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Abstract. The anomaly detection problem for univariate or multivari-
ate time series is a critical question in many practical applications as
industrial processes control, biological measures, engine monitoring, su-
pervision of all kinds of behavior. In this paper we propose an empirical
approach to detect anomalies in the behavior of multivariate time se-
ries. The approach is based on the empirical estimation of conditional
quantiles. The method is tested on artificial data and its effectiveness is
proven in the real framework of aircraft-engines monitoring.

1 Introduction

Detecting anomalies in univariate and multivariate time series is a critical ques-
tion in many practical applications, such as fault or damage detection, medi-
cal informatics, intrusion or fraud detection, and industrial processes control.
The present contribution stems from a joint work with the Health Monitoring
Department of Safran Aircraft Engines Company. The motivation behind this
collaboration was to find a judicious framework for mining the multivariate high-
frequency data recorded on board computers during flights, and isolate unusual
patterns, abnormal behaviors of the engine, and possibly anomalies. The issue
of anomaly detection on flight data is not new, and some previous results of the
joint work with Safran may be found in [2] and [18].

In a broader context, the literature on anomaly detection is quite abundant
and was developed for decades in various fields: machine learning, statistics,
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signal processing. The techniques used for addressing the matter use supervised
or unsupervised learning, model-based algorithms, information theory or spectral
decomposition. For quite an exhaustive review, the reader may refer to [3].

More particularly, we focus here on the issue of detecting collective anoma-
lies or discords – an unusual subsequence of a time-series, in contrast to local
anomalies which consist in unique abnormal time-instants – in a multivariate
context. Detecting collective anomalies or unusual patterns in univariate time-
series has been extensively studied, and we may cite, for instance, algorithms
based on piecewise aggregated approximation [14], nearest-neighbor distances
[11], Fourier or wavelet transforms [5], [16], Kalman filters [12], ... In the multi-
variate case, anomaly detection has to take into account both the multivariate
aspect of the data, and the temporal span, the possibly existing correlations and
dependencies. Whereas the initial approaches used time series projection [10]
and independent component analysis [1] to convert the multivariate time series
into a univariate one, or performed separate anomaly detection for each variable
[13], global approaches have been developed only recently. Among these recent
works, one may cite, for instance [6], who use a kernel-based method for cap-
turing dependencies among variables in the time series, and [15] who use neural
networks for isolating anomalous regions in a multivariate time-series.

This paper addresses the issue of detecting anomalies in a multivariate time
series context. Unlike some of the cited literature above, we suppose the data is
a set of multivariate time-series, which have already been segmented into pat-
terns of unequal lengths, using some change-point detection technique. Our goal
is to find the most unusual of them, and for doing so we take the unsupervised
learning approach (as defined by the AI). No hypothesis whatsoever is made on
some underlying model, the only constraint is to suppose that one component
of the time series, called key variable in the sequel, exists, may be distinguished,
and its behavior strongly influences the behavior of the rest. The approach we
introduce here may be briefly described as follows: first, the initial patterns of
the key variable are summarized by a fixed number of numerical features, second,
they are clustered into an optimal number of clusters, third, the multi-variate
patterns are realigned and synchronized within each cluster, fourth, unusual pat-
terns are extracted after computing confidence tubes from empirical quantiles in
each cluster. This approach was introduced in [7], and the contribution of the
present paper relies in the use of conditional first order quantiles for comput-
ing the confidence tubes, instead of quantiles computed at each time instant,
independently of the past. As will be illustrated in the Experiments section, this
conditional approach greatly improves the ratio of false positives detection.

For simplicity purposes, the bivariate case only is presented here, but the
algorithm can be easily extended to higher dimensional data.

The rest of the paper is organized as follows: Section 2 describes the main
steps of the proposed methodology, Section 3 contains results on simulated exam-
ples and a comparison between the previous version of the method and the mod-
ified one based on conditional quantiles, while Section 4 illustrates the method
on real-life dataset stemming from flight data.
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2 Methodology

Let Sa = (Xa, Ya) be a set of bivariate R2-valued time series, a = 1, . . . A. For
each a, Xa and Ya are of equal length la. Note that the lengths la can be different
from one time series to another one. We assume that one of the two variables is
a key variable (easier to observe, with a limited number of different behaviors,
which influences the behavior of the other). This hypothesis is not very restrictive
since in many processes, there is a measure which gives a first information on all
the others variables (water temperature, blood composition, temperature of the
core, etc. according to the application field.) This hypothesis leads us to define
two successive levels of analysis: the first one deals with the key variable (say
Xa) and the second one will further take into account the second variable (Ya).

When assessing the possible existence of abnormal elements, a straightfor-
ward approach would consist in mixing together all signals (Xa)a, compute an
average signal, and say that all signals far from this average may be labelled as
anomalies. However, there is one major issue with this approach, coming from
the fact that the lengths la are different, so how does one actually compute an
average signal? Furthermore, even if one was to find a way to define the average
signal, there is no reason to summarize all signals behaviors by the average one.
Hence, in order to have a better representation of the data, we choose to cluster
signals Xa. Clustering will provide a limited number of homogeneous groups,
and within each of them, one may define a representative signal.

2.1 Clustering

The difficulty of dealing with signals of different lengths is overcome as suggested
in [9]: each signal Xa is replaced by a fixed-length vector composed of its relevant
numerical features (length, midpoint value, median, variance, variances on the
two halves, means of the two halves, ...). Let M be the number of relevant
features for the set of (Xa)a time series. Any clustering algorithm may then be
used on the feature-vectors data. In the following, let C1, C2, . . . , CI denote the
clusters obtained on the feature vectors, where I is the number of clusters.

In the following, the clustering procedure consisted into first training a self-
organizing map (SOM) with a large number of clusters, and second computing
an optimal partitioning through an hierarchical agglomerative clustering (HAC)
applied to the code-vectors computed by SOM. The optimal number of clusters
is selected using an empirical criterion based on the percentage of explained
variance. It is worth mentioning at this point that one may avoid summarizing
time-series by a fixed number of features, and use some time-series dissimilarity
measure (dynamic time warping, the distance defined in Eq. (1), ...) instead. In
this case, relational or kernel SOM [17] may be used for clustering.

Once the clustering is trained, each cluster Ci contains a set of time-series
Xa, say Xi

a for simplicity. They are grouped together based on the similarities of
their extracted features, but may have different lengths. Hence, the next step of
our methodology is to summarize each cluster by a reference curve, RCi, which
will serve hereafter for computing quantiles and for visualisation purposes.
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2.2 Introducing reference curves for summarizing the clusters

The notion of reference curve for a set on univariate unequal time-series as
defined hereafter was introduced in [8]. Let us briefly recall here the main steps
of how does one compute it.

First, one has to define the dissimilarity between two curves with differ-
ent lengths, say Xa1

and Xa2
, with lengths l1 and l2, and l1 < l2. If Xa1

=
(x1, x2, . . . , xl1), its extended version X̃a1

of length l2 + l1 + l2 is

X̃a1
= (x1, x1, . . . , x1︸ ︷︷ ︸

l2

|x1, x2, . . . , xl1︸ ︷︷ ︸
l1

|xl1 , xl1 , . . . , xl1︸ ︷︷ ︸
l2

).

Note that if Xa1 is extracted from a longer time series, the extensions at left
and at right may be done using the true values in the complete series. The
dissimilarity between Xa1

and Xa2
is the defined as:

diss(Xa1 , Xa2) = min
q∈1,...,l1+l2−1

‖Iq(X̃a1
)−Xa2

‖
2l2

, (1)

where Iq(X̃a1) = X̃a1 [q, q + l2 − 1] is a l2-long section of X̃a1 taken between
indexes q and q + l2 − 1, for q = 1, . . . , l1 + l2 + 1.

Next, one computes the reference curve RCi of a cluster Ci described by the
curves Xi

a as being the one curve among the |Ci| available which minimizes the
sum of dissimilarities with respect to all curves in the cluster. Let Li be the length
of RCi. Once RCi is computed, all the curves in the cluster are realigned with
respect to it. This step is achieved by applying a transformation which combines
translation, completion and truncation, as described in the next section.

2.3 Time-series realignment within clusters

For realigning curves within a cluster, the idea is to use a similar approach to
that in the previous section. We briefly describe it here, using the notations and
approach in [8]. Consider a curve Xi

a in Ci with length lia. Xi
a is then extended

at its left by Li constant values equal to its first value Xi
a(1), and at its right by

Li constant values equal to its last value Xi
a(lia). The resulting curve is denoted

X̂i
a. One may then compute

diss(Xi
a, RCi) = min

q∈1,...,lia+Li+1

‖Iq(X̂i
a)−RCi‖
2Li

(2)

and

qia = arg min
q∈1,...,lia+Li+1

‖Iq(X̂i
a)−RCi‖
2Li

, (3)

where Iq(X̂i
a) = X̂i

a[q, q + Li − 1] is a Li-long section of X̂i
a, computed between

instants q and q + Li − 1 , for q = 1, . . . , lia + Li + 1.
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Each curve Xi
a of cluster Ci is thus replaced by Iqia(X̂i

a), denoted hereafter

X̆i
a. In practice, this means replacing the initial unequal-length curves by a set

of new curves, similar to the initial ones, and having all length Li. The same
synchronization-transformation is applied to the second signal Y i

a : it is extended,
translated, cut at the same indexes as Xi

a. The transformed signal is denoted

by Y̆ i
a and has also the same length Li. For the sake of simplicity, we denote

by Ci the set of signals Xi
a as well as that of the transformed signals X̆i

a. The
corresponding second components Y i

a or Y̆ i
a define a set Di. We denote by Ei

the set of all the couples of transformed signals (X̆i
a, Y̆

i
a ).

2.4 Anomaly detection

Let us recall at this point that our main goal is to detect possibly atypical curves
in Ei. The anomalies can be related to the first component X, to the second one
Y , or to both. Our approach consists in building quantile-based confidence tubes
in each set Ci and Di, for a given confidence level. The simplest way to do this is
to compute point-by-point empirical quantiles, which is equivalent to supposing
there is no time dependency in the data. Another solution is to take the past
instants into account and consider rather conditional quantiles, as suggested in
[19] and [4]. We describe next both approaches.

Point-by-point confidence tubes (CT method). Confidence tubes are com-
puted in each cluster, for each set of realigned curves (X̆i

a(t), Y̆ i
a (t)), where

t = 1, . . . , Li. For a given confidence level 1 − α (typically α = 5%), one de-
notes by qXt,α2

(resp. qYt,α2
) and qXt,1−α2

(resp. qYt,1−α2
) the α-quantiles computed for

each time instant t.

The 1− α confidence tube of the set X̆i
a in Ci is defined with a lower bound

curve given by (qXt,α2
)t=1,...,Li and an upper bound curve given by (qXt,1−α2

)t=1,...,Li .

The 1− α confidence tube of the set Y̆ i
a in Di are similarly computed.

With the previous definition of confidence tubes, we may now introduce the
notion of anomaly. In the subsequent, a curve in Ci or Di is considered as
anomalous if at least P% consecutive instants are outside the corresponding
confidence tube. P is generally to be tuned by the user; for the examples in this
manuscript, its value was fixed to 10%.

Conditional quantiles (CQ method) Since data are time series and since one
has strong reasons to suppose a dependency structure in time, another approach
for computing empirical quantiles consists in taking the past values of the series
into account. Conditional quantiles are also computed on the realigned curves
(X̆i

a(t), Y̆ i
a (t)), where t = 1, . . . , Li. For a given confidence level 1− α (typically

α = 5%), one denotes by q̃Xt,α2
(resp. q̃Yt,α2

) and q̃Xt,1−α2
(resp. q̃Yt,1−α2

) the α-

quantiles computed for each time instant t, conditionally on the very recent
past, t− 1. We only consider here a dependency structure of order 1, but more
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sophisticated ones could be used, with an optimal selection of the number of
lags.

The lower conditional quantiles will be computed by solving

P
(
X̆i

a(t) ≤ q̃Xt,α2 (x)/X̆i
a(t− 1) = x

)
=
α

2
,

while the upper ones by solving

P
(
X̆i

a(t) ≥ q̃Xt,1−α2 (x)/X̆i
a(t− 1) = x

)
=
α

2
.

As the conditional distribution of X̆i
a(t) conditionally to X̆i

a(t − 1) is generally
unknown, the values in t−1, X̆i

a(t−1), have to be discretized in order to have a
sufficient number of values of X̆i

a(t), conditionally to one given value of X̆i
a(t−1).

Once the conditional quantiles are computed for each discretized value dX̆i
a(t−

1) of X̆i
a(t−1), a curve in Ci is detected as an anomaly if and only if the number

of couples (X̆i
a(t− 1), X̆i

a(t)) such that

X̆i
a(t) /∈

[
q̃Xt,α2 (dX̆i

a(t− 1)), q̃Xt,1−α2 (dX̆i
a(t− 1))

]
is greater than a certain threshold P , fixed by the user (usually 10 %). The 1−α
conditional quantiles of the set Y̆ i

a in Di are similarly computed.

3 An experimental example on simulated data

We first illustrate the proposed methodology and the interest of using conditional
quantiles instead of point-by-point ones on a simulated example. 2,000 artificial
bivariate time series were built, with an X-variable having one of the four shapes
described in Figure 1. These shapes were inspired by the real-data from aircraft
flights that will be described in the next section. For each time series, its length is
randomly generated (between 500 and 3,000 time instants), as well as the instant
where the slope changes (between the first and the second third of the series),
the slope values. A Gaussian centered noise with a variance varying between
10 and 100 is also added for supplementary noise, and eventually the resulting
curves are smoothed using a 5-degree polynomial.

Fig. 1: Four shapes used for the simulated X-signals
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The Y -variables are simulated starting from X: for a given time series Xa, a
change-point z is randomly selected, and a new time series is simulated with two
random slopes before and after the change-point. The slopes are selected more
or less in the same range as the Xa’s. If necessary, Ya is extended or cut so as to
have the same length as Xa. Eventually, the resulting curves are also smoothed
using a 5-degree polynomial. The resulting X-curves, Y -curves, and a bivariate
example (Xa, Ya) of simulated time series are illustrated in Figure 2.

(a) (b) (c)

Fig. 2: (a): Example of bivariate signal, Xa in blue and Ya in red; (b): All signals
Xa; (c): All signals Ya

Furthermore, we added 50 anomalies to the simulated data. Four types of
anomalies were introduced, as shown in Figure 3: sinusoidal, “hat”-shaped, and
linear. A couple of variables (X,Y ) can be anomalous in X only, in Y only or
in both components.

(a) (b) (c) (d)

Fig. 3: Examples of atypical curves (X blue, Y red)

The proposed methodology was then applied to the simulated data: the
curves were clustered, realigned within each cluster, and point-by-point and con-
ditional quantiles were computed in each cluster. Eventually, anomalous curves
identified by each of the two methods were extracted, and compared with the
ground truth.
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Clustering with SOM followed by HAC yielded five final clusters, denoted
C1, C2, . . . , C5 for the X curves, and D1, D2, . . . , D5 for the Y curves. We recall
here that Di are defined by Di = {Ya/Xa ∈ Ci}, i = 1, . . . , 5. The resulting
clusters, which are globally homogeneous, are illustrated in Figure 4. The refer-
ence curves RC1, . . . , RC5 computed according to the definition in Section 2.2,
are drawn with solid red lines in Figure 4.

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

Fig. 4: Clustering (X-curves on top and Y -curves below)

Next, X and Y time-series within each cluster are realigned using the trans-
formation in Section 2.3. We only illustrate here the results for the first cluster.
Figure 5-a and 5-b contains the initial curves X1

a of cluster C1 and their trans-
formed X̆1

a . Similarly, Figure 5-c and 5-d displays the initial curves Y 1
a of D1

and their transformed Y̆ 1
a .

(a) (b) (c) (d)

Fig. 5: Realignment and transformation of the curves in C1 (a,b) and D1 (c,d),
initial curves in (a) and (c), transformed ones in (b) and (d)

Eventually, the last step consists in detecting the atypical curves in each
cluster after having computed the confidence tubes (CT) with point-by-point
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empirical quantiles, and empirical conditional quantiles (CQ) (see Section 2.4).
Figure 6-a presents the results of the CT detection method for cluster C1: all the
X- curves in C1 are drawn and the detected atypical ones are highlighted in red.
The Y - curves and the detected atypical ones are displayed in Figure 6-b. In the
same way, Figure 6-c and -d presents the result of the CQ detection method. At
first glance, both methods seem to detect the same atypical curves.

The two approaches for identifying anomalous curves are then compared by
computing their confusion matrices for each cluster. The confusion matrices for
the CT and CQ methods are given in Tables 1 and 2. The following abbreviate
notations were used: A for atypical curves, NA for normal curves, D for curves
detected as atypical, ND for curves detected as normal. On the one hand, the
CT method appears to detect a not negligible number of false alarms, in each
cluster. On the other hand, with the CT method the number of false alarms
decreases dramatically. The results are globally significantly improved.

(a) (b) (c) (d)

Fig. 6: Anomalies detected in cluster 1 with the CT method: (a) - on X; (b) -
on Y . Anomalies detected in cluster 1 with the CQ method: (c) - on X; (d) - on
Y . Normal curves are in blue, abnormal in red.

CT i 1 2 3 4 5

D ND T D ND T D ND T D ND T D ND T

Ci A 15 9 24 22 3 25 26 0 26 19 0 19 41 25 66

NA 27 131 158 20 297 317 11 272 283 11 291 302 30 590 620

T 42 140 182 42 300 342 37 272 309 30 291 321 71 615 686

Di A 35 15 50 24 7 31 13 1 14 19 7 26 23 16 39

NA 29 103 132 18 293 311 13 282 295 15 280 295 38 609 647

T 64 118 182 42 300 342 26 283 309 34 287 321 61 625 686

Ci & Di A 6 5 11 9 2 11 12 1 13 9 0 9 20 16 36

NA 11 160 171 10 321 331 10 286 296 10 302 312 16 634 650

T 17 165 182 19 323 342 22 287 309 19 302 321 36 650 686

Table 1: Confusion matrices for the CT method, in bold the number of false alarms
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CQ i 1 2 3 4 5

D ND T D ND T D ND T D ND T D ND T

Ci A 23 1 24 24 1 25 25 1 26 17 2 19 45 21 66

NA 0 158 158 1 316 317 5 278 283 5 297 302 25 595 620

T 23 159 182 25 317 342 30 279 309 22 299 321 70 616 686

Di A 37 13 50 26 5 31 14 0 14 23 3 26 26 13 39

NA 13 119 132 13 298 311 12 283 295 15 280 295 35 612 647

T 50 132 182 39 303 342 26 283 309 38 283 321 61 625 686

Ci & Di A 8 3 11 9 2 11 12 1 13 7 2 9 19 17 36

NA 7 164 171 8 323 331 8 288 296 10 302 312 19 631 650

T 15 167 182 17 325 342 20 289 309 17 304 321 38 648 686

Table 2: Confusion matrices for the CQ method, in bold the number of false alarms

4 An application to real-world data

Let us now illustrate the method on a real dataset, containing bivariate time-
series recorded during aircraft flights. Some of the following results are excerpted
from C. Faure’s PhD thesis [7], completed in collaboration with the Health Mon-
itoring Department of Safran Aircraft Engines Company. In actuality, the real
data contained much higher dimensional time series, since the sensors placed on
the engines register more than 50 different signals. Here, for illustration pur-
poses, we only considered the fan speed and the temperature inside the engine.
The fan speed is the key variable X and the temperature is Y .

The data was initially made of 549 flights and 8 different engines, with a
mean duration of 2.8 hours per flight. After having partitioned the flight data
using some change-point detection algorithm, 4500 transient ascending phases
(time-series with an ascending behavior) were extracted, clustered, and the rest
of the methodology described in Section 2 was applied to them. Their lengths
are comprised between 200 and 10,000 time units (8Hz).

We describe next the results obtained in one cluster only, that mainly con-
tains take-offs. Figure 7 contains the atypical curves (red) with respect to the
normal ones (blue), detected with the CT ((a) and (b) for the X and Y curves)
and the CQ methods ((c) and (d) for the X and Y curves). The CT method
detects 12 atypical X-curves, while the CQ detects 14 (6 common ones). As
for the Y -curves, CT detects 24 anomalies, CQ 18, of which 14 anomalies are
common. Let us stress also the case of bi-dimensional curves which are detected
as atypical for X and for Y by both methods (see Figure 8). The CT method
detects three couples which are atypical for X and for Y , while the CQ method
finds ten couples, that include the first three. Again, the CQ method has better
performances than the CT method, even though it is not possible to compute the
confusion matrices here, since we have no a priori knowledge about the existence
of the anomalies. In this real-world study, the experts have been able to bring a
validation to our findings. The detected cases corresponded to some events that
they could identify.
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(a) (b) (c) (d)

Fig. 7: Anomalies detected in cluster 1 with the CT method: (a) - on X; (b) -
on Y . Anomalies detected in cluster 1 with the CQ method: (c) - on X; (d) - on
Y . Normal curves are in blue, abnormal in red.

(a) (b) (c) (d)

Fig. 8: Three atypical couples are detected by the CT method (X-curves in (a)
and Y -curves in (b)). The CQ method detects seven more couples drawn in (c)
and (d). The reference curve of the cluster is represented in red dots in (a) and
(c). The confidence tubes defined by the CT method are in green dots.

5 Conclusion

We describe a complete methodology, based upon clustering, curve realignment
and empirical quantiles computation, that allows one to detect abnormal ele-
ments in a large sample of time series with unequal lengths. When using condi-
tional quantiles, the results are dramatically improved and the number of false
alarms significantly reduced. We strongly believe that these results could be fur-
ther improved by an optimal selection of the time lag in the conditional quantiles
computation. From a practical point of view, the proposed methodology may be
very useful in helping experts and engineers identify abnormal behaviors in the
signals recorded during aircraft engines utilization. In the case of aircraft engine
real data, companies may use this technique to increase the probability of de-
tecting any kind of atypical, abnormal behavior of some recorded variable, in
order to prevent any incident and to plan the maintenance events.
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