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Introduction

Detecting anomalies in univariate and multivariate time series is a critical question in many practical applications, such as fault or damage detection, medical informatics, intrusion or fraud detection, and industrial processes control. The present contribution stems from a joint work with the Health Monitoring Department of Safran Aircraft Engines Company. The motivation behind this collaboration was to find a judicious framework for mining the multivariate highfrequency data recorded on board computers during flights, and isolate unusual patterns, abnormal behaviors of the engine, and possibly anomalies. The issue of anomaly detection on flight data is not new, and some previous results of the joint work with Safran may be found in [START_REF] Bellas | Anomaly detection based on confidence intervals using som with an application to health monitoring[END_REF] and [START_REF] Rabenoro | Anomaly detection based on indicators aggregation[END_REF].

In a broader context, the literature on anomaly detection is quite abundant and was developed for decades in various fields: machine learning, statistics, signal processing. The techniques used for addressing the matter use supervised or unsupervised learning, model-based algorithms, information theory or spectral decomposition. For quite an exhaustive review, the reader may refer to [START_REF] Chandola | Anomaly detection: A survey[END_REF].

More particularly, we focus here on the issue of detecting collective anomalies or discords -an unusual subsequence of a time-series, in contrast to local anomalies which consist in unique abnormal time-instants -in a multivariate context. Detecting collective anomalies or unusual patterns in univariate timeseries has been extensively studied, and we may cite, for instance, algorithms based on piecewise aggregated approximation [START_REF] Lin | A symbolic representation of time series, with implications for streaming algorithms[END_REF], nearest-neighbor distances [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF], Fourier or wavelet transforms [START_REF] Chen | Multi-scale anomaly detection algorithm based on infrequent pattern of time series[END_REF], [START_REF] Michael | Two state-based approaches to program-based anomaly detection[END_REF], Kalman filters [START_REF] Knorn | Adaptive kalman filtering for anomaly detection in software appliances[END_REF], ... In the multivariate case, anomaly detection has to take into account both the multivariate aspect of the data, and the temporal span, the possibly existing correlations and dependencies. Whereas the initial approaches used time series projection [START_REF] Galeano | Outlier detection in multivariate time series by projection pursuit[END_REF] and independent component analysis [START_REF] Baragona | Outliers detection in multivariate time series by independent component analysis[END_REF] to convert the multivariate time series into a univariate one, or performed separate anomaly detection for each variable [START_REF] Lakhina | Characterization of network-wide anomalies in traffic flows[END_REF], global approaches have been developed only recently. Among these recent works, one may cite, for instance [START_REF] Cheng | A robust graph-based algorithm for detection and characterization of anomalies in noisy multivariate time series[END_REF], who use a kernel-based method for capturing dependencies among variables in the time series, and [START_REF] Malhotra | Long short term memory networks for anomaly detection in time series[END_REF] who use neural networks for isolating anomalous regions in a multivariate time-series.

This paper addresses the issue of detecting anomalies in a multivariate time series context. Unlike some of the cited literature above, we suppose the data is a set of multivariate time-series, which have already been segmented into patterns of unequal lengths, using some change-point detection technique. Our goal is to find the most unusual of them, and for doing so we take the unsupervised learning approach (as defined by the AI). No hypothesis whatsoever is made on some underlying model, the only constraint is to suppose that one component of the time series, called key variable in the sequel, exists, may be distinguished, and its behavior strongly influences the behavior of the rest. The approach we introduce here may be briefly described as follows: first, the initial patterns of the key variable are summarized by a fixed number of numerical features, second, they are clustered into an optimal number of clusters, third, the multi-variate patterns are realigned and synchronized within each cluster, fourth, unusual patterns are extracted after computing confidence tubes from empirical quantiles in each cluster. This approach was introduced in [START_REF] Faure | Détection de ruptures et identification des causes ou des symptômes dans le fonctionnement des turboréacteurs durant les vols et les essais[END_REF], and the contribution of the present paper relies in the use of conditional first order quantiles for computing the confidence tubes, instead of quantiles computed at each time instant, independently of the past. As will be illustrated in the Experiments section, this conditional approach greatly improves the ratio of false positives detection.

For simplicity purposes, the bivariate case only is presented here, but the algorithm can be easily extended to higher dimensional data.

The rest of the paper is organized as follows: Section 2 describes the main steps of the proposed methodology, Section 3 contains results on simulated examples and a comparison between the previous version of the method and the modified one based on conditional quantiles, while Section 4 illustrates the method on real-life dataset stemming from flight data.

Methodology

Let S a = (X a , Y a ) be a set of bivariate R 2 -valued time series, a = 1, . . . A. For each a, X a and Y a are of equal length l a . Note that the lengths l a can be different from one time series to another one. We assume that one of the two variables is a key variable (easier to observe, with a limited number of different behaviors, which influences the behavior of the other). This hypothesis is not very restrictive since in many processes, there is a measure which gives a first information on all the others variables (water temperature, blood composition, temperature of the core, etc. according to the application field.) This hypothesis leads us to define two successive levels of analysis: the first one deals with the key variable (say X a ) and the second one will further take into account the second variable (Y a ).

When assessing the possible existence of abnormal elements, a straightforward approach would consist in mixing together all signals (X a ) a , compute an average signal, and say that all signals far from this average may be labelled as anomalies. However, there is one major issue with this approach, coming from the fact that the lengths l a are different, so how does one actually compute an average signal ? Furthermore, even if one was to find a way to define the average signal, there is no reason to summarize all signals behaviors by the average one. Hence, in order to have a better representation of the data, we choose to cluster signals X a . Clustering will provide a limited number of homogeneous groups, and within each of them, one may define a representative signal.

Clustering

The difficulty of dealing with signals of different lengths is overcome as suggested in [START_REF] Faure | Using self-organizing maps for clustering anc labelling aircraft engine data phases[END_REF]: each signal X a is replaced by a fixed-length vector composed of its relevant numerical features (length, midpoint value, median, variance, variances on the two halves, means of the two halves, ...). Let M be the number of relevant features for the set of (X a ) a time series. Any clustering algorithm may then be used on the feature-vectors data. In the following, let C 1 , C 2 , . . . , C I denote the clusters obtained on the feature vectors, where I is the number of clusters.

In the following, the clustering procedure consisted into first training a selforganizing map (SOM) with a large number of clusters, and second computing an optimal partitioning through an hierarchical agglomerative clustering (HAC) applied to the code-vectors computed by SOM. The optimal number of clusters is selected using an empirical criterion based on the percentage of explained variance. It is worth mentioning at this point that one may avoid summarizing time-series by a fixed number of features, and use some time-series dissimilarity measure (dynamic time warping, the distance defined in Eq. ( 1), ...) instead. In this case, relational or kernel SOM [START_REF] Olteanu | On-line relational and multiple relational som[END_REF] may be used for clustering.

Once the clustering is trained, each cluster C i contains a set of time-series X a , say X i a for simplicity. They are grouped together based on the similarities of their extracted features, but may have different lengths. Hence, the next step of our methodology is to summarize each cluster by a reference curve, RC i , which will serve hereafter for computing quantiles and for visualisation purposes.

Introducing reference curves for summarizing the clusters

The notion of reference curve for a set on univariate unequal time-series as defined hereafter was introduced in [START_REF] Faure | Design aircraft engine bivariate data phases using change-point detection method and self-organizing maps[END_REF]. Let us briefly recall here the main steps of how does one compute it.

First, one has to define the dissimilarity between two curves with different lengths, say X a1 and X a2 , with lengths l 1 and l 2 , and

l 1 < l 2 . If X a1 = (x 1 , x 2 , . . . , x l1 ), its extended version Xa1 of length l 2 + l 1 + l 2 is Xa1 = (x 1 , x 1 , . . . , x 1 l2 | x 1 , x 2 , . . . , x l1 l1 | x l1 , x l1 , . . . , x l1 l2 ).
Note that if X a1 is extracted from a longer time series, the extensions at left and at right may be done using the true values in the complete series. The dissimilarity between X a1 and X a2 is the defined as: diss(X a1 , X a2 ) = min q∈1,...,l1+l2-1

I q ( Xa1 ) -X a2 2l 2 , (1) 
where I q ( Xa1 ) = Xa1 [q, q + l 2 -1] is a l 2 -long section of Xa1 taken between indexes q and q + l 2 -1, for q = 1, . . . , l 1 + l 2 + 1.

Next, one computes the reference curve RC i of a cluster C i described by the curves X i a as being the one curve among the |C i | available which minimizes the sum of dissimilarities with respect to all curves in the cluster. Let L i be the length of RC i . Once RC i is computed, all the curves in the cluster are realigned with respect to it. This step is achieved by applying a transformation which combines translation, completion and truncation, as described in the next section.

Time-series realignment within clusters

For realigning curves within a cluster, the idea is to use a similar approach to that in the previous section. We briefly describe it here, using the notations and approach in [START_REF] Faure | Design aircraft engine bivariate data phases using change-point detection method and self-organizing maps[END_REF]. Consider a curve X i a in C i with length l i a . X i a is then extended at its left by L i constant values equal to its first value X i a (1), and at its right by L i constant values equal to its last value X i a (l i a ). The resulting curve is denoted Xi a . One may then compute

diss(X i a , RC i ) = min q∈1,...,l i a +Li+1 I q ( Xi a ) -RC i 2L i (2) 
and

q i a = arg min q∈1,...,l i a +Li+1 I q ( Xi a ) -RC i 2L i , (3) 
where I q ( Xi a ) = Xi a [q, q + L i -1] is a L i -long section of Xi a , computed between instants q and q + L i -1 , for q = 1, . . . , l i a + L i + 1.

Each curve X i a of cluster C i is thus replaced by I q i a ( Xi a ), denoted hereafter Xi a . In practice, this means replacing the initial unequal-length curves by a set of new curves, similar to the initial ones, and having all length L i . The same synchronization-transformation is applied to the second signal Y i a : it is extended, translated, cut at the same indexes as X i a . The transformed signal is denoted by Y i a and has also the same length L i . For the sake of simplicity, we denote by C i the set of signals X i a as well as that of the transformed signals Xi a . The corresponding second components Y i a or Y i a define a set D i . We denote by E i the set of all the couples of transformed signals ( Xi a , Y i a ).

Anomaly detection

Let us recall at this point that our main goal is to detect possibly atypical curves in E i . The anomalies can be related to the first component X, to the second one Y , or to both. Our approach consists in building quantile-based confidence tubes in each set C i and D i , for a given confidence level. The simplest way to do this is to compute point-by-point empirical quantiles, which is equivalent to supposing there is no time dependency in the data. Another solution is to take the past instants into account and consider rather conditional quantiles, as suggested in [START_REF] Samanta | Non-parametric estimation of conditional quantiles[END_REF] and [START_REF] Charlier | Conditional quantile estimation based on optimal quantization: from theory to practice[END_REF]. We describe next both approaches.

Point-by-point confidence tubes (CT method). Confidence tubes are computed in each cluster, for each set of realigned curves ( Xi a (t), Y i a (t)), where t = 1, . . . , L i . For a given confidence level 1 -α (typically α = 5%), one denotes by q X t, α 2 (resp. q Y t, α

2

) and q X t,1-α 2 (resp. q Y t,1-α

2

) the α-quantiles computed for each time instant t.

The 1 -α confidence tube of the set Xi a in C i is defined with a lower bound curve given by (q X t, α 2 ) t=1,...,Li and an upper bound curve given by (q X t,1-α 2 ) t=1,...,Li .

The 1 -α confidence tube of the set Y i a in D i are similarly computed. With the previous definition of confidence tubes, we may now introduce the notion of anomaly. In the subsequent, a curve in C i or D i is considered as anomalous if at least P % consecutive instants are outside the corresponding confidence tube. P is generally to be tuned by the user; for the examples in this manuscript, its value was fixed to 10%.

Conditional quantiles (CQ method) Since data are time series and since one has strong reasons to suppose a dependency structure in time, another approach for computing empirical quantiles consists in taking the past values of the series into account. Conditional quantiles are also computed on the realigned curves ( Xi a (t), Y i a (t)), where t = 1, . . . , L i . For a given confidence level 1 -α (typically α = 5%), one denotes by qX ) the αquantiles computed for each time instant t, conditionally on the very recent past, t -1. We only consider here a dependency structure of order 1, but more sophisticated ones could be used, with an optimal selection of the number of lags.

The lower conditional quantiles will be computed by solving

P Xi a (t) ≤ qX t, α 2 (x)/ Xi a (t -1) = x = α 2 ,
while the upper ones by solving

P Xi a (t) ≥ qX t,1-α 2 (x)/ Xi a (t -1) = x = α 2 .
As is greater than a certain threshold P , fixed by the user (usually 10 %). The 1 -α conditional quantiles of the set Y i a in D i are similarly computed.

An experimental example on simulated data

We first illustrate the proposed methodology and the interest of using conditional quantiles instead of point-by-point ones on a simulated example. 2,000 artificial bivariate time series were built, with an X-variable having one of the four shapes described in Figure 1. These shapes were inspired by the real-data from aircraft flights that will be described in the next section. For each time series, its length is randomly generated (between 500 and 3,000 time instants), as well as the instant where the slope changes (between the first and the second third of the series), the slope values. A Gaussian centered noise with a variance varying between 10 and 100 is also added for supplementary noise, and eventually the resulting curves are smoothed using a 5-degree polynomial. The Y -variables are simulated starting from X: for a given time series X a , a change-point z is randomly selected, and a new time series is simulated with two random slopes before and after the change-point. The slopes are selected more or less in the same range as the X a 's. If necessary, Y a is extended or cut so as to have the same length as X a . Eventually, the resulting curves are also smoothed using a 5-degree polynomial. The resulting X-curves, Y -curves, and a bivariate example (X a , Y a ) of simulated time series are illustrated in Figure 2. The proposed methodology was then applied to the simulated data: the curves were clustered, realigned within each cluster, and point-by-point and conditional quantiles were computed in each cluster. Eventually, anomalous curves identified by each of the two methods were extracted, and compared with the ground truth.

Clustering with SOM followed by HAC yielded five final clusters, denoted C 1 , C 2 , . . . , C 5 for the X curves, and D 1 , D 2 , . . . , D 5 for the Y curves. We recall here that D i are defined by D i = {Y a /X a ∈ C i }, i = 1, . . . , 5. The resulting clusters, which are globally homogeneous, are illustrated in Figure 4. The reference curves RC 1 , . . . , RC 5 computed according to the definition in Section 2.2, are drawn with solid red lines in Figure 4.

C1 C2 C3 C4 C5 D1 D2 D3 D4 D5
Fig. 4: Clustering (X-curves on top and Y -curves below)

Next, X and Y time-series within each cluster are realigned using the transformation in Section 2.3. We only illustrate here the results for the first cluster. Eventually, the last step consists in detecting the atypical curves in each cluster after having computed the confidence tubes (CT) with point-by-point empirical quantiles, and empirical conditional quantiles (CQ) (see Section 2.4). Figure 6-a presents the results of the CT detection method for cluster C 1 : all the X-curves in C 1 are drawn and the detected atypical ones are highlighted in red. The Y -curves and the detected atypical ones are displayed in Figure 6-b. In the same way, Figure 6-c and-d presents the result of the CQ detection method. At first glance, both methods seem to detect the same atypical curves.

The two approaches for identifying anomalous curves are then compared by computing their confusion matrices for each cluster. The confusion matrices for the CT and CQ methods are given in Tables 1 and2. The following abbreviate notations were used: A for atypical curves, NA for normal curves, D for curves detected as atypical, ND for curves detected as normal. On the one hand, the CT method appears to detect a not negligible number of false alarms, in each cluster. On the other hand, with the CT method the number of false alarms decreases dramatically. The results are globally significantly improved. Let us now illustrate the method on a real dataset, containing bivariate timeseries recorded during aircraft flights. Some of the following results are excerpted from C. Faure's PhD thesis [START_REF] Faure | Détection de ruptures et identification des causes ou des symptômes dans le fonctionnement des turboréacteurs durant les vols et les essais[END_REF], completed in collaboration with the Health Monitoring Department of Safran Aircraft Engines Company. In actuality, the real data contained much higher dimensional time series, since the sensors placed on the engines register more than 50 different signals. Here, for illustration purposes, we only considered the fan speed and the temperature inside the engine. The fan speed is the key variable X and the temperature is Y . The data was initially made of 549 flights and 8 different engines, with a mean duration of 2.8 hours per flight. After having partitioned the flight data using some change-point detection algorithm, 4500 transient ascending phases (time-series with an ascending behavior) were extracted, clustered, and the rest of the methodology described in Section 2 was applied to them. Their lengths are comprised between 200 and 10,000 time units (8Hz).

We describe next the results obtained in one cluster only, that mainly contains take-offs. Figure 7 contains the atypical curves (red) with respect to the normal ones (blue), detected with the CT ((a) and (b) for the X and Y curves) and the CQ methods ((c) and (d) for the X and Y curves). The CT method detects 12 atypical X-curves, while the CQ detects 14 (6 common ones). As for the Y -curves, CT detects 24 anomalies, CQ 18, of which 14 anomalies are common. Let us stress also the case of bi-dimensional curves which are detected as atypical for X and for Y by both methods (see Figure 8). The CT method detects three couples which are atypical for X and for Y , while the CQ method finds ten couples, that include the first three. Again, the CQ method has better performances than the CT method, even though it is not possible to compute the confusion matrices here, since we have no a priori knowledge about the existence of the anomalies. In this real-world study, the experts have been able to bring a validation to our findings. The detected cases corresponded to some events that they could identify. 

Conclusion

We describe a complete methodology, based upon clustering, curve realignment and empirical quantiles computation, that allows one to detect abnormal elements in a large sample of time series with unequal lengths. When using conditional quantiles, the results are dramatically improved and the number of false alarms significantly reduced. We strongly believe that these results could be further improved by an optimal selection of the time lag in the conditional quantiles computation. From a practical point of view, the proposed methodology may be very useful in helping experts and engineers identify abnormal behaviors in the signals recorded during aircraft engines utilization. In the case of aircraft engine real data, companies may use this technique to increase the probability of detecting any kind of atypical, abnormal behavior of some recorded variable, in order to prevent any incident and to plan the maintenance events.
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 1 Fig. 1: Four shapes used for the simulated X-signals

Fig. 2 :

 2 Fig. 2: (a): Example of bivariate signal, X a in blue and Y a in red; (b): All signals X a ; (c): All signals Y a
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 3 Fig. 3: Examples of atypical curves (X blue, Y red)
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 55 Fig. 5: Realignment and transformation of the curves in C 1 (a,b) and D 1 (c,d), initial curves in (a) and (c), transformed ones in (b) and (d)
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 6 Fig. 6: Anomalies detected in cluster 1 with the CT method: (a) -on X; (b)on Y . Anomalies detected in cluster 1 with the CQ method: (c) -on X; (d) -on Y . Normal curves are in blue, abnormal in red.
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 7 Fig. 7: Anomalies detected in cluster 1 with the CT method: (a) -on X; (b)on Y . Anomalies detected in cluster 1 with the CQ method: (c) -on X; (d) -on Y . Normal curves are in blue, abnormal in red.

Fig. 8 :

 8 Fig. 8: Three atypical couples are detected by the CT method (X-curves in (a) and Y -curves in (b)). The CQ method detects seven more couples drawn in (c) and (d). The reference curve of the cluster is represented in red dots in (a) and (c). The confidence tubes defined by the CT method are in green dots.

Table 1 :

 1 Confusion matrices for the CT method, in bold the number of false alarms

	26 19 0 19 41 25 66

Table 2 :

 2 Confusion matrices for the CQ method, in bold the number of false alarms 4 An application to real-world data