D. Pette, Historical Perspectives: plasticity of mammalian skeletal muscle, J. Appl. Physiol, vol.90, issue.3, pp.1119-1124, 2001.

P. Bonaldo and M. Sandri, Cellular and molecular mechanisms of muscle atrophy, Dis. Model Mech, vol.6, issue.1, pp.25-39, 2012.

H. Wackerhage, Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise, J. Appl. Physiol, vol.126, issue.1, pp.30-43, 1985.

A. Echarri, An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation, Nat. Commun, vol.10, issue.1, p.5828, 2019.

K. M. Baldwin, Musculoskeletal adaptations to weightlessness and development of effective countermeasures, Med. Sci. Sports Exerc, vol.28, issue.10, pp.1247-1253, 1996.

A. Kaltsatou, Uremic myopathy: is oxidative stress implicated in muscle dysfunction in uremia?, Front. Physiol, vol.6, p.102, 2015.

E. Barreiro and A. Jaitovich, Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets, J. Thorac. Dis, vol.10, issue.12, pp.1415-1424, 2018.

S. Ato, Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats, Exp. Physiol, vol.104, issue.10, pp.1518-1531, 2019.

J. Khan, E. L. Burnham, and M. Moss, Acquired weakness in the ICU: critical illness myopathy and polyneuropathy, Minerva Anestesiol, vol.72, issue.6, pp.401-406, 2006.

B. Roy, Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy, Front. Physiol, vol.7, p.439, 2016.

W. D. Dudgeon, Counteracting muscle wasting in HIV-infected individuals, HIV Med, vol.7, issue.5, pp.299-310, 2006.

K. C. Fearon, Cancer cachexia and fat-muscle physiology, N. Engl. J. Med, vol.365, issue.6, pp.565-567, 2011.

T. Suzuki, S. Palus, and J. Springer, Skeletal muscle wasting in chronic heart failure, ESC Heart Fail, vol.5, issue.6, pp.1099-1107, 2018.

M. Sandri, Signaling in muscle atrophy and hypertrophy, Physiology, vol.23, pp.160-170, 2008.

A. Z. Moore, Difference in muscle quality over the adult life span and biological correlates in the Baltimore Longitudinal Study of Aging, J. Am. Geriatr. Soc, vol.62, issue.2, pp.230-236, 2014.

I. H. Rosenberg, Sarcopenia: origins and clinical relevance, J. Nutr, vol.127, issue.5, pp.990-991, 1997.

A. J. Cruz-jentoft, Sarcopenia: revised European consensus on definition and diagnosis, Age Ageing, vol.48, issue.1, pp.16-31, 2019.

V. Sartorelli and M. Fulco, Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy, Sci. STKE, issue.244, p.11, 2004.

K. A. Murach, Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation, Physiology, vol.33, issue.1, pp.26-38, 2018.

P. Sousa-victor, Geriatric muscle stem cells switch reversible quiescence into senescence, Nature, vol.506, issue.7488, pp.316-321, 2014.

C. Lepper, T. A. Partridge, and C. M. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3646, 2011.

J. J. Mccarthy, Effective fiber hypertrophy in satellite cell-depleted skeletal muscle, Development, vol.138, issue.17, pp.3657-3666, 2011.

M. M. Murphy, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, issue.17, pp.3625-3637, 2011.

R. Sambasivan, Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.17, pp.3647-3656, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667781

J. R. Jackson, Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy, Am. J. Physiol. Cell Physiol, vol.303, issue.8, pp.854-861, 2012.

D. J. Glass, Molecular mechanisms modulating muscle mass, Trends Mol. Med, vol.9, issue.8, pp.344-350, 2003.

A. Chopard, S. Hillock, and B. J. Jasmin, Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures, J. Cell Mol. Med, vol.13, issue.9B, pp.3032-3050, 2009.

S. K. Powers, Can antioxidants protect against disuse muscle atrophy, Sports Med, vol.44, issue.2, pp.155-165, 2014.

S. Schiaffino, Mechanisms regulating skeletal muscle growth and atrophy, FEBS J, vol.280, issue.17, pp.4294-4314, 2013.

C. Rommel, Mediation of IGF-1-induced skeletal myotube hypertrophy by PI

/. K/akt and P. I. Mtor, )K/Akt/GSK3 pathways, Nat. Cell Biol, vol.3, issue.3, pp.1009-1013, 2001.

M. K. Holz, mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events, Cell, vol.123, issue.4, pp.569-580, 2005.

M. Sandri, Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.

E. I. Glover, Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion, J. Physiol, vol.586, issue.24, pp.6049-6061, 2008.

S. C. Bodine, Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nat. Cell Biol, vol.3, issue.11, pp.1014-1019, 2001.

J. Huang and N. E. Forsberg, Role of calpain in skeletal-muscle protein degradation, Proc. Natl. Acad. Sci. U. S. A, vol.95, issue.21, pp.12100-12105, 1998.

E. Dargelos, Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress, Exp. Cell Res, vol.316, issue.1, pp.115-125, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663863

S. A. Susin, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature, vol.397, issue.6718, pp.441-446, 1999.

E. Marzetti, Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle, Mech. Ageing Dev, vol.129, issue.9, pp.542-549, 2008.

R. Calvani, Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy, Biol. Chem, vol.394, issue.3, pp.393-414, 2013.

C. Wang and R. J. Youle, The role of mitochondria in apoptosis*, Annu. Rev. Genet, vol.43, pp.95-118, 2009.

E. E. Dupont-versteegden, Apoptosis in skeletal muscle and its relevance to atrophy, World J. Gastroenterol, vol.12, issue.46, pp.7463-7466, 2006.

M. Mancini, The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling, J. Cell Biol, vol.140, issue.6, pp.1485-1495, 1998.

W. B. Nelson, Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation, Crit. Care Med, vol.40, issue.6, pp.1857-1863, 2012.

E. Masiero and M. Sandri, Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles, Autophagy, vol.6, issue.2, pp.307-309, 2010.

D. J. Klionsky and S. D. Emr, Autophagy as a regulated pathway of cellular degradation, Science, vol.290, issue.5497, pp.1717-1721, 2000.

B. Levine and D. J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy, Dev. Cell, vol.6, issue.4, pp.463-477, 2004.

M. S. Kim, Expressional and mutational analyses of ATG5 gene in prostate cancers, APMIS, vol.119, issue.11, pp.802-807, 2011.

K. Nakashima and Y. Yakabe, AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes, Biosci. Biotechnol. Biochem, vol.71, issue.7, pp.1650-1656, 2007.

H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion, Cell, vol.130, issue.1, pp.165-178, 2007.

C. Mammucari, FoxO3 controls autophagy in skeletal muscle in vivo, Cell Metabol, vol.6, issue.6, pp.458-471, 2007.

F. Geng, S. Wenzel, and W. P. Tansey, Ubiquitin and proteasomes in transcription, Annu. Rev. Biochem, vol.81, pp.177-201, 2012.

B. Ferrando, Allopurinol partially prevents disuse muscle atrophy in mice and humans, Sci. Rep, vol.8, issue.1, p.3549, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744457

S. C. Bodine, Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, vol.294, issue.5547, pp.1704-1708, 2001.

F. Derbre, Benefits of allopurinol treatment to prevent muscle atrophy induced by hindlimb unloading, Fund. Clin. Pharmacol, vol.25, p.111, 2011.

F. Derbre, Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases, PloS One, vol.7, issue.10, p.46668, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01159428

M. C. Gomez-cabrera, J. Vina, and L. L. Ji, Role of redox signaling and inflammation in skeletal muscle adaptations to training, Antioxidants, vol.5, issue.4, 2016.

C. M. Nascimento, Sarcopenia, frailty and their prevention by exercise, Free Radic, Biol. Med, vol.132, pp.42-49, 2019.

Y. P. Li, TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle, Faseb. J, vol.19, issue.3, pp.362-370, 2005.

T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation, Cold Spring Harb. Perspect. Biol, vol.1, issue.6, p.1651, 2009.

L. Ji, Acute exercise activates nuclear factor (NF)-kappa B signaling pathway in rat skeletal muscle, Faseb. J, vol.18, issue.13, pp.1499-1506, 2004.

F. Haddad, IL-6-induced skeletal muscle atrophy, J. Appl. Physiol, vol.98, issue.3, pp.911-917, 1985.

V. Mukund, Molecular docking analysis of nuclear factor-?B and genistein interaction in the context of breast cancer, Bioinformation, vol.15, issue.1, pp.11-17, 2019.

S. K. Powers, Redox control of skeletal muscle atrophy, Free Radic, Biol. Med, vol.98, pp.208-217, 2016.

S. K. Powers, A. J. Smuder, and A. R. Judge, Oxidative stress and disuse muscle atrophy: cause or consequence?, Curr. Opin. Clin. Nutr. Metab. Care, vol.15, issue.3, pp.240-245, 2012.

S. K. Powers, A. N. Kavazis, and J. M. Mcclung, Oxidative stress and disuse muscle atrophy, J. Appl. Physiol, vol.102, issue.6, pp.2389-2397, 2007.

M. A. Pellegrino, Redox homeostasis, oxidative stress and disuse muscle atrophy, J. Physiol, vol.589, issue.9, pp.2147-2160, 2011.

S. J. Lee, Regulation of muscle mass by myostatin, Annu. Rev. Cell Dev. Biol, vol.20, pp.61-86, 2004.

H. Amthor, Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.18, pp.7479-7484, 2009.

C. L. Mendias, Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation, J. Appl. Physiol, vol.111, issue.1, pp.185-191, 1985.

C. Ploquin, Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle, Am. J. Physiol. Endocrinol. Metab, vol.302, issue.8, pp.1000-1008, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02644146

A. U. Trendelenburg, Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size, Am. J. Physiol. Cell Physiol, vol.296, issue.6, pp.1258-1270, 2009.

K. A. Mirza, Attenuation of muscle wasting in murine C2C 12 myotubes by epigallocatechin-3-gallate, J. Cachexia Sarcopenia Muscle, vol.5, issue.4, pp.339-345, 2014.

R. Wang, Glucocorticoids enhance muscle proteolysis through a myostatindependent pathway at the early stage, PloS One, vol.11, issue.5, p.156225, 2016.

S. C. Bodine, Disuse-induced muscle wasting, Int. J. Biochem. Cell Biol, vol.45, issue.10, pp.2200-2208, 2013.

S. Levine, Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans, N. Engl. J. Med, vol.358, issue.13, pp.1327-1335, 2008.

R. A. Shanely, Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity, Am. J. Respir. Crit. Care Med, vol.166, issue.10, pp.1369-1374, 2002.

J. M. Mcclung, Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling, J. Physiol, vol.585, pp.203-215, 2007.

K. Furuno, M. N. Goodman, and A. L. Goldberg, Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy, J. Biol. Chem, vol.265, issue.15, pp.8550-8557, 1990.

A. B. Borisov, E. I. Dedkov, and B. M. Carlson, Interrelations of myogenic response, progressive atrophy of muscle fibers, and cell death in denervated skeletal muscle, Anat. Rec, vol.264, issue.2, pp.203-218, 2001.

E. I. Dedkov, Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population, Anat. Rec, vol.263, issue.2, pp.139-154, 2001.

S. Sato, Casted-immobilization downregulates glucocorticoid receptor expression in rat slow-twitch soleus muscle, Life Sci, vol.89, pp.962-967, 2011.

E. R. Morey-holton and R. K. Globus, Hindlimb unloading rodent model: technical aspects, J. Appl. Physiol, vol.92, issue.4, pp.1367-1377, 2002.

E. R. Morey, A new rat model simulating some aspects of space flight, Physiologist, vol.22, issue.6, pp.23-24, 1979.

N. Cros, Upregulation of M-creatine kinase and glyceraldehyde3-phosphate dehydrogenase: two markers of muscle disuse, Am. J. Physiol, vol.276, issue.2, pp.308-316, 1999.

P. Chowdhury, Animal model of simulated microgravity: a comparative study of hindlimb unloading via tail versus pelvic suspension, Phys. Rep, vol.1, issue.1, p.12, 2013.

F. Picquet and M. Falempin, Compared effects of hindlimb unloading versus terrestrial deafferentation on muscular properties of the rat soleus, Exp. Neurol, vol.182, issue.1, pp.186-194, 2003.

M. Mortreux, A novel partial gravity ground-based analog for rats via quadrupedal unloading, J. Appl. Physiol, vol.125, issue.1, pp.175-182, 1985.

H. E. Berg, Effects of lower limb unloading on skeletal muscle mass and function in humans, J. Appl. Physiol, vol.70, issue.4, pp.1882-1885, 1985.

A. M. Horstman, Changes in muscle contractile characteristics and jump height following 24 days of unilateral lower limb suspension, Eur. J. Appl. Physiol, vol.112, issue.1, pp.135-144, 2012.

T. M. Manini, Reduced physical activity increases intermuscular adipose tissue in healthy young adults, Am. J. Clin. Nutr, vol.85, issue.2, pp.377-384, 2007.

P. A. Tesch, J. T. Trieschmann, and A. Ekberg, Hypertrophy of chronically unloaded muscle subjected to resistance exercise, J. Appl. Physiol, vol.96, issue.4, pp.1451-1458, 1985.

L. Brocca, Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery, J. Physiol, vol.593, issue.24, pp.5361-5385, 2015.

A. Pavy-le-traon, From space to Earth: advances in human physiology from 20 years of bed rest studies, vol.101, pp.143-194, 1986.

B. A. Alkner and P. A. Tesch, Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest, Acta Physiol. Scand, vol.181, issue.3, pp.345-357, 2004.

J. Rittweger, Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study, Bone, vol.36, issue.6, pp.1019-1029, 2005.

K. Yamashita-goto, Maximal and submaximal forces of slow fibers in human soleus after bed rest, J. Appl. Physiol, vol.91, issue.1, pp.417-424, 1985.

Y. Ohira, T. Nomura, and F. Kawano, Effects of spaceflight and/or hindlimb suspension on rat neck muscle, Biol. Sci. Space, vol.13, issue.3, pp.156-157, 1999.

L. Larsson, Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells, Pflügers Archiv, vol.432, issue.2, pp.320-328, 1996.

E. B. Shulzhenko, Deconditioning during prolonged immersion and possible countermeasures, Life Sci. Space Res, vol.14, pp.289-294, 1976.

N. M. Navasiolava, Long-term dry immersion: review and prospects, Eur. J. Appl. Physiol, vol.111, issue.7, pp.1235-1260, 2011.

R. Demangel, Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model, J. Physiol, vol.595, issue.13, pp.4301-4315, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01603841

A. F. Pagano, Short-term disuse promotes fatty acid infiltration into skeletal muscle, J. Cachexia Sarcopenia Muscle, vol.9, issue.2, pp.335-347, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837668

S. Trappe, Exercise in space: human skeletal muscle after 6 months aboard the International Space Station, J. Appl. Physiol, vol.106, issue.4, pp.1159-1168, 1985.

M. , C. Gomez-cabrera, J. Vina, and L. L. Ji, Role of redox signaling and inflammation in skeletal muscle adaptations to training, Antioxidants, vol.5, issue.4, 2016.

S. K. Powers, Reactive oxygen species: impact on skeletal muscle, Comp. Physiol, vol.1, issue.2, pp.941-969, 2011.

B. Commoner, J. Townsend, and G. E. Pake, Free radicals in biological materials, Nature, vol.174, issue.4432, pp.689-691, 1954.

K. J. Davies, Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun, vol.107, issue.4, pp.1198-1205, 1982.

H. Kondo, M. Miura, and Y. Itokawa, Oxidative stress in skeletal muscle atrophied by immobilization, Acta Physiol. Scand, vol.142, issue.4, pp.527-528, 1991.

J. F. Desaphy, Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles, Pharmacol. Res, vol.61, issue.6, pp.553-563, 2010.

M. A. Zergeroglu, Mechanical ventilation-induced oxidative stress in the diaphragm, J. Appl. Physiol, vol.95, issue.3, pp.1116-1124, 1985.

D. J. Falk, Mechanical ventilation promotes redox status alterations in the diaphragm, J. Appl. Physiol, vol.101, issue.4, pp.1017-1024, 1985.

A. Agten, N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation, Crit. Care Med, vol.39, issue.4, pp.777-782, 2011.

N. Moroz, Oxidants regulated diaphragm proteolysis during mechanical ventilation in rats, Anesthesiology, vol.131, issue.3, pp.605-618, 2019.

K. P. Howe, Mechanical ventilation antioxidant trial, Am. J. Crit. Care, vol.24, issue.5, pp.440-445, 2015.

M. Gomez-cabrera, Exercise as an antioxidant: it up-regulates important enzymes for cell adaptations to exercise, Sci. Sports, vol.21, issue.2, pp.85-89, 2006.

M. and C. Gomez-cabrera, Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic, Biol. Med, vol.86, pp.37-46, 2015.

E. I. Glover, Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy, Appl. Physiol. Nutr. Metabol, vol.35, issue.2, pp.125-133, 2010.

H. Kuwahara, Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy, Free Radic, Biol. Med, vol.48, issue.9, pp.1252-1262, 2010.

L. Brocca, Is oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimb-unloaded mice, Exp. Physiol, vol.95, issue.2, pp.331-350, 2009.

B. Ferrando, Allopurinol partially prevents disuse muscle atrophy in mice and humans, Sci. Rep, vol.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744457

H. Kondo, Oxidative stress during recovery from muscle atrophy, FEBS Lett, vol.326, issue.1-3, pp.189-191, 1993.

M. F. Mccarty, J. Barroso-aranda, and F. Contreras, The "rejuvenatory" impact of lipoic acid on mitochondrial function in aging rats may reflect induction and activation of PPAR-gamma coactivator-1alpha, Med. Hypotheses, vol.72, issue.1, pp.29-33, 2009.

S. K. Powers, Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness, Crit. Care Med, vol.39, issue.7, pp.1749-1759, 2011.

J. Qiu, Mechanistic role of reactive oxygen species and therapeutic potential of antioxidants in denervation-or fasting-induced skeletal muscle atrophy, Front. Physiol, vol.9, p.215, 2018.

J. Ábrigo, Role of oxidative stress as key regulator of muscle wasting during cachexia, Oxid. Med. Cell Longev, p.2063179, 2018.

C. Kang, PGC-1alpha overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization, Faseb. J, vol.29, issue.10, pp.4092-4106, 2015.

H. Hyatt, Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: a review of the causes and effects, Arch. Biochem. Biophys, vol.662, pp.49-60, 2019.

V. A. Fajardo, Cardiolipin content, linoleic acid composition, and tafazzin expression in response to skeletal muscle overload and unload stimuli, Sci. Rep, vol.7, issue.1, p.2060, 2017.

S. Yamaoka, R. Urade, and M. Kito, Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil, J. Nutr, vol.118, issue.3, pp.290-296, 1988.

A. V. Birk, Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis, Br. J. Pharmacol, vol.171, issue.8, pp.2017-2028, 2014.

S. Matecki, Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation, Proc. Natl. Acad. Sci. U. S. A, vol.113, issue.32, pp.9069-9074, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01800610

M. D. Brand, Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins, Free Radic, Biol. Med, vol.37, issue.6, pp.755-767, 2004.

A. J. Kowaltowski, Mitochondria and reactive oxygen species, Free Radic, Biol. Med, vol.47, issue.4, pp.333-343, 2009.

R. Yang and M. Rincon, Mitochondrial Stat3, the need for design thinking, Int. J. Biol. Sci, vol.12, issue.5, pp.532-544, 2016.

D. Yeo, Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo, Free Radic, Biol. Med, vol.130, pp.361-368, 2018.

M. Sandri, PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.44, pp.16260-16265, 2006.

K. Bedard, B. Lardy, and K. H. Krause, NOX family NADPH oxidases: not just in mammals, vol.89, pp.1107-1112, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00400124

D. Javesghani, Molecular characterization of a superoxide-generating NAD (P)H oxidase in the ventilatory muscles, Am. J. Respir. Crit. Care Med, vol.165, issue.3, pp.412-418, 2002.

A. Mansouri, Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging, Mech. Ageing Dev, vol.127, issue.3, pp.298-306, 2006.

J. M. Mcclung, Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation, Crit. Care Med, vol.37, issue.4, pp.1373-1379, 2009.

T. Kadoguchi, Deletion of NAD(P)H oxidase 2 prevents angiotensin II-induced skeletal muscle atrophy, BioMed Res. Int, p.3194917, 2018.

J. M. Mccord, R. S. Roy, and S. W. Schaffer, Free radicals and myocardial ischemia. The role of xanthine oxidase, Adv. Myocardiol, vol.5, pp.183-189, 1985.

B. Ibrahim and P. J. Stoward, The histochemical localization of xanthine oxidase, Histochem. J, vol.10, issue.5, pp.615-617, 1978.

M. C. Gomez-cabrera, Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic, Biol. Med, vol.86, pp.37-46, 2015.

H. Kondo, Mechanism of oxidative stress in skeletal muscle atrophied by immobilization, Am. J. Physiol, vol.265, issue.6, pp.839-844, 1993.

Y. Matuszczak, S. Arbogast, and M. B. Reid, Allopurinol mitigates muscle contractile dysfunction caused by hindlimb unloading in mice, Aviat Space Environ. Med, vol.75, issue.7, pp.581-588, 2004.

M. A. Whidden, Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction, J. Appl. Physiol, vol.106, issue.2, pp.385-394, 2009.

P. Costelli, Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model, J. Clin. Invest, vol.92, issue.6, pp.2783-2789, 1993.

N. Bashan, Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species, Physiol. Rev, vol.89, issue.1, pp.27-71, 2009.

E. Schmid, Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide: the structural basis of redox priming, Faseb. J, vol.13, issue.12, pp.1491-1500, 1999.

A. Katz, Modulation of glucose transport in skeletal muscle by reactive oxygen species, J. Appl. Physiol, vol.102, issue.4, pp.1671-1676, 1985.

Y. Higaki, Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway, Am. J. Physiol. Endocrinol. Metab, vol.294, issue.5, pp.889-897, 2008.

M. Ristow, Antioxidants prevent health-promoting effects of physical exercise in humans, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.21, pp.8665-8670, 2009.

P. L. Tan, Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle, Int. J. Biochem. Cell Biol, vol.62, pp.72-79, 2015.

A. O'loghlen, Characterization of the activity of human MAP kinase-interacting kinase Mnk1b, Biochim. Biophys. Acta, vol.1773, issue.9, pp.1416-1427, 2007.

Z. Feng, The coordinate regulation of the p53 and mTOR pathways in cells, Proc. Natl. Acad. Sci. U. S. A, vol.102, issue.23, pp.8204-8209, 2005.

A. Alexander, ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.9, pp.4153-4158, 2010.

S. K. Powers, Z. Radak, and L. L. Ji, Exercise-induced oxidative stress: past, present and future, J. Physiol, vol.594, issue.18, pp.5081-5092, 2016.

Y. Jiang, Control of mTOR signaling by ubiquitin, vol.38, pp.3989-4001, 2019.

J. L. Betters, Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis, Am. J. Respir. Crit. Care Med, vol.170, issue.11, pp.1179-1184, 2004.

C. K. Sen and L. Packer, Antioxidant and redox regulation of gene transcription, Faseb. J, vol.10, issue.7, pp.709-720, 1996.

S. T. Russell, H. Eley, and M. J. Tisdale, Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II, Cell. Signal, vol.19, issue.8, pp.1797-1806, 2007.

M. B. Reid, Y. P. Li, and ;. Gomez-cabrera, Tumor necrosis factor-alpha and muscle wasting: a cellular M, Redox Biology, vol.35, p.101531, 2020.

, Respir. Res, vol.2, issue.5, pp.269-272, 2001.

M. Pedersen, Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes, Mech. Ageing Dev, vol.124, issue.4, pp.495-502, 2003.

G. Dobrowolny, Skeletal muscle is a primary target of SOD1G93A-mediated toxicity, Cell Metabol, vol.8, issue.5, pp.425-436, 2008.

J. M. Mcclung, p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting, Am. J. Physiol. Cell Physiol, vol.298, issue.3, pp.542-549, 2010.

G. G. Rodney, R. Pal, and R. Abo-zahrah, Redox regulation of autophagy in skeletal muscle, Free Radic, Biol. Med, vol.98, pp.103-112, 2016.

M. Mofarrahi, Autophagic flux and oxidative capacity of skeletal muscles during acute starvation, Autophagy, vol.9, issue.10, pp.1604-1620, 2013.

M. Rahman, Reactive oxygen species regulation of autophagy in skeletal muscles, Antioxidants Redox Signal, vol.20, issue.3, pp.443-459, 2014.

J. Navarro-yepes, Oxidative stress, redox signaling, and autophagy: cell death versus survival, Antioxidants Redox Signal, vol.21, issue.1, pp.66-85, 2014.

H. Yuan, LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection, Am. J. Physiol. Heart Circ. Physiol, vol.296, issue.2, pp.470-479, 2009.

R. Scherz-shouval and Z. , Elazar, ROS, mitochondria and the regulation of autophagy, Trends Cell Biol, vol.17, issue.9, pp.422-427, 2007.

E. E. Talbert, Calpain and caspase-3 play required roles in immobilizationinduced limb muscle atrophy, J. Appl. Physiol, vol.114, issue.10, pp.1482-1489, 1985.

S. Pal, Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways, Food Chem. Toxicol, vol.83, pp.36-47, 2015.

W. Siems, High sensitivity of plasma membrane ion transport ATPases from human neutrophils towards 4-hydroxy-2,3-trans-nonenal, Life Sci, vol.73, issue.20, pp.2583-2590, 2003.

D. C. Andersson, Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging, Cell Metabol, vol.14, issue.2, pp.196-207, 2011.

A. J. Dirks and C. Leeuwenburgh, Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, Xlinked inhibitor of apoptosis, caspase-3, and caspase-12, Free Radic, Biol. Med, vol.36, issue.1, pp.27-39, 2004.

J. M. Mcclung, Calpain-1 is required for hydrogen peroxide-induced myotube atrophy, Am. J. Physiol. Cell Physiol, vol.296, issue.2, pp.363-371, 2009.

P. M. Siu, Y. Wang, and S. E. Alway, Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes, Life Sci, vol.84, pp.468-481, 2009.

A. J. Primeau, P. J. Adhihetty, and D. A. Hood, Apoptosis in heart and skeletal muscle, Can. J. Appl. Physiol, vol.27, issue.4, pp.349-395, 2002.

J. Springer, Inhibition of xanthine oxidase reduces wasting and improves outcome in a rat model of cancer cachexia, Int. J. Canc, vol.131, issue.9, pp.2187-2196, 2012.

R. T. Hamilton, M. E. Walsh, and H. Van-remmen, Mouse models of oxidative stress indicate a role for modulating healthy aging, J. Clin. Exp. Pathol, vol.4, issue.5, 2012.

S. S. Deepa, Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice, Free Radic, Biol. Med, vol.132, pp.19-23, 2019.

S. S. Deepa, A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse, Geroscience, vol.39, issue.2, pp.187-198, 2017.

S. Nobrega-pereira, G6PD protects from oxidative damage and improves healthspan in mice, Nat. Commun, vol.7, p.10894, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837624

H. J. Appell, J. A. Duarte, and J. M. Soares, Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy, Int. J. Sports Med, vol.18, issue.3, pp.157-160, 1997.

S. Demiryürek and A. Babül, Effects of vitamin E and electrical stimulation on the denervated rat gastrocnemius muscle malondialdehyde and glutathione levels, Int. J. Neurosci, vol.114, issue.1, pp.45-54, 2004.

S. Servais, Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis? Free Radic, Biol. Med, vol.42, issue.5, pp.627-635, 2007.

M. A. Whidden, Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm, J. Appl. Physiol, vol.108, issue.5, pp.1376-1382, 1985.

E. Pigna, HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses, Skeletal Muscle, vol.8, issue.1, p.6, 2018.

P. Lewis, Redox remodeling is pivotal in murine diaphragm muscle adaptation to chronic sustained hypoxia, Am. J. Respir. Cell Mol. Biol, vol.55, issue.1, pp.12-23, 2016.

C. M. Shortt, Reactive oxygen species mediated diaphragm fatigue in a rat model of chronic intermittent hypoxia, Exp. Physiol, vol.99, issue.4, pp.688-700, 2014.

M. Farid, Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus, Nutr. Metab, vol.2, p.20, 2005.

H. Dridi, Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation, Free Radic, Biol. Med, vol.146, pp.383-391, 2020.

E. E. Talbert, Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant, J. Appl. Physiol, vol.115, issue.4, pp.529-538, 1985.

K. Min, Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy, J. Appl. Physiol, vol.111, issue.5, pp.1459-1466, 1985.

S. Arbogast, Bowman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice, J. Appl. Physiol, vol.102, issue.3, pp.956-964, 2007.

J. R. Jackson, Mediation of endogenous antioxidant enzymes and apoptotic signaling by resveratrol following muscle disuse in the gastrocnemius muscles of young and old rats, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.299, issue.6, pp.1572-1581, 2010.

Y. Asami, Resveratrol attenuates denervation-induced muscle atrophy due to the blockade of atrogin-1 and p62 accumulation, Int. J. Med. Sci, vol.15, issue.6, pp.628-637, 2018.

M. Ogawa, The preventive effect of ?-carotene on denervation-induced soleus muscle atrophy in mice, Br. J. Nutr, vol.109, issue.8, pp.1349-1358, 2013.

T. Shibaguchi, Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats, Phys. Rep, vol.4, issue.15, 2016.

T. Yoshihara, Dietary astaxanthin supplementation attenuates disuse-induced muscle atrophy and myonuclear apoptosis in the rat soleus muscle, J. Physiol. Sci, vol.67, issue.1, pp.181-190, 2017.

B. Ferrando, Allopurinol and its role in the treatment of sarcopenia, Rev. Esp. Geriatr. Gerontol, vol.49, issue.6, pp.292-298, 2014.

M. Konishi, Febuxostat improves outcome in a rat model of cancer cachexia, J. Cachexia Sarcopenia Muscle, vol.6, issue.2, pp.174-180, 2015.

T. J. Koesterer, S. L. Dodd, and S. Powers, Increased antioxidant capacity does not attenuate muscle atrophy caused by unweighting, J. Appl. Physiol, vol.93, issue.6, pp.1959-1965, 1985.

C. Arc-chagnaud, Evaluation of an antioxidant and anti-inflammatory cocktail against human hypoactivity-induced skeletal muscle deconditioning, Front. Physiol, vol.11, p.71, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02640794