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AbstrAct
An on-farm research network is an organization of farmers that 
conducts agronomic experiments under local conditions. It is 
common that an elementary statistical analysis be conducted 
for individual studies. However, there is unexplored potential 
in detecting yield response variability patterns for better deci-
sion making. We developed a data-analytics framework and 
web-application program that allows users to analyze multiple 
studies that use a common protocol and can identify the condi-
tions where an imposed treatment may or may not be effective. 
The development of this data-analytics framework is needed to 
improve predictions at the farm level that can lead to more cost-
effective, sustainable and environmentally sound agricultural 
production. Data visualization is an important part of data-
analytics. In this paper, we have developed and tested a Bayesian 
hierarchical model that can be used to assess the general agro-
nomic performance of different management practices. Deci-
sion making related to new management practices should be 
based on the complete evidence, local conditions and economic 
considerations. The web-application includes dynamic data 
visualization features to enhance communication and sharing 
of information with the goal to reach a broader audience.

core Ideas
•	 We develop a data-analytics framework and web-application for 

on-farm research trials.
•	 A Bayesian hierarchical model quantifies the uncertainty in yield 

response.
•	 The model helps assess alternative practices, products, and technolo-

gies among trial locations.
•	 The framework provides a reactive break-even economic analysis of 

alternative management practices.

An IntroductIon to on-
FArM reseArch netWorK

A farmer network is an organization of farmers who exchange 
experiences, share their knowledge, and test important questions 
using common protocols and commercially available field equip-
ment (Matthewson et al., 2013). There is increasing interest in 
On-Farm Research Networks (OFRNs) because they provide 
the infrastructure needed to test new products and management 
practices in farmers’ fields (Kyveryga et al., 2018). In addition, 
data from these experiments can be used to validate simulation 
models and determine the economic profitability of new technol-
ogies. Within this infrastructure, the most common design is to 
compare a new management practice (e.g., seeding rate, row spac-
ing, new pest and disease treatments) to a standard farmer prac-
tice. This new generation of OFRNs can help farmers improve 
their productivity, efficiency and profitability (Pruss et al., 2005; 
Moayedi and Azizi, 2012) and, create a novel communication 
platform between farmers, agronomists, and scientists.

deVeLoPInG reseArch netWorKs
Farmer networks can arise from diverse motivations and they 

can start by recruiting cooperating farmers and defining the 
network’s missions. Once a group of farmers is identified, the 
next important step is to define a problem and research question 
(Kyveryga et al., 2018). The question should be simple enough 
to be approached through standard experimental designs and 
executed using farmers’ available equipment. The collaboration 
among farmers, researchers, local agronomists or crop consultants 
makes the implementation of common experiments and protocols 
possible by defining the number of treatments, the variables to be 
measured (e.g., crop yield, grain moisture and protein content), 
and the experimental design. Usually, scientists or research agron-
omists assist farmers with data collection, data analysis, interpre-
tation and communication of results to the general public.

Analyzing data Across experiments

Increasingly, scientists and farmers are using on-farm test-
ing as an approach to build locally adapted recommendations. 
However, the scientific community is challenged with combin-
ing results from studies conducted on different soils and climatic 
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conditions. Integrating yield and climatic data has the potential 
to improve recommendations. For example, Kyveryga et al. 
(2013a) combined on-farm, weather and soil data to analyze the 
risk of yield losses resulting from a reduction of farmer normal 
N fertilizer rates applied to corn (Zea mays L.). Bissonnette et al. 
(2018) used on-farm data from 18 strip-trial experiments located 
in the northern half of Iowa over 3 yr to study the effect of nema-
ticide seed treatment, Clariva Complete Beans (CCB) (Pasteuria 
nishizawae, sedaxane, thiamethoxam, fludioxonil and mefenoxam 
as active ingredients) compared with CruiserMaxx Advanced 
plus Vibrance (CMV) (thiamethoxam, mefenoxam, fludioxonil 
and sedaxane as active ingredients), on soybean cyst nematode 
(Heterodera glycines) reproduction and soybean [Glycine max (L.) 
Merr.] yield. They found that CCB seed treatment had a vari-
able effect on soybean cyst nematode reproduction and soybean 
yield. Kyveryga et al. (2013b) analyzed data from 282 on-farm 
strip-trial experiments across Iowa over 5 yr of experimentation 
to identify when a foliar application of pyraclostrobin fungicide 
produced profitable soybean yield responses. They found that 
greater yield responses were observed for trials that received more 
than 30.5 cm of cumulative March through May rainfall.

To our knowledge, most of the existing OFRNs are based in 
the United States and led by public institutions such as universi-
ties or extension services (Table 1). Private companies also man-
age their own OFRNs, but access to data and results summaries 
are limited. Some ORFNs have been implemented for decades, 
such as the Practical Farmers of Iowa led by Cooperators’ 
Program since 1987, and the Nebraska On-Farm Research 
Network led by the University of Nebraska (2018) since 1990. 
Most of them have similarities regarding the crops of interest, 
the experimental design and the topics of research. Current 
large-scale equipment makes some experimental designs such 
as replicated strip trial design with two treatments (the new 
management practice and the control) more practical than 
others. The implementation of this experimental design was 
made easier in recent years due to wide adoption of precision 
agriculture technologies that enable farmers to measure yield 
with mass flow sensors and GPS technology, which generally 
produced similar results as weigh wagons (Nelson et al., 2015). 
The management practices tested typically involve crop man-
agement (e.g., planting date, seeding rate, tillage, row spacing), 
crop protection (e.g., pesticide, genetically modified resistant 
cultivars), plant nutrition (e.g., fertilizer, manure, lime) and 
plant growth regulators (e.g., auxin, gibberellic acid, cytoki-
nin). In some cases, OFRNs are crop-specific (e.g., Minnesota 
Wheat’s On-Farm Research Network and On-Farm Soybean 
Management Network) or management practice-specific (e.g., 
the Indiana Infield Advantage focuses on nutrients in corn).

Results of on-farm trials are usually presented as individual 
field reports (i.e., a report summarizing the outcome for one 
trial) showing replicate yield values and treatment averages in 
the form of tables or histograms. Some other basic information 
(e.g., planting date, variety, soil texture, weather data, loca-
tion) are also typically provided. In an effort to develop more 
practical communication methods, some OFRNs such as the 
Minnesota Association of Wheat Growers (2018) On-Farm 
Research Network, Nebraska On-Farm Research Network and 
Pennsylvania On-Farm Soybean Network (2018) have compiled 
all trial reports into an annual report format. An example from 

Dupont Pioneer (Jeschke and Ahlers, 2018) studied the effect 
of foliar fungicides (alone or combined with an insecticide) on 
soybean across 279 on-farm trials and shared the trials’ average 
yield differences through a histogram and ranking of trials by 
decreasing yield response values. Despite the number of trials 
involved, only the average yield response per trial was reported 
and without explanations of variability in yield response. In 
another example, the South Dakota On-Farm Research pro-
gram allows for sorting experiments into different categories. 
The Nebraska On-Farm Research Network and the Iowa 
Soybean Association On-Farm Network have online searchable 
databases which allow users to query individual summary trial 
data by year, crop and, management practice, but this is not suf-
ficient to understand general patterns in treatment effects and 
gain novel insights from the data.

Currently, for most OFRNs, individual trial summaries 
provide descriptive information and elementary statistical 
analysis. Even though this information is highly valuable, it does 
not directly lead to a better understanding of the overall agro-
nomic performance of the treatment or product. Also, they do 
not allow for the detection of patterns that can explain the yield 
response variability for different soil textures, rainfall amounts, 
planting dates or seed varieties. Finally, individual trial sum-
maries cannot provide an estimate of the probability that a 
new management practice will or will not outperform standard 
practices in following growing seasons or in new environments. 
To overcome these limitations, a new framework for the analysis 
of OFRN data is needed which is not simply limited to a multi-
location analysis (Moore and Dixon, 2015), although it should 
contain common elements found in mixed-effect models and 
meta-analyses (Pinheiro and Bates, 2000; Philibert et al., 2012).

The evolution and recent expansion of OFRNs (Table 1) pres-
ent a unique opportunity to fill this gap by developing a data-
analytics framework and an easy-to-use tool for decision making 
which would allow effective and simultaneous summarization, 
analyses, interpretation and communication of the results. The 
development of such a data-analytics framework is necessary to 
improve predictions at the farm level that can ultimately lead 
to more cost-effective, sustainable and environmentally sound 
agricultural production. Data visualization is an important 
element of the data-analytics framework, useful for identifying 
trends and clusters, spotting patterns, evaluating model outputs, 
and communicating results (Unwin et al., 2006). Visualization 
tools are needed to allow farmers and agronomists to detect 
patterns across sites and years. Data visualization has the poten-
tial to revolutionize sharing and communication of analysis 
(Wojciechowski et al., 2015) and is more convenient and infor-
mative than individual summaries. So far, this approach has not 
been used in the context of OFRN.

creAtInG A dAtA-AnALYtIcs FrAMeWorK
The main goals of our data-analytics framework called 

Interactive Summaries of On-Farm Strip Trials (ISOFAST) 
are: (i) assess the general agronomic performance of different 
practices, (ii) explain yield response variability using field-level 
covariates, and (iii) use interactive and dynamic visualization to 
enhance communication and decision making by farmers. The 
utility of this framework is illustrated using three case studies 
testing specific agronomic questions about a foliar fungicide on 
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soybean, row spacing on soybean and a soil-applied insecticide 
on corn. Our framework is implemented through a web-appli-
cation accessible to a broad audience to improve accessibility to 
on-farm research insights.

Preliminary Analysis

The data-analytics framework starts by providing a brief sum-
marization of background information and rationale for testing 
a new management practice under on-farm conditions. Specific 
agronomic objectives, details about management practices, 
product chemistry, application rates, timing of applications 
and number of locations are also included. Our data-analytics 
framework provides a map which displays the trial locations and 
general attributes (Fig. 1a).

Because precipitation and temperature are important to 
understanding yield responses, the data-analytics framework 
allows for the simultaneous display of in-season monthly rain-
fall and growing degree day observation for each trial. Growing 
degree day (GDD) is a common temperature index used to 
estimate plant development, and accumulation of GDD values 
determines the maturity of crop, yield, and yield components 
(Qadir et al., 2007). Reference rainfall (average over the dura-
tion of all the trials) is included which help to identify wet, dry 
and average seasons (Fig. 1b, left). The cumulative GDD over the 
growing season with reference values are shown the same way 
(Fig. 1b, right).

Defining Yield Responses

The main objective of our framework is to quantify the effect 
of a new management practice on yield compared to a control 
(i.e., a control corresponding to a common cropping practice 
or a product normally used by a farmer). Two different metrics 
are proposed to measure yield response; the yield ratio (a ratio 
of yield obtained with new management practice to yield at the 
control) and the yield difference (yield obtained with the new 
management practice minus yield at the control).

The yield difference measures the effect of the new manage-
ment practice in absolute yield units. It can be easily expressed as 
the economic gain or loss (in dollars per hectare), but it is unit-
dependent. The yield ratio measures the effect of the management 

practice relative to the yield obtained at the control. It is unitless 
and thus it does not depend on yield units or a moisture content 
adjustment or other similar factors. Its value can be used in dif-
ferent contexts characterized by different productivity levels. It is 
thus possible to multiply the estimated yield ratio by low to high 
reference yield values to obtain the range of yield gains or losses. 
A yield ratio higher than 1, or a yield difference higher than 0, 
means a yield gain using the new product or management prac-
tice. A yield ratio lower than 1, or a yield difference lower that 0, 
means a yield loss using the new management practice. The main 
consideration for favoring one metric over the other is whether 
the management practice scales with yield (yield change) or if it is 
invariant to yield levels (absolute yield difference). For this reason, 
our data-analytics framework provides both metrics.

Importance of replication

It is very common in agronomic experiments to have repli-
cates (i.e., multiple measurements for a single variable or mul-
tiple experimental units) to reduce variability and increase the 
statistical power of experiments. Also, replicates are important 
to quantify variability within each experiment (i.e., within a 
trial) and between experiments (i.e., between trials). Sometimes, 
an observation can be judged far from its group average and 
thus be considered as an outlier (Ramsey and Schafer, 2013). 
Outliers may be due to natural variation, equipment problems, 
human error, or can be caused by hail, flooding or extreme heat. 
Graphics display all replicate values and describe yield response 
variability between and within trials (Fig. 1c). Additionally, 
trials are ranked by increasing mean yield responses. Displaying 
the means helps to summarize data and identify replicates that 
deviate from the overall mean or general trend. Ranking trials 
by decreasing average yield response provides a first impression 
of the effectiveness of the treatment. Our framework does not 
remove outliers if they can be explained by natural, physiologi-
cal or agronomic mechanisms. We consider all outliers because 
they often show important source of yield variability.

Yield variability can also be explained by environmental and 
management variables. Since trials are generally located across 
the state and farmers apply their own management preferences, 
some characteristics such soil texture, seed variety, and crop 

Table 1. Examples of on-farm research networks.
Name Managing organization Experimental design† Starting date Crop
On-Farm Network Iowa Soybean Association RST 2005 Soybean; corn
Pennsylvania On-Farm Soybean 
Network

Pennsylvania Soybean Board. RST 2009 Soybean

Nebraska On-Farm Research 
Network

University of Nebraska RST 
RCBD

1990 Soybean; corn wheat; 
pea sorghum; beans

Minnesota Wheat’s On-Farm 
Research Network

Minnesota Association of Wheat Growers RST 2014 Wheat

Practical Farmers of Iowa Cooperators’ Program RST
RRST

1987 Corn; soybean; oat
Winter rye; horticulture

Purdue Collaborative On-Farm 
Research

Indiana Certified Crop Advisers (CCAs) and
Purdue Extension

RRST 2006 Soybean; corn

South Dakota Soybean On-Farm 
Research Program

South Dakota Soybean Research and 
Promotion Council

RST 2014 Soybean

California Collaborative Research 
and Extension network

University of California
Santa Cruz

Split-plot 2014 Vegetables; strawberry

DuPont Pioneer Soybean 
Fungicide Research

Dupont Pioneer NA 2007–2014 Soybean

† RST, replicated strip trial design; RRST, randomized replicated strip trial design; RCBD, randomized complete block design.
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planting dates can vary substantially. In our framework, yield 
responses are also presented for different soil texture and plant-
ing date categories (early and late planting date) using a boxplot 
(Fig. 1d-e). The planting date threshold corresponds to the 
midpoint between the earliest and latest planting dates related 
to a specific management practice.

Yield Limiting Factors and Yield response

Yield limiting factors (e.g., weather stress, pest pressure, 
soil characteristics) can influence crop yields directly or by 

interacting with each other. When crop damage by pests is not 
observed, then yield at the control can be used as a proxy of 
yield limiting stress factors. If yield is low in the control strips, 
this might indicate that a limiting factor or pest pressure has 
prevented the crop from reaching its potential. A consistent 
negative relationship between yield response and yield in the 
control strips would suggest that the product or practice stud-
ied has directly addressed a yield limiting factor (Fig. 1k). For 
example, Salvagiotti et al. (2008) used yield measurements from 
fertilized plots (N application) and unfertilized control plot and 

Fig. 1. Example of visualization of trial results from on-farm research networks. (a) dots represent trial locations; (b) a trial is represented 
by a black line, and the reference values (using historical data or climatology) are represented by grey bars; (c) dots represent individual 
replicates or experimental units and the black triangle represents the trial mean; (d and e) boxplots of the yield response (YR) for the 
soil textures and the planting dates; (f and g) estimated mean YR and the associated 95% credible intervals for the individual trials and 
the overall yield response at the bottom (posterior means from Bayesian analysis); (h) the dashed line represents the break-even yield 
response, the vertical bar represents the probability to exceed breakeven cost, and the curve represents the cumulative distribution of 
yield response; (i) the black line represents the estimated yield response and the dashed lines represent the 95% credible intervals (from 
Bayesian analysis); (j and k) the dots represent trial means; the black line, the estimated yield response; and the grey shade represents the 
95% confidence intervals from the local regression.
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demonstrated that yield response to N fertilization was positive 
when the yield potential was low. The reason behind the lower 
yield potential was different for each specific site-year, such as 
low soil pH or fertility or water limitations. Another way to 
assess pest pressure or other major limiting factors in on-farm 
trials is to use crop scouting data. This requires rigorous knowl-
edge of pest and crop biology, pest identification and sampling 
methods. Consequently, at the moment, our framework does 
not uniformly provide a specific analysis and visualization of 
scouting data. After a descriptive step to visualize and describe 
yield response variability, statistical modeling can be used to 
help to explain the heterogeneity, improve the understanding of 
the data and quantify the uncertainty of the treatment effects.

statistical Modeling

Appropriate statistical analyses should focus on different but 
related questions: What is the performance of a specific treat-
ment in an individual trial or location? And what is performance 
across all trials or the overall mean yield response? Answering 
these questions will be beneficial (i) to understand the effective-
ness of management practices at the network level, (ii) to clarify 
the specific questions that farmers have about their own farm, 
and (iii) to help make future management decisions.

Since data are collected for several individual trials, we used 
a hierarchical model to estimate the mean effect size at the net-
work level, the individual effect sizes for all trials, and their cred-
ible intervals through a Bayesian approach. The network level 
represents the whole group of on-farm trials testing the same 
management practice. The Bayesian analysis has an advantage 
over classical statistical analyses because it can use prior informa-
tion derived from literature or expert knowledge. The Bayesian 
approach integrates the observed data with priors and returns 
a posterior distribution of the parameters of interest. Another 
advantage of the Bayesian approach is that it allows incorpora-
tion of full uncertainty in all parameters. The uncertainty in 
parameter estimates is quantified by using credible intervals.

The hierarchical model uses yield ratios or yield differences as 
the response variable. The yield ratio generally benefits from log 
transformation for normality and stabilization of variances. The 
results are then back-transformed for interpretation as percent 
change; that is, yield change (%) = (yield ratio − 1) × 100. 
Trials are represented by site-years as they are rarely repeated at 
the same location over time. The Bayesian hierarchical model 
was implemented using the R package, MCMCglmm, through 
RStudio (Hadfield, 2010; RStudio Team, 2015).

For a continuous explanatory variable, the statistical model is:

log( )ij ij i ijR Xm b a e= + + +  

where log(Rij) represents the natural log of the jth replicate of 
the yield ratio (or yield difference without log transformation) 
in the ith site-year; μ represents the intercept of the log trans-
formed ratio; β represents the regression parameter (equal to 
zero if there is no explanatory variable such as rainfall); αi rep-
resents the random effect of the site-year; and εij represents the 
residual error. Both αi and εij are assumed to follow independent 
Gaussian distributions with mean zero and constant variances, 

2 2(0, ),  (0, )i ijN Na ea s e s� � .

We defined priors for the three parameters of the model (i.e., 
μ, 2

as  and 2
es ). The priors for the intercept μ and for the regres-

sion parameter β represent the distribution of the mean of the 
log ratio (or the yield difference) and the distribution of the 
effect of the explanatory variable X, respectively. These priors are 
independent Gaussian distributions with a mean of zero and a 
variance of 2. With a variance of 2, the log ratio and the regres-
sion parameter can take either a high positive or a low negative 
value depending on the dataset.

The priors of the variances of the random effect, 2
as , and of 

the residual error, 2
es , are independent inverse Gamma distribu-

tions with parameters ν/2 and ν/2, where the degree of belief ν 
is equal to 0.002. The parametrization of the priors is specific to 
the R package MCMCglmm (Hadfield, 2010).

For a categorical variable (such as the soil texture), the statisti-
cal model is:

( )
2

log( )
K k

ij k ij i ijk
R Xm b a e

=
= + + +∑  

where ( )k
ijX  is equal to 1 (an indicator variable) if Rij belongs to the 

kth category, zero otherwise; βk represents parameter for the kth 
category; and μ represents the mean log ratio of the first category.

We used the same visual approach as in meta-analysis (i.e., 
forest plot) to show estimated posterior yield responses from 
individual trials. The forest plots show variation between and 
within trials, as well as overall posterior means (Fig. 1f-g). 
Individual trial posterior means are statistically significant if 
their credible intervals do not cross the vertical line (i.e., yield 
change or yield difference equal to zero) corresponding to a 
threshold between yield increase and yield loss from a new man-
agement practice or treatment in question. Trials are ranked in 
increasing order to easily distinguish potential groups of trials 
with similar positive or negative yield response. Different cred-
ible interval levels (i.e., 0.80, 0.90, or 0.95) are available to satisfy 
farmers’ and scientists’ expectations and risk preferences.

Cumulative probabilities of yield response at the regional 
level can be calculated from the posterior distributions of yield 
response or yield change provided by the Bayesian model. The 
cumulative distribution function represents the probability that 
the yield response is less than or equal to a certain value (Fig. 
1h). For example, if the probability of having a 4% yield increase 
is equal to 70% it means than there is a 70% chance of reach-
ing a 4% yield increase or less. Cumulative distribution of yield 
response can be useful for decision making for farmers.

Our data-analytics framework provides two different ways to 
attribute yield response variability using explanatory variables. 
The first approach is for continuous or categorical variables in 
the Bayesian hierarchical model (see equations above) (Fig. 1i) 
and the second approach is to use a local polynomial regres-
sion (Fig. 1j) (Cleveland, 1979). For each method, 95% credible 
intervals or 95% confidence intervals, respectively, are displayed 
to describe the uncertainty in yield response.

calculating economic responses

Economic analysis is important to decide if a new practice or 
product should be adopted. Cumulative distribution functions 
of yield response are used to conduct a break-even economic anal-
ysis (Fig. 1h). The on-line tool, allows users to enter grain price 
and treatment cost (i.e., cost of product and application). Based 
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on this information, a break-even yield response and expected 
profit are calculated. The break-even line is plotted on the graph 
and the probability of exceeding the break-even cost is estimated 
as the distance on the y-axis between 1 and the intersection of 
the cumulative distribution curve with the break-even line. The 
range in expected average profit is calculated using 25th and 75th 
percentiles from the cumulative distribution function.

Visualization

The graphical features are implemented through an interac-
tive and dynamic graphical web-tool. We used Shiny, an R 
package from RStudio (RStudio Team, 2015; Chang et al., 
2016) that combines numerous extension packages. The web-
application has a user interface divided in two parts: the sidebar 
menu on the left and the main panel on the right (Fig. 2). On 
the sidebar menu, the user can select the crop and then a specific 
management practice. Then, the user has access to different 
components organized into a list on the sidebar menu.

The main panel, located on the right side of the interface, 
returns visuals described in Fig. 1. The main panel has interactive 
features such as zoom-in, zoom-out, filter, select and pointer-hov-
ering to interact with data and graphical information. Zoom-in 
and zoom-out are interactive features available for all the visual 
graphics but are most useful for the trial locations maps if users 
want more precision regarding trial location. The tool blocks 
identifying exact trial location due to data privacy issues. Because 
of the large amount of data for some management practices, it 
can be inconvenient to observe summaries of all data at once.

To overcome this visualization issue, data can be filtered by 
year to allow users to focus on a specific data subset. Selection 
is another important visualization process in our web-applica-
tion. When a graphic represents the yield response, users can 
choose between the yield change and the yield difference. For 
the relationship between yield response and monthly rainfall, 
users can select a specific month or cumulative months by start, 
middle or end of crop season. By hovering the pointer over the 
dot on a visual graphic, a label reports extra information such 
as the exact numerical value of the dot. For example, for the 
visual graphic representing the overall and trial yield responses 
(Fig. 1f), a label reports the exact numerical value of the point 
estimate and the boundaries of the credible interval for yield 
difference or yield change.

The web-application also provides interactive boxes located 
below each graphic to report extra information, results of sta-
tistical analyses and key messages. Some boxes are updated in 
real time after users’ action. For example, the number of trials 
that had a significant positive yield response is updated after the 
selection of a significant level for the credible interval. The web-
tool is comprehensive and intuitive enough to be easily used by a 
broader audience that will include farmers and non-specialists. 
More detail about the structure of our web-application and how 
to use it are available in the supplemental material.

Our data-analytics framework was implemented for a total of 
34 different management practices tested by the Iowa Soybean 
Association. The data related to the different management 
practices are stored in different datasets (one dataset per man-
agement practice) and differed by number of trials, yield value 
and years of experiments (Table 2).

The following section provides examples of the implementa-
tion of the data-analytics framework for three case studies: 
foliar fungicide on soybean, row spacing on soybean and soil-
applied insecticide on corn.

case studies

Foliar Fungicide Impact on soybean Yield
Hypothesis: foliar fungicides increase soybean yields.
Background. Foliar fungicides help to manage several com-

mon foliar diseases in soybean such as anthracnose, Septoria 
brown spot, Cercospora leaf blight, frogeye leaf spot, pod and 
stem blight, and soybean rust. Foliar pathogens reduce green 
leaf area causing a reduction of photosynthetic activity which 
can affect crop growth and yield (Bassanezi et al., 2001). In 
Iowa, foliar diseases typically result in minor yield losses which 
explains why applying foliar fungicide has not been a common 
practice (Swoboda and Pedersen, 2009; Wrather and Koenning, 
2006). However, the use of foliar fungicide has increased since 
2004, especially during periods of high market grain prices. As 
a consequence, better information was needed about fungicides 
in managing Septoria brown spot or frogeye leaf spot (Kyveryga 
et al., 2013b). The objective of these trials was to study the 
effect of a foliar fungicide (Headline) on soybean compared to a 
control by quantifying the yield response across a wide range of 
environmental and management practices.

Materials and Methods. The foliar fungicide Headline was 
tested in 206 trials (Fig. 3, left) over 9 yr (2006–2013, 2015) 
and compared to a control (untreated). These experiments used 
yield data collected on combines equipped with GPS. The active 
ingredient of Headline is pyraclostrobin. Most of the applica-
tions were done by farmers using ground sprayers, but in ~20% 
trials the foliar fungicide was applied by airplanes. The time of 
application varied between trials but most of them were done at 
the crop stage R3 (beginning pod development).

The experimental design was the replicated strip, where the 
two treatments are applied in strips without randomization 
(Fig. 3, right). A pair of strips (foliar fungicide and the control) 
constitutes a replicate. Each trial which was part of the network 
had a minimum of three replicates. Some trials required more 
than three replicates to capture the entire field for spatial 
analysis of yield responses. The width of the individual strip 
depends on the size of application equipment and can range 
from 4.6 to 27.4 m. The length of the strips depends on the 

Fig. 2. Interface of the web application, on the left side bar is a 
menu with different studies and description of the components 
available for that study. On the right is the main panel, displaying 
components which have been selected for review and interaction.
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Table 2. Description of different on-farm trial categories included in our framework. Chemical names for registered commercial products 
are given in parentheses.
 
Treated

 
Control

 
Crop

 
No. trials

No. experimental  
units per treatment

No.  
years

Nematicide Clariva Complete Beans† 
(Pasteuria nishizawae)

Cruiser Maxx Advanced + Vibrance (thiameth-
oxam, mefenoxam, fludioxonil and sedaxane)

Soybean 32 223 3

Seed treatment Ilevo† (fluoryram) + 
Acceleron†

Acceleron (pyraclotrobin and imidacloprid) Soybean 26 353 2

Row spacing 15 inches 30 inches Soybean 18 120 4
Foliar fungicide Headline† (pyraclostrobin) Untreated Soybean 206 1088 9
Foliar fungicide Stratego† (prothioconazole 
and trifloxystrobin)

Untreated Soybean 29 328 5

Foliar fungicide Stratego YLD† (prothiocon-
azole and trifloxystrobin)

Untreated Soybean 37 200 3

Foliar fungicide Priaxor† (pyraclostrobin and 
fluxapyroxad)

Untreated Soybean 43 191 6

Foliar fungicide Priaxor and Fastac† 
(alpha-cypermethrin)

Untreated Soybean 22 97 5

Foliar fungicide Quadris† (azoxystrobin) Untreated Soybean 18 93 1
Hero† pyrethroid insecticide (bifenthrin and 
zeta-cypermethrin)

Untreated Soybean 7 43 1

Inoculant Terramax† Untreated Soybean 15 99 1
Biostimulant Vitazyme† (1-triacontanol and 
brassinosteroids)

Untreated Soybean 10 44 2

Biological co-product Tryptophan† Untreated Soybean 16 89 2
Seed treatment Nemastrike† (tioxazafen) + 
Acceleron

Acceleron
(pyraclotrobin and imidacloprid)

Soybean 6 34 1

High density seeding (normal rate + 30,000) Normal rate between 140,000 and 170,000 
(rate commonly used in Iowa)

Soybean 20 12 4

Low yield density (normal rate 30,000) Normal rate between 140,000 and 170,000 
(rate commonly used in Iowa)

Soybean 21 140 4

Winter rye cover crop Untreated Soybean 32 166 6
Oats cover crop Untreated Soybean 12 50 2
Sulfur SuperCal SO4 Untreated Soybean 15 75 1
Residual sulfur SuperCal SO4 Untreated Soybean 6 27 1
Soil-applied insecticide Aztec† (tebupirim-
phos and cyfluthrin)

Untreated Corn 36 195 8

Fertilizer anhydrous ammonia UAN Corn 26 127 4
Fall-applied anhydrous ammonia Spring-applied anhydrous ammonia Corn 66 360 6
Nitrification inhibitor (Instinct†) on manure Untreated Corn 29 115 4
Nitrification inhibitor (Instinct) on UAN Untreated Corn 19 96 3
Foliar fungicide Headline (pyraclostrobin) Untreated Corn 143 703 9
Foliar fungicide Stratego (propiconazole and 
trifloxystrobin)

Untreated Corn 32 153 2

Foliar fungicide Stratego YLD (propiconazole 
and trifloxystrobin)

Untreated Corn 82 444 6

Foliar fungicide Quilt† (azoxystrobin and 
propiconazole)

Untreated Corn 28 144 3

Biological co-product Tryptophan† Untreated Corn 14 68 2
Seed treatment Nemastrike (tioxazafen) + 
Acceleron

Acceleron
(pyraclotrobin and imidacloprid)

Corn 8 53 1

Mycorrhizal fungi Endoprime† Untreated Corn 17 148 2
Sulfur SuperCal SO4 Untreated Corn 48 214 4
Residual sulfur SuperCal SO4 Untreated Corn 16 77 2
† Commercial products are trademarks of the respective companies.
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field size. For example, a typical field in Central Iowa is ~32 ha, 
which would have a dimension of approximately 457 by 701 m.

Trials were well distributed throughout Iowa, with a majority 
located in the Des Moines Lobe (Fig. 3, left). Therefore, our 
data cover a broad set of environmental conditions and field 
management across Iowa.

Disease development in soybean fields can be affected by 
different environmental conditions or management practices. 
The tool provides the ability to display the effect of planting 
date and soil texture on yield response to fungicide. In this case, 
yield difference was not significantly affected by planting date 
or soil texture (Fig. 4). However, the mean yield difference was 
higher for the early planting date than for the late planting date, 
at 246 kg ha–1 (se = 28) and 195 kg ha–1 (se = 24), respectively.

The average yield change was statistically significant and 
equal to 4.5% (3.9; 5.1) indicating a 95% probability that the 
posterior yield response would fall in a range from 3.9 to 5.1% 
of yield increase (Fig. 5). Considering all years, 54% of the trials 
(112 of 206 trials) had a significant positive yield response to 
the foliar fungicide Headline. These results confirm that this 
management practice provided consistent yield benefits under 
the evaluated conditions.

Our results are in general agreement with previous studies look-
ing at the difference between Headline and an untreated control. 
For example, results from small plot research trials over 5 yr man-
aged by Dupont Pioneer (Jeschke and Ahlers, 2018) showed an 

average yield response of 249 kg ha–1 when Headline was applied 
at the R3 growth stage and a total of 78% of the trials presented 
a positive yield response. Bestor et al. (2014) had similar results 
and reported that Headline had a higher yield (276 kg ha–1) than 
the untreated control. The average yield difference, based on seven 
locations, was equal to 276 kg ha–1. Wise and Buechley (2010) and 
Mahoney et al. (2015) reported a yield for Headline and untreated 
control of 202 kg ha–1 and 180 kg ha–1, respectively.

row spacing Impact on soybean Yield
Hypothesis 1: Narrow row spacing produce higher yields 

than wide row spacing on soybean.
Hypothesis 2: Wet conditions increase diseases in narrow row 

spacing on soybean.
Background. A common soybean row width spacing is equal 

to 76 cm, however many farmers have been testing whether yield 
will increase by planting narrower rows (De Bruin and Pedersen, 
2008). Soybean often yields higher when planted in narrow versus 
wide row spacing. For example, De Bruin and Pedersen (2008) 
advocate the adoption of 38-cm row spacing based on a 5.6% 
yield increase in a 38-cm vs. 76-cm spacing in a 3-yr study at five 
locations in Iowa. Iowa State University Extension and Outreach 
showed a 309 kg ha–1 advantage of 38-cm over 76-cm in a 2-yr 
study at 17 locations. However, many farmers are still hesitant to 
switch to narrow row spacing due to the required investment in 
new planters and the higher risk of soybean diseases in narrow 

Fig. 3. Schematic illustration of an on-farm research network where foliar fungicide applications on soybean were compared to an 
untreated control. Each trial is represented by a dot (described on the left) on the map where the year of measurement is distinguished 
by color. All the trials follow a replicated strip trial design (described on the right) and have at least three replicates.

Fig. 4. Yield difference by planting date (on left) and soil texture (on right) for the foliar fungicide on soybean dataset. A planting date 
before 20 May is considered as early; after as late.
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rows. In fact, narrow spacing increases the canopy area develop-
ment, light interception, growth rate, dry matter accumulation 
and seed yield but also results in higher soil moisture or relative 
humidity which may create favorable conditions for the develop-
ment of white mold (Sclerotinia stem rot). The objectives were 
(i) to study the impact of narrow row spacing compared to wide 
row spacing by quantifying the yield response, and (ii) to study 
the effect of rainfall amounts on yield differences.

Materials and Methods. Wide row spacing (76 cm) and 
narrow row spacing (38 cm) were tested in 18 trials in Iowa 
conducted during 4 yr (2010, 2014–2016). Wide row spacing is 
considered as the control treatment since it is used more com-
monly. To achieve the narrow, 38-cm, row spacing treatment 
a 76-cm row planter was used twice in the same treatment 
using autosteering or GPS guidance systems. This is feasible for 
research trials, but not practical for typical commercial use. The 
experimental design is the same as the one described on Fig. 3.

Results and Discussion. The overall mean yield change 
as a result of switching from wide to narrow row spacing was 
estimated at 1.4% (−2.1; 4.6). The treatment difference is not 
significant as the low boundary of the credible intervals is nega-
tive (Fig. 6). The trial 2014-012A at the top of Fig. 6 reached the 
highest estimated yield change and deviated substantially from 
other trial results. A plausible explanation is that this trial was 

affected by hail in early July and these conditions favored the 
ability of plants in the 38-cm row spacing to recover over that 
of plants in 76-cm row spacing. Only 2 of the 18 trials had a 
significant positive yield response which favored the 38-cm row 
spacing compared to the 76-cm row spacing.

Our results do not agree with the findings of De Bruin 
and Pedersen (2008) as they found that 38-cm row spacing 
yielded 248 kg ha–1 higher than 76-cm row spacing in Iowa. 
They advocated the adoption of 38-cm row spacing based on 
a 5.6% yield increase in a 38-cm vs. 76-cm spacing in a 3-yr 
study at five locations in Iowa. Another study led by the ISU 
Extension and Outreach (2019) including more than 30 experi-
ments found that the average yield response for narrow rows 
was higher than 303 kg ha–1 compared with wide row spacing. 
Differences between studies were attributed to soil dryness. For 
example, the relationship between yield response and rainfall in 
July (Fig. 7) suggests that there is an advantage of using 76-cm 

Fig. 5. Estimated posterior mean yield change for individual trials 
and their 95% credible intervals for data collected in 2006 to 
2007 for the foliar fungicide on soybean dataset. The average 
yield change is estimated using the whole data set. For simplicity, 
only 2 yr of measurements are displayed in this figure.

Fig. 6. Estimated posterior mean yield changes for on farm trials 
comparing narrow to wide soybean row spacing and their 95% 
credible intervals for row spacing on soybean dataset. The codes 
on the y axis are the identifiers for different strip trials (fields). All 
trials were conducted in Iowa.

Fig. 7. Yield change for all the trials as a function of July rainfall 
and 95% credible intervals (thinner lines) for the mean change 
for the row spacing on soybean dataset. Grey dots represent 
the data points (for all the trials) used to adjust the Bayesian 
hierarchical model with July rainfall as a continuous variable.
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row spacing when rainfall amounts exceed ~15 cm. Under wet 
conditions, the 38-cm row spacing results in excessive moisture 
build-up in the canopy favoring the development of Sclerotinia 
stem rot. Consistent with this result, Andrade et al. (2019) 
found that, in the central United States, July rainfall was higher 
in the experiments showing a yield advantage using wide row 
spacing. Soybean producers should be aware that the conclusion 
given by published data using small plot studies do not necessar-
ily agree with the conclusions from OFRN. There is a need to 
understand why sometimes the results from OFRN and small 
plot research are not consistent.

soil-Applied Insecticide Impact on bt-corn Yield
Hypothesis 1: Soil-applied insecticide to Bt-corn protect yield 

from corn rootworm (Diabrotica virgifera virgifera) damage.
Hypothesis 2: Soil-applied insecticide reduce the impact on 

corn root mass.
Background. The western corn rootworm is one of the most 

destructive corn pests in the Midwestern United States (Park 
and Tollefson, 2006). Corn rootworm feeds on corn roots and 
can drastically reduce root mass and grain yield (Oleson et al., 
2005). Planting genetically modified corn, such as Bt-corn, can 
be a management strategy to reduce pest pressure, as they pro-
duce insecticidal proteins. In 2009, a study including 64 trials 
on continuous corn showed that soil insecticides could boost 
yields of corn rootworm hybrids with the Bt trait (Swoboda, 
2009). The average yield increase was greater than 672 kg ha–1 
for 40% of the trials. In addition, some farmers used soil-applied 
insecticide on Bt-corn to reinforce their protection strategy 
despite a significant cost.

The objectives are (i) to study the impact of a soil-applied 
insecticide to Bt-corn compared to an untreated control by 

quantifying the yield response, and (ii) to quantify root damage 
by measuring root injury (eaten nodes) and root weight.

Materials and Methods. The commercial soil-applied insec-
ticide Aztec (active ingredients tebupirimphos and cyfluthrin) 
was compared with an untreated control in 36 trials over 8 yr 
(2008–2015). All the trials had corn as a previous crop. The 
two treatments were applied to corn rootworm resistant corn 
hybrids (containing the Bt trait). Aztec was applied in-furrow 
with farmer equipment. The experimental design was the same 
as the one described in Fig. 3.

Results and Discussion. The Bayesian hierarchical model 
estimated a yield increase across all trials equal to 1.5%, with 
corresponding 95% credible intervals (0.5; 2.6) (Fig. 8, left). 
These results were different from a study conducted by Petzold-
Maxwell et al. (2013) where yield differences were not detected.

Nine out of 36 trials had a significant yield response and 
four of them occurred in 2012. This is likely because 2012 was 
dryer and warmer than normal years, leading to conditions 
where corn without a soil-applied insecticide suffers greater 
yield losses (Fig. 8, right) and the insecticide had a positive 
impact on corn yield. Our scouting data related to root injury 
did not show a clear difference between corn with or without 
a soil-applied insecticide. In the previous study conducted by 
Petzold-Maxwell et al. (2013) there was no significant difference 
in root injury between Bt-corn with or without a soil-applied 
insecticide while Gassmann (2012) found that root injury was 
significantly lower for Bt-corn with soil-applied insecticide 
compared to the control.

Limitations of the data-Analytics Framework

Some caveats of our approach should be highlighted. Limited 
access to environmental and management variables prevented us 

Fig. 8. Estimated yield change for individual trials and the corresponding 95% credible intervals for the soil-applied insecticide treatment 
(Bayesian hierarchical model outputs) (on left). Each trial is represented by a line and reference values of growing degree days in Central 
Iowa are represented by gray bars (on right).
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from gaining a deeper understanding of yield response variabil-
ity. Data collection of environmental and management variables 
should be a crucial step in the ORFN to improve the analysis. 
Since the analysis of scouting data is specific to each new man-
agement practice and research question, our data-analytic frame-
work does not provide uniform visual graphics and statistical 
methods to summarize this type of data. Nevertheless, we highly 
recommend studying the relationship between scouting data and 
other variables collected through the OFRN such as growing 
degree days, cumulative rainfall, soil texture, and planting date.

To facilitate the adoption of the new platform, we wrote a 
manual guide for farmers that explains how to use the web-
application and how to interpret the graphics. Next steps will 
be to include contextual tooltips into the web-application and 
to provide training to improve and facilitate the adoption of the 
web-application.

Our web-application will continue to evolve as needed with 
upgrades to existing plots, summaries, and the addition of new 
management practices. In the future, our web-application could 
be improved by interviewing users to receive their feedback and 
to ensure proper interpretation and understanding of the graph-
ics and information available.

suMMArY
In this paper, we presented an interactive data-analytics frame-

work for analyses and visualization of data from OFRNs. The 
aim of our data-analytics framework is to communicate and share 
descriptive information and statistical summaries of on-farm 
research to a broader audience. Our framework is well adapted 
to a replicated strip trial design using two treatments with or 
without strip randomization. Most of the visual graphics can be 
applied to other experimental designs. Graphics and statistical 
methods were implemented for 34 different management prac-
tices tested on soybean and corn. We used statistical approaches 
that differed from those commonly applied to OFRN data. Trials 
were analyzed together and not individually, which provides a 
better understanding of the overall effectiveness of a new manage-
ment practice. In addition, the uncertainty of the yield response 
was estimated to include the range of plausible values. Decision 
making about the new management practice should be based on 
combining different outputs and summaries from the data-ana-
lytics framework in a proper economic and agronomic context.
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