A. S. Moretto, R. A. Distel, and N. G. Didoné, Decomposition and nutrient dynamic of leaf litter 618 and roots from palatable and unpalatable grasses in a semi-arid grassland, App Soil Ecol, vol.619, pp.31-37, 2001.

L. Pagès and C. Picon-cochard, Modelling the root system architecture of Poaceae. Can we 621 simulate integrated traits from morphological parameters of growth and branching, New 622 Phytol, vol.204, pp.149-158, 2014.

I. M. Pérez-ramos, C. Roumet, P. Cruz, A. Blanchard, P. Autran et al., Evidence for a 624 'plant community economics spectrum' driven by nutrient and water, p.625, 2012.

. Mediterranean-rangeland-of-southern-france, J Ecol, vol.100, pp.1315-1327

C. Picon-cochard, L. Coll, and P. Balandier, The role of below-ground competition during 627 early stages of secondary succession: the case of three-year-old Scots pine (Pinus 628 sylvestris L.) seedlings in an abandoned grassland, Oecologia, vol.148, pp.373-383, 2006.

C. Picon-cochard, R. Pilon, and S. Revaillot, Plasticity of grass root functional traits and root 630 mass in response to cutting frequency and N fertilisation, Proceedings of the 7th ISRR 631, 2009.

, Symposium, Root Research and Applications (RootRAP), 2009.

C. Picon-cochard, R. Pilon, E. Tarroux, L. Pagès, J. Robertson et al., Effects of 634 species, root branching order and season on root traits of 13 perennial grass species, vol.353, pp.47-57, 2012.

R. Pilon, C. Picon-cochard, J. Bloor, S. Revaillot, E. Kuhn et al., , p.637

J. Soussana, Grassland root demography responses to multiple climate change 638 drivers depend on root morphology, Plant Soil, vol.364, pp.395-408, 2013.

G. Pineiro, J. M. Paruelo, M. Oesterheld, and E. G. Jobbagy, Pathways of grazing effects on soil 640 organic carbon and nitrogen, Rangeland Ecol Manage, vol.63, pp.109-119, 2000.

J. Pinheiro, D. Bates, S. Debroy, D. Sarkar, and R. Team, nlme: linear and non linear 642 mixed effect models. R Package Version, vol.3, pp.1-119, 2015.

. R-core-team, R: a language and environment for statistical computing. R Foundation 644 for Statistical Computing, 2012.

P. B. Reich, The world-wide 'fast-slow' plant economics spectrum: a traits manifesto, J 646 Ecol, vol.102, pp.275-301, 2014.

N. Rossignol, J. Chadoeuf, P. Carrère, and B. Dumont, A hierarchical model for analysing the 648 stability of vegetation patterns created by grazing in temperate pastures, App Veg Sci, vol.649, pp.189-199, 2011.

J. C. Ruppert, K. Harmoney, Z. Henkin, H. A. Snyman, M. Sternberg et al., , p.651, 2015.

, Quantifying drylands' drought resistance and recovery: the importance of drought 652 intensity, dominant life history and grazing regime, Glob Chang Biol, vol.21, pp.1258-1270

A. Schaffers and K. Sykora, Reliability of Ellenberg indicator value for moisture, nitrogen 654 and soil reaction: a comparison with field measurements, J Veg Sci, vol.11, pp.225-244, 2000.

J. Scurlock, K. Johnson, and R. J. Olson, Estimating net primary productivity from grassland 656 biomass dynamics measurements, Glob Chang Biol, vol.8, pp.736-753, 2002.

J. F. Soussana, P. Loiseau, N. Vuichard, E. Ceschia, J. Balesdent et al., , p.658, 2004.

, Carbon cycling and sequestration opportunities in temperate grasslands, Soil Use Manag, vol.659, issue.20, pp.219-230

J. F. Soussana and M. Duru, Grassland science in Europe facing new challenges: biodiversity 661 and global environmental change. CAB Reviews: Perspectives in Agriculture, Veterinary 662 Science, Nutrition and Natural Resources, vol.272, pp.1-12, 2007.

J. F. Soussana and G. Lemaire, Coupling carbon and nitrogen cycles for environmentally 664 sustainable intensification of grasslands and crop-livestock systems, Agr Ecosyst Environ, vol.665, pp.9-17, 2014.

D. F. Steinaker and S. D. Wilson, Phenology of fine roots and leaves in forest and grassland, J 667 Ecol, vol.96, pp.1222-1229, 2008.

D. A. Wardle, R. D. Bardgett, J. N. Klironomos, H. Setala, W. H. Van-der-putten et al., , p.669, 2004.

, Ecological linkages between aboveground and belowground biota, vol.304, p.1633

K. R. Wilcox, V. Fischer, J. C. Muscha, J. M. Petersen, M. K. Knapp et al., Contrasting above-672 and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes, 2015.

, Glob Chang Biol, vol.21, pp.335-344

X. Xu, R. A. Sherry, S. Niu, D. Li, and Y. Luo, Net primary productivity and rain-use efficiency 675 as affected by warming, altered precipitation, and clipping in a mixed-grass prairie, Glob, vol.676, 2012.

, Chang Biol, vol.19, pp.2753-2764

X. Xu, Y. Luo, Z. Shi, X. Zhou, and L. D. , Consistent proportional increments in responses 678 of belowground net primary productivity to long-term warming and clipping at various 679 soil depths in a tallgrass prairie, Oecologia, vol.174, pp.1045-1054, 2014.

L. Yan, G. Zhou, and F. Zhang, Effects of different grazing intensities on grassland production 681 in China: A meta-analysis, PLoS ONE, vol.8, p.81466, 2013.

C. Zeng, J. Wu, and X. Zhang, Effects of grazing on above-vs. below-ground biomass 683 allocation of alpine grasslands on the northern tibetan plateau, PLoS ONE, vol.10, p.135173, 2015.

S. Zheng, W. Li, Z. Lan, H. Ren, and K. Wang, Functional trait responses to grazing are 685 mediated by soil moisture and plant functional group identity, Sci Rep, vol.5, p.18163, 2015.

G. Zhou, X. Zhou, Y. He, J. Shao, Z. Hu et al., Grazing intensity 687 significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: 688 a meta-analysis, Glob Chang Biol, vol.23, pp.1167-1179, 2017.

J. Zhu, Y. Zhang, and Y. Liu, Effects of short-term grazing exclusion on plant phenology and 690 reproductive succession in a Tibetan alpine meadow, Sci Rep, vol.6, p.27781, 2016.

C. Ziter and A. S. Macdougall, Nutrients and defoliation increase soil carbon inputs in 692 grassland, Ecology, vol.94, pp.106-116, 2013.

M. Zwicke, G. A. Alessio, L. Thiery, R. Falcimagne, R. Baumont et al., , vol.694

C. Picon-cochard, Lasting effects of climate disturbance on perennial grassland 695 above-ground biomass production under two cutting frequencies, Glob Chang Biol, vol.696, pp.3435-3448, 2013.

, PCA) calculated for 2014 and 2015. Variables used in the PCA were annual relative 766 soil water content (RSWC), annual soil temperature (Tsoil, °C), root diameter (Diam, mm), 767 specific root area (SRA, m 2 g -1 ), root mass averaged over three dates (RootMass, g m -2 ), annual 768 root production (BNPP, g m -2 y -1 ), p.769

, annual above-ground production

, Contribution in bold indicates significant correlation of the variables on the PCA axis, p.787

G. Lemaire and F. Gastal, N uptake and distribution on plant canopy, p.855, 1997.

, Diagnosis of the nitrogen status in crops, pp.3-43

P. Cruz, C. Jouany, J. Theau, P. Petibon, E. Lecloux et al., L'utilisation de l'indice de 857 nutrition azotée en prairies naturelles avec présence de légumineuses, Fourrages, vol.187, pp.369-376, 2006.