D. Rothschild, O. Weissbrod, E. Barkan, A. Kurilshikov, T. Korem et al., Environment dominates over host genetics in shaping human gut microbiota, Nature, vol.555, pp.210-215, 2018.

E. P. Balskus, The human microbiome, ACS Infect. Dis, vol.4, pp.1-2, 2018.

C. L. Chittim, S. M. Irwin, and E. P. Balskus, Deciphering human gut microbiota-nutrient interactions: a role for biochemistry, Biochemistry, vol.57, pp.2567-2577, 2018.

P. G. Arnison, M. J. Bibb, G. Bierbaum, A. A. Bowers, T. S. Bugni et al., Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Nat. Prod. Rep, vol.30, pp.108-160, 2013.

A. Benjdia, C. Balty, and O. Berteau, Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), Front. Chem, vol.5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02627786

A. Benjdia and O. Berteau, Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota, Biochem. Soc. Trans, vol.44, pp.109-115, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532684

C. D. Owen, L. E. Tailford, S. Monaco, T. ?uligoj, L. Vaux et al., Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus, Nat. Commun, vol.8, 2017.

A. Benjdia, E. C. Martens, J. I. Gordon, and O. Berteau, Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron, J. Biol. Chem, vol.286, pp.25973-25982, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004563

E. C. Martens, H. C. Chiang, G. , and J. I. , Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont, Cell Host Microbe, vol.4, pp.447-457, 2008.

J. Dabard, C. Bridonneau, C. Phillipe, P. Anglade, D. Molle et al., Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces, Appl. Environ. Microbiol, vol.67, pp.4111-4118, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02677754

A. Pujol, E. H. Crost, G. Simon, V. Barbe, D. Vallenet et al., Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut, FEMS Microbiol. Ecol, vol.78, pp.405-415, 2011.

E. H. Crost, E. H. Ajandouz, C. Villard, P. A. Geraert, A. Puigserver et al., Ruminococcin C, a new anti-Clostridium perfringens bacteriocin produced in the gut by the commensal bacterium Ruminococcus gnavus E1, Biochimie, vol.93, pp.1487-1494, 2011.

E. L. Ongey, R. T. Giessmann, M. Fons, J. Rappsilber, L. Adrian et al., Heterologous biosynthesis, modifications and structural characterization of Ruminococcin-A, a lanthipeptide from the gut bacterium Ruminococcus gnavus E1, Escherichia coli. Front. Microbiol, vol.9, 1688.
URL : https://hal.archives-ouvertes.fr/hal-01890454

L. M. Repka, J. R. Chekan, S. K. Nair, and W. A. Van-der-donk, Mechanistic understanding of lanthipeptide biosynthetic enzymes, Chem. Rev, vol.117, 2017.

K. M. Scherer, J. H. Spille, H. G. Sahl, F. Grein, and U. Kubitscheck, The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding, Biophys. J, vol.108, pp.1114-1124, 2015.

N. Mahanta, G. A. Hudson, and D. A. Mitchell, Radical SAM enzymes involved in RiPP biosynthesis, Biochemistry, vol.56, pp.5229-5244, 2017.

C. Medline,

A. Benjdia, K. Heil, T. R. Barends, T. Carell, and I. Schlichting, Structural insights into recognition and repair of UV-DNA damage by spore photoproduct lyase, a radical SAM enzyme, Nucleic Acids Res, vol.40, pp.9308-9318, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647062

A. Benjdia, A. Guillot, B. Lefranc, H. Vaudry, J. Leprince et al., Thioether bond formation by SPASM domain radical SAM enzymes: C? H-atom abstraction in subtilosin A biosynthesis, Chem. Commun, vol.52, pp.6249-6252, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01939273

T. A. Grell, P. J. Goldman, and C. L. Drennan, SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes, J. Biol. Chem, vol.290, pp.3964-3971, 2015.

A. Benjdia, S. Subramanian, J. Leprince, H. Vaudry, M. K. Johnson et al., Anaerobic sulfatase-maturating enzyme: a mechanistic link with glycyl radical-activating enzymes?, FEBS J, vol.277, 1906.
URL : https://hal.archives-ouvertes.fr/hal-01960689

A. Benjdia, J. Leprince, C. Sandström, H. Vaudry, and O. Berteau, Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct C? H-atom abstraction catalyzed by a radical AdoMet enzyme, J. Am. Chem. Soc, vol.131, pp.8348-8349, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01960686

O. Berteau, A. Guillot, A. Benjdia, and S. Rabot, A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes, J. Biol. Chem, vol.281, pp.22464-22470, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02656640

A. Benjdia, S. Subramanian, J. Leprince, H. Vaudry, M. K. Johnson et al., Anaerobic sulfatase-maturating enzymes: first dual substrate radical S-adenosylmethionine enzymes, J. Biol. Chem, vol.283, pp.17815-17826, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01960684

D. H. Haft, M. K. Basu, P. M. Himes, S. E. Allen, S. Hwang et al., Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification, ACS Chem. Biol, vol.193, pp.1737-1744, 2011.

G. A. Hudson, B. J. Burkhart, A. J. Dicaprio, C. Schwalen, B. Kille et al., Bioinformatic mapping of radical SAM-dependent RiPPs identifies new C?, C?, and C?-linked thioether-containing peptides, J. Am. Chem. Soc, vol.141, pp.8228-8238, 2019.

. Crossref,

A. Caruso, L. B. Bushin, K. A. Clark, R. J. Martinie, and M. R. Seyedsayamdost, Radical approach to enzymatic ?-thioether bond formation, J. Am. Chem. Soc, vol.141, pp.990-997, 2019.

C. S. Sit, M. J. Van-belkum, R. T. Mckay, R. W. Worobo, and J. C. Vederas, The 3D solution structure of thurincin H, a bacteriocin with four sulfur to ?-carbon crosslinks, Angew. Chem. Int. Ed. Engl, vol.50, pp.8718-8721, 2011.

K. E. Kawulka, T. Sprules, C. M. Diaper, R. M. Whittal, R. T. Mckay et al., Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to ?-carbon cross-links: formation and reduction of ?-thio-?-amino acid derivatives, Biochemistry, vol.43, pp.3385-3395, 2004.

L. Flühe, T. A. Knappe, M. J. Gattner, A. Schäfer, O. Burghaus et al., The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A, Nat. Chem. Biol, vol.8, pp.350-357, 2012.

M. C. Rea, C. S. Sit, E. Clayton, P. M. O'connor, R. M. Whittal et al., Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.9352-9357, 2010.

C. Medline,

A. Parent, A. Benjdia, A. Guillot, X. Kubiak, C. Balty et al., Mechanistic investigations of PoyD, a radical S-adenosyl-L-methionine enzyme catalyzing iterative and directional epimerizations in polytheonamide A biosynthesis, J. Am. Chem. Soc, vol.140, pp.2469-2477, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01973688

F. Ramare, J. Nicoli, J. Dabard, T. Corring, M. Ladire et al., Trypsin-dependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro, Appl. Environ. Microbiol, vol.59, pp.2876-2883, 1993.
URL : https://hal.archives-ouvertes.fr/hal-02713550

J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

A. Gomez, M. Ladiré, F. Marcille, F. , and M. , Trypsin mediates growth phase-dependent transcriptional regulation of genes involved in biosynthesis of ruminococcin A, a lantibiotic produced by a Ruminococcus gnavus strain from a human intestinal microbiota, J. Bacteriol, vol.184, pp.18-28, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02678134

A. Benjdia, S. Pierre, C. Gherasim, A. Guillot, M. Carmona et al., The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction, Nat. Commun, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216185

S. Pierre, A. Guillot, A. Benjdia, C. Sandström, P. Langella et al., Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes, Nat. Chem. Biol, vol.8, pp.957-959, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004114

M. F. Freeman, C. Gurgui, M. J. Helf, B. I. Morinaka, A. R. Uria et al., Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides, Science, vol.338, pp.387-390, 2012.

A. Benjdia, A. Guillot, P. Ruffié, J. Leprince, and O. Berteau, Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis, Nat. Chem, vol.9, pp.698-707, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01960697

C. Medline,

K. R. Schramma, L. B. Bushin, and M. R. Seyedsayamdost, Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink, Nat. Chem, vol.7, pp.431-437, 2015.

A. Benjdia, L. Decamps, A. Guillot, X. Kubiak, P. Ruffié et al., Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase, J. Biol. Chem, vol.292, pp.10835-10844, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02628401

T. L. Grove, P. M. Himes, S. Hwang, H. Yumerefendi, J. B. Bonanno et al., Structural insights into thioether bond formation in the biosynthesis of sactipeptides, J. Am. Chem. Soc, vol.139, pp.11734-11744, 2017.

H. Lee, J. J. Churey, R. W. Worobo, A. Parent, A. Guillot et al., Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361, FEMS Microbiol. Lett, vol.299, pp.15515-15518, 2009.

L. Flühe, O. Burghaus, B. M. Wieckowski, T. W. Giessen, U. Linne et al., Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor, J. Am. Chem. Soc, vol.135, pp.959-962, 2013.

B. M. Wieckowski, J. D. Hegemann, A. Mielcarek, L. Boss, O. Burghaus et al., The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation, FEBS Lett, vol.589, pp.1802-1806, 2015.

C. Balty, A. Guillot, L. Fradale, C. Brewee, and M. Boulay,

C. Ruminococcin, , vol.294, pp.14512-14525, 2019.

, J. Biol. Chem

, Access the most updated version of this article at doi