Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A stochastic SIR model on a graph with epidemiological and population dynamics occurring over the same time scale

Abstract : We define and study an open stochastic SIR (Susceptible-Infected-Removed) model on a graph in order to describe the spread of an epidemic on a cattle trade network with epidemiological and demographic dynamics occurring over the same time scale. Population transition intensities are assumed to be density-dependent with a constant component, the amplitude of which determines the overall scale of the population process. Standard branching approximation results for the epidemic process are first given, along with a numerical computation method for the probability of a major epidemic outbreak. This procedure is illustrated using real data on trade-related cattle movements from a densely populated livestock farming region in western France (Finistere) and epidemiological parameters corresponding to an infectious epizootic disease. Then we exhibit an exponential lower bound for the extinction time and the total size of the epidemic in the stable endemic case as a scaling parameter goes to infinity using results inspired by the Freidlin-Wentzell theory of large deviations from a dynamical system.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.inrae.fr/hal-02873990
Déposant : Roselyne Tâche <>
Soumis le : jeudi 18 juin 2020 - 16:53:33
Dernière modification le : vendredi 19 juin 2020 - 03:35:17

Lien texte intégral

Identifiants

Collections

Citation

Pierre Montagnon. A stochastic SIR model on a graph with epidemiological and population dynamics occurring over the same time scale. Journal of Mathematical Biology, Springer Verlag (Germany), 2019, 79 (1), pp.31-62. ⟨10.1007/s00285-019-01349-0⟩. ⟨hal-02873990⟩

Partager

Métriques

Consultations de la notice

27