(ψ+2θ)
2ψ+3θ

]2
, θ2

(
V
ψ+θ

)2
[ we have

w∗ = (ψ + θ)
√

2
ψ+2θ

(√
2B
θ

[
V − ψ

2

√
2B
θ

]) 1
2

and T ∗ = θ
2

2
ψ+2θ

√
2B
θ

[
V − ψ

2

√
2B
θ

]
−B > 0

• Finally, for B ≥ θ
2

(
V
ψ+θ

)2
we have w∗ = V and no transfer T ∗ = 0

Thus funding occurs except when the agent’s budget level is sufficiently high. This conclu-

sion would be qualified if the principal’s outside option would provide positive returns. Cases
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where self-funding would define the agent’s outside option provides him with a notable bargain-

ing advantage. The conclusions provided by the two conceptual settings considered here yield

interesting insights, even more so if real-world cases actually lie in between these two settings.

Indeed, both parties may have bargaining power in the contract definition process.

6 Conclusion

We analyze a contracting problem within a moral hazard setting where the agent’s effort induces

both monetary and non-monetary costs. We obtain several novel results with policy design

implications, such as the optimality of outside financing for intermediate values of the monetary

cost, or the non-monotonic effect of this cost on the incentive part of the optimal contract.

This article opens up avenue for further research. Analyzing the case of a risk-averse agent

(Holmstrom, 1979) constitutes a challenging next step of this research project: it would be

interesting to assess how the usual trade-off between insurance and incentives would be affected

in our setting.23 Extending our analysis to a dynamic setting would be interesting as well.

23We thank a referee for this suggestion.
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Appendix A: Proofs

Proof of Proposition 1: Using Appendix B, we know that when B ≥ B2(θ), we have

T ∗ ≤ 0. Moreover, one can easily show that B ≥ B2(θ) is equivalent to θ ≥ 0 if B ≥ V 2

2ψ and

θ ≥ θ2 ≡
V 2−2ψB+V

√
V 2−2ψB

2B if B ≤ V 2

2ψ .

Proof of Lemma 1: Let us first consider the case where 0 ≤ B < B1(θ) is satisfied. We first

prove the following property:

Property 1: If the agent’s wealth level satisfies 0 ≤ B < B1, the optimal contract is such that the

bonus for success, w∗, is given by w∗ = ψ+θ
2ψ+3θV , the up-front payment from the principal to the

agent is T ∗ (B) = θ
2 (e∗)2 −B, and the agent’s effort level is e∗ = w∗

ψ+θ = V
2ψ+3θ < eFB.

Proof of Property 1: Assume that e (V − w) − T ≥ 0 and B < e∗w∗ − ψ
2 (e∗)2. We have that

e∗ > 0, the principal’s problem can then be written as

Max
e,w

EuP = e (V − w)− θ

2
e2 +B, (6)

such that e = w
ψ+θ since w∗ > 0 is satisfied. We thus have EuP = w

ψ+θ (V − w)− θ
2

(
w
ψ+θ

)2
+B.

Let us show that w∗ < V . If w∗ ≥ V then the objective function EuP is decreasing in w∗, which

is a contradiction. Hence, w∗ < V . The principal’s problem can then be rewritten as follows:

max
w∈[0,V ]

EuP =
w

ψ + θ
(V − w) +B − θ

2

(
w

ψ + θ

)2

. (7)

Given that EuP is strictly concave and the maximum is not reached for 0 or V , the optimality

condition yields w∗ = ψ+θ
2ψ+3θV . The principal’s payoff is EuP∗ = w∗

ψ+θ (V − w∗) − θ
2

(
w∗

ψ+θ

)2
+

B = 1
2

V 2

2ψ+3θ + B, which is positive. The initial assumption that B < e∗w∗ − ψ
2 (e∗)2 =

ψ+2θ
2

(
V

2ψ+3θ

)2
= B1(θ) is without loss of generality. First notice that, if B > B1(θ), then

we must have w∗ = V , which is impossible. Second, let us show that an optimal contract cannot

yield B = e∗w∗ − ψ
2 (e∗)2. We have to show that the principal’s expected surplus is larger when

he chooses contract (w∗, T ∗) rather than contract (w̃, T̃ ) defined by w̃
ψ+θ w̃ −

ψ
2

(
w̃
ψ+θ

)2
= B

and T̃ = θ
2

(
w̃
ψ+θ

)2
− B. If the principal chooses contract (w̃, T̃ ) then its surplus is ẽV − θ

2 (ẽ)2

with ẽ = w̃
ψ+θ . In the proof of Property 2, we show that the principal’s surplus is continuous

at B = B1. It is then sufficient to prove that the derivative of ẽV − θ
2 (ẽ)2 with respect to

B is strictly larger than the derivative of EuP∗ with respect to B for all B < B1(θ). Using

ẽw̃ − ψ
2 (ẽ)2 = B and ẽ = w̃

ψ+θ , we obtain that the derivative of ẽV − θ
2 (ẽ)2 with respect to B

is strictly larger than one if and only if 1√
2(ψ+2θ)B

[
V − θ

√
2B
ψ+2θ

]
> 1. This inequality holds

for B < B1(θ). Indeed, when B = B1(θ), the left hand side term equals 1 + ψ
ψ+2θ . Moreover,

the left hand side term is strictly decreasing in B. Hence, if 0 ≤ B < B1(θ), then the principal

proposes w∗ and T ∗ = θ
2

(
w∗

ψ+θ

)2
−B. This concludes the proof of the first property.

Points (i) and (ii) follow from Property 1. Point (iv) follows from the proof of Property 1, as
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we know that T ∗ = θ
2

(
w∗

ψ+θ

)2
− B, which is strictly positive if and only if B < B0(θ). Now let

us consider point (iii). From the proof of Property 1, we know that the participation constraint

(PC) is not binding, thus we have EuA∗ > B.

This concludes the proof of the first sub-case. Let us now consider that B1(θ) ≤ B < B2(θ)

is satisfied. We first prove the following property:

Property 2: If the agent’s wealth level is intermediate, B1(θ) ≤ B < B2(θ), the principal offers

a contract such that both the budget and the participation constraints are binding. Moreover,

the optimal effort level is ẽ = w̃
ψ+θ , the optimal transfer is T̃ = θ

2

(
w̃
ψ+θ

)2
− B, and the optimal

bonus is characterized by equality w̃
ψ+θ w̃ −

ψ
2

(
w̃
ψ+θ

)2
= B, or w̃ = (ψ + θ)

√
2B
ψ+2θ .

Proof of Property 2: We have B1(θ) ≤ B < B2(θ). Assume that e (V − w) − T ≥ 0. If

B < ẽw̃ − ψ
2 (ẽ)2, we know from the proof of Property 1 that we must have B < B1(θ), which

is a contradiction. If B > ẽw̃ − ψ
2 (ẽ)2, we know from the proof of Lemma 1 that we must

have B > B2(θ), which is a contradiction. Now assume that ẽw̃ − ψ
2 (ẽ)2 = B. Using the

incentive constraint, we have ẽ = w̃
ψ+θ . Using the budget constraint, we have T̃ = θ

2

(
w̃
ψ+θ

)2
−B.

Moreover, in this case w̃ is characterized by w̃
ψ+θ w̃−

ψ
2

(
w̃
ψ+θ

)2
= B and so w̃ = (ψ + θ)

√
2B
ψ+2θ .

It remains to show that the principal’s surplus is non negative, i.e. ẽ (V − w̃) − T̃ ≥ 0. Let us

first show that the principal’s payoff is continuous at B = B1(θ). When B = B1(θ), we have

w̃
ψ+θ w̃−

ψ
2

(
w̃
ψ+θ

)2
= B1(θ), which is equivalent to w̃

ψ+θ w̃−
ψ
2

(
w̃
ψ+θ

)2
= w∗

ψ+θw
∗ − ψ

2

(
w∗

ψ+θ

)2
. So

we must have w∗ = w̃ and then T ∗ = T̃ , e∗ = ẽ and then the principal’s payoff is continuous

at B = B1(θ). Now let us show that the principal’s payoff is continuous at B = B2(θ). When

B → B2(θ), we have w̃
ψ+θ w̃ −

ψ
2

(
w̃
ψ+θ

)2
→ B2(θ), or w̃

ψ+θ w̃ −
ψ
2

(
w̃
ψ+θ

)2
→ V

ψ+θV −
ψ
2

(
V
ψ+θ

)2
.

Notice that the derivative of x
ψ+θx −

ψ
2

(
x

ψ+θ

)2
with respect to x is positive. Hence , when

B → B2(θ), we have w̃ → V , ẽ→ eFB, T̃ → TFB and then the principal’s payoff is continuous

at B = B2(θ). Now, since w̃ is strictly increasing in B we have w∗ ≤ w̃ ≤ V . Finally, let us show

that the principal’s payoff is strictly increasing in B. It can be written as w̃
ψ+θV −

θ
2

(
w̃
ψ+θ

)2
.

The derivative of this expression with respect to B is given by dw̃
dB

V (ψ+θ)−θw̃
(ψ+θ)2

, which is positive

(as dw̃
dB > 0 holds). Since the principal’s surplus is strictly positive for B = B1(θ), it is strictly

positive for B1(θ) ≤ B < B2(θ). This concludes the proof of the second property.

The results related to the second sub-case follow from the proof of Property 2.

Proof of Proposition 4: To prove point (i), we note that ∂TFB

∂V = −eFB < 0 while ∂WFB

∂V > 0

follows from the characterization of optimal incentives. Point (ii) is immediate. Point (iii) is

immediate from Propositions 1 and 2.

Proof of Proposition 5: The result follows from the definition of both parties’ surpluses.

Proof of Proposition 6: Since the principal’s payoff decreases with the up-front payment,

the principal may decrease the level of the up-front payment as long as the participation and

bounded payment constraints are not binding. Thus, we have

T ∗ = max

{
−
[
ew − ψ

2
e2
]
,−B − t̄

}
. (8)
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The principal’s problem can then be rewritten as follows

Max
w,e

EuP = e (V − w)−max

{
−
[
ew − ψ

2
e2
]
,−B − t̄

}
, (9)

e ∈ arg max
e≥0

{
ew − ψ

2
e2
}
. (10)

Case w∗ ≤ 0 is non-optimal, and case where e∗ = 0 is not optimal either.

We have two cases to consider. First, if −
[
ew − ψ

2 e
2
]
≤ −B−t̄ then T ∗ = −B−t̄ < 0 and the

conclusion follows. We now consider that −
[
ew − ψ

2 e
2
]
≥ −B − t̄ holds, so T ∗ = −

[
ew − ψ

2 e
2
]

holds. The principal’s problem is:

Max
w,e

EuP = eV − ψ

2
e2 (11)

e ∈ arg max
e≥0

{
ew − ψ

2
e2
}
. (12)

and

−
[
ew − ψ

2
e2
]
≥ −B − t̄ (13)

We obtain from (12) that e∗ = w
ψ holds. Then, condition (13) can be rewritten as w ≤√

2ψ (B + t̄). Finally, denoting λ and µ the Lagrangian parameters associated to the principal’s

maximization program, we obtain the following optimality condition:

V − w∗

ψ
+ λ− µ = 0

We deduce easily that λ = 0 as w∗ > 0 necessarily; moreover, if µ > 0 then w∗ =
√

2ψ (B + t̄)

and T ∗ = −B − t̄ < 0 necessarily, which would conclude the proof. The last case to consider is

the case λ = 0 = µ which yields w∗ = V and T ∗ = −V 2

2ψ < 0 holds. This concludes the proof.

Proof of Proposition 7: Let us first consider the case where B < θ
2

(
V
ψ+θ

)2
is satisfied. As

in the proof of Proposition 1 it is deduced that the optimal transfer is T = θ
2e

2 −min{B,B −
ψ
2 e

2 + ew −
√

2B
θ

[
V − ψ

2

√
2B
θ

]
} and then there are different cases to consider.

First, if B < B− ψ
2 e

2+ew−
√

2B
θ

[
V − ψ

2

√
2B
θ

]
holds at the optimal contract, then the proof

of Proposition 1 yields e∗ = w∗

ψ+θ with w∗ = ψ+θ
2ψ+3θV due to the optimality condition derived from

the principal’s expected payoff e∗ (V − w∗)− θ
2 (e∗)2+B and we obtain that EuP = 1

2
V 2

2ψ+3θ+B >

0 is satisfied. But then we need to check that B < B − ψ
2 (e∗)2 + e∗w∗ −

√
2B
θ

[
V − ψ

2

√
2B
θ

]
holds, that is, √

2

θ

√
BV − ψ

θ
B − ψ + 2θ

2

(
V

2ψ + 3θ

)2

< 0

Denoting X :=
√
B this inequality can be rewritten as√

2

θ
V X − ψ

θ
X2 − ψ + 2θ

2

(
V

2ψ + 3θ

)2

< 0
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Solving for X, this is satisfied if and only if either X < X =
√

θ
2
V
ψ

[
1−
√

(2ψ+3θ)2−ψ(ψ+2θ)
2ψ+3θ

]
or

X > X̄ =
√

θ
2
V
ψ

[
1 +

√
(2ψ+3θ)2−ψ(ψ+2θ)

2ψ+3θ

]
holds. Since X <

√
θ
2

V
ψ+θ necessarily holds, we deduce

that X > X̄ cannot hold as X̄ ≥
√

θ
2

V
ψ+θ and X ≤

√
θ
2

V
ψ+θ ensures that we have

√
B < X,

which concludes the first sub-case.

Now consider the case where B ∈ [ θ2

(
V
ψ

)2 [
1−
√

(2ψ+3θ)2−ψ(ψ+2θ)
2ψ+3θ

]2
, θ2

(
V
ψ+θ

)2
[ holds. If

now B ≥ B − ψ
2 e

2 + ew −
√

2B
θ

[
V − ψ

2

√
2B
θ

]
holds at the optimal contract, then the proof of

Proposition 1 yields e∗ = w∗

ψ+θ with w∗ = V due to the optimality condition derived from the

principal’s expected payoff e∗V − θ
2 (e∗)2− ψ

2 (e∗)2 +B−
√

2B
θ

[
V − ψ

2

√
2B
θ

]
and we obtain that

EuP = V 2

2(ψ+θ) + ψ+θ
θ B −

√
2B
θ V > 0 holds. But then we need to check that B ≥ B − ψ

2 (e∗)2 +

e∗w∗ −
√

2B
θ

[
V − ψ

2

√
2B
θ

]
holds, that is,

−
√

2

θ

√
BV +

ψ

θ
B +

ψ + 2θ

2

(
V

ψ + θ

)2

≤ 0

Denoting X :=
√
B this inequality can be rewritten as

−
√

2

θ
V X +

ψ

θ
X2 − ψ + 2θ

2

(
V

ψ + θ

)2

≤ 0

Solving for X, this is satisfied only if X > X =
√

θ
2
V
ψ

[
1− θ

ψ+θ

]
=
√

θ
2

V
ψ+θ . Since X <

√
θ
2

V
ψ+θ

holds, we obtain a contradiction.

All together these conclusions imply that, whenB ∈ [ θ2

(
V
ψ

)2 [
1−
√

(2ψ+3θ)2−ψ(ψ+2θ)
2ψ+3θ

]2
, θ2

(
V
ψ+θ

)2
[

holds, both the participation and the budget constraints bind. Thus T ∗ = θ
2

(
w̃
ψ+θ

)2
− B and

w∗ satisfies:
ψ + 2θ

2

(
w∗

ψ + θ

)2

=

√
2B

θ

[
V − ψ

2

√
2B

θ

]

We obtain w∗ = (ψ + θ)
√

2
ψ+2θ

(√
2B
θ

[
V − ψ

2

√
2B
θ

]) 1
2

and T ∗ = θ
2

2
ψ+2θ

√
2B
θ

[
V − ψ

2

√
2B
θ

]
−

B is positive. Tedious algebra allows to check that the principal’s expected payoff is non-negative.

This concludes the proof of case B < θ
2

(
V
ψ+θ

)2
.

Finally, when B ≥ θ
2

(
V
ψ+θ

)2
, the optimal transfer is T ∗ = θ

2e
2−min{B, ew− ψ

2 e
2− V 2

2(ψ+θ)}

and if B ≤ ew− ψ
2 e

2− V 2

2(ψ+θ) would be satisfied then w∗ = ψ+θ
2ψ+3θV and e∗ = w∗

ψ+θ but then it is

easily checked that B ≤ e∗w∗ − ψ
2 (e∗)2 − V 2

2(ψ+θ) is not satisfied, which is a contradiction. Thus

B > ew− ψ
2 e

2− V 2

2(ψ+θ) and w∗ = V due to the optimality condition derived from the principal’s

expected payoff e∗V − (w∗)2

2(ψ+θ) −
V 2

2(ψ+θ) where e∗ = w∗

ψ+θ . Condition B > e∗w∗ − ψ
2 (e∗)2 − V 2

2(ψ+θ)

is then equivalent to B > θ
2

(
V
ψ+θ

)2
which holds by assumption. The optimal transfer is T ∗ =
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θ
2

(
V
ψ+θ

)2
−
[
V 2

ψ+θ −
ψ
2

(
V
ψ+θ

)2
− V 2

2(ψ+θ)

]
= 0.

Appendix B: Link between problem (P) and problem (P0).

Let us focus on the incentive constraint (IC0) and forget the constraint e ≥ 0 for now. The

Lagrangian of this problem is:

L = ew +B + T − ψe
2

2
− θe

2

2
+ λ

(√
2(B + T )

θ
− e

)
. (14)

The necessary conditions, which are also sufficient, are:

w − (ψ + θ)e− λ = 0, (15)

λ(

√
2(B + T )

θ
− e) = 0, (16)

λ ≥ 0. (17)

These conditions can be used in problem (P0) instead of (IC0). If λ > 0 then

√
2(B+T )

θ = e <
w
ψ+θ holds necessarily. Coming back to the principal’s program the optimality conditions then

yield that (PC0) is necessarily binding. This in turn implies√
2(B + T )

θ
w + T − ψ + θ

θ
(B + T ) = 0

so we obtain w =
√

θ
2(B+T )

(ψ+θ)B+ψT
θ . There are two cases to consider here. If (ψ + θ)(B +

T ) + θT ≥ 0, then w < (ψ + θ)

√
2(B+T )

θ which can be satisfied only when λ > 0 is not satisfied.

Now, if (ψ + θ)(B + T ) + θT < 0 then the principal’s objective function is:

EuP =

√
2(B + T )

θ
V − ψ + θ

θ
B − ψ + θ

θ
T.

It reaches its maximum value when T = θ
2

(
V
ψ+θ

)2
− B. The incentive-part of the scheme is

w =
(
ψ+θ
V

)
B + ψ

2

(
V
ψ+θ

)
, and using (ψ + θ)(B + T ) + θT < 0 we obtain B > ψ+2θ

2

(
V
ψ+θ

)2
.

There is another candidate for the optimal contract in this case. Indeed, when λ = 0 and

the constraint holds, we know that the principal makes the agent residual claimant (w = V ) and

ask him a lump sum transfer that is equal to the first best joint surplus (T = −JFB = −1
2
V 2

ψ+θ ).

Notice that the budget constraint thus holds only if B ≥ ψ+2θ
2

(
V
ψ+θ

)2
.

These two options yield the same effort level and payoffs to both parties. If B < ψ+2θ
2

(
V
ψ+θ

)2
we must have λ = 0 and we thus conclude that problems (P0) and (P) yield the same solution

in this case.
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