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Exploring the distribution of conditional quantiles estimation ranges: an application to the 
estimation of specific costs of production of pig in the European Union. 

Dominique Desbois1, UMR Economie publique, Inra-AgroParisTech (dominique.desbois@inra.fr) 

Abstract: This communication uses symbolic data analysis tools to visualize conditional quantile 
estimation intervals, applying it to the problem of cost allocation in agriculture. After recalling the 
conceptual framework of the estimation of agricultural production costs, the first part presents the 
empirical model, the quantile regression approach and the interval data processing techniques used 
as symbolic data analysis tools. The second part presents the comparative analysis of the econometric 
results of pig between twelve European Member States, using the principal components analysis and 
the hierarchical grouping of the estimation intervals, by discussing the relevance of the exploratory 
graphs obtained for the international comparisons. 
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“Applied economists increasingly want to know what is happening to an entire distribution, to the 
relative winners and losers, as well as to averages.” 

(Angrist et Pischke, 2009) 

I Introduction to the problem of estimating agricultural production costs. 

The successive reforms of the Common Agricultural Policy (CAP), the integration of the agricultural 
systems of the Member States resulting from the enlargement process of the European Union (EU), 
both in the context of competitive markets and markets subject to regulation recurrent needs to 
estimate the production costs of major agricultural products. The analysis of agricultural production 
costs, whether retrospective or prospective, is also a tool for analyzing farmers' margins. It makes it 
possible to evaluate the price competitiveness of farmers, one of the major elements of the 
development or maintenance of agro-food chains in certain European regions. Thus, the estimation of 
production costs provides some partial but essential insights into the questions posed by the 
adaptation of European agriculture to the context of agricultural markets, whether national, European 
or international, both from the point of view of the regulation of agricultural products. international 
trade in agricultural products (see the proposals for measures to combat market imbalances in the 
post-quota dairy sector2), and the successive reforms of the CAP (see the debate on future CAP in 
20203) or new challenges for European agriculture caused by environmental factors (climate change, 
environmental and biodiversity management4). 

Confronted more directly with price risks since the abolition of production quotas in 20155, European 
producers with few opportunities for differentiation opt for cost reduction strategies, seeking either 
to reduce structural costs by playing on the volume of production, either to reduce specific costs by 
optimizing the management of inputs or opting for low-input technical routes. However, structural 
adjustment is not always possible due to constraints (herd management, rights to produce, availability) 
that can restrict access to the three main production factors of land (e.g. mountain areas), working 
capital (financing conditions) or work, whether salaried or self-employed. On the other hand, the 
adjustment on specific inputs offers more flexibility as shown by the adoption of reasoned practices 
leading to savings on the main items of expenditure such as animal feed and veterinary fees. The 
evolution of specific costs, not only globally but also by product, thus constitutes an important 
indicator for pig farmers in terms of technical management of the herd and adjustment of their product 
mix to the demands of the agricultural markets, taking into account the resources and competitiveness 
factors available to them. 

Given these different issues, in contexts either ex ante scenario development or ex post evaluation of 
measures concerning possible agricultural public policy options, we must be able to provide 
information as suggested (Angrist and Pischke, 2009) across the entire distribution of production costs, 
thus making it possible to meet the needs of simulations or impact analysis within the various common 
organizations of the market. In this perspective, from the observation of asymmetry and heterogeneity 
of their empirical distribution, we propose a methodology adapted to the problem of the estimation 
of the specific costs of production relative to the main agricultural reference products in a European 
context where farm holdings remain predominantly multi-commodity, despite a preponderance of 

                                                             

2  http://agriculture.gouv.fr/etude-sur-les-mesures-contre-les-desequilibres-de-marche-quelles-perspectives-pour-
lapres-quotas  
3  https://www.sfer.asso.fr/source/Coll-trajectoire-2018/Programme-Future-of-CAP-30-05.pdf  
4  http://agriculture.gouv.fr/lagriculture-et-les-forets-au-coeur-de-la-cop23 
5  Cf. EU Milk Margin Estimate up to 2016, n°16: “Gross margins: a lot of instability and a record low level in third 
quarter of 2016”, https://ec.europa.eu/agriculture/sites/agriculture/files/rural-area-economics/briefs/pdf/016_en.pdf 
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specialized farms in some more integrated sectors of agricultural production. In this multi-product 
context, it is strategic to generate for each of the main agricultural products the central estimates of 
the cost distribution, but also the lower or higher quantiles with a view to selectivity of the instruments 
for regulating agricultural markets for production, and evaluation of public policies.  

Given the heterogeneity of agricultural production structures and productive choices in Europe, how 
can the maximum amount of information be used to estimate agricultural production costs? In 
response to this concern, we propose an estimation methodology that can provide information on the 
overall distribution of specific production costs for the main agricultural reference products in a 
European context. In order to overcome the constraint of average estimators, sensitive to the 
asymmetry or the extreme values of the distributions of interest and likely to mask the inter-structural 
differences, it is necessary to generate for each of the main agricultural products not only the median 
estimates of cost distribution but also lower or higher quantiles. To this end, we propose using a 
methodology to obtain estimates of these quantiles of specific costs that are conditioned by the 
product mix of farmers (Desbois, Butault and Surry, 2017). In order to demonstrate the relevance of 
this approach, we will then apply this methodology to estimate the specific costs of pig, given its place 
in the world production by the EU286, on a set of twelve European states (EU12) where these 
productions are significant in 2006, the base year chosen for the period. 

We first present the empirical model for estimating the specific costs of production, derived from an 
econometric cost allocation approach, initially developed by (Aufrant, 1983) proposing to use 
microeconomic data to build an input-output matrix [Divay and Meunier, 1980). Then, we introduce 
the estimation methodology according to the conditional quantiles proposed by (Koenker and Basset, 
1978). Next, we present the symbolic data analysis procedures used to explore the empirical estimates 
of conditional quantile distribution intervals based on the concepts and methods provided by the 
symbolic approach (Bock and Diday, 2000). Then, we present the graphs from the tools of analysis of 
the symbolic data applied to the estimation intervals of the conditional quantiles. Finally, we conclude 
on the relevance of this approach applied to the production of pig, proposing an extension of this type 
of analysis at the regional level. 

 

II Conceptual framework and methodological aspects of cost allocation 

Surveys specific to large agricultural commodities are conducted by workshop to provide detailed data 
on operational production costs, such as that used by the French pig Institute (IFIP) on specialized pig 
producers for France7. However, these technical and economic surveys are relatively expensive, 
making their generalization to all European pig farms financially unbearable. Also, this work is situated 
in a problem of attribution of the costs of the factors to multiple productions, initiated on a European 
scale by Inra works (Butault, Hassan and Reignier, 1988) financed by the Commission of the European 
Communities (CEC) , allowing to estimate on the basis of the Accounting Information Network (FADN), 

                                                             

6 In 2017, pig production produced by the 28 European countries accounted for 20% in weight of pigmeat produced at the 
world level (according to https://ec.europa.eu/agriculture). 
7 https://www.ifip.asso.fr/fr/resultats-economiques-elevages-de-porc.html 
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harmonized accounting survey from the point of view of the definition of the professional holdings and 
the accounting, technical and financial aggregates. 

II.1 The empirical model for estimating the specific costs of production  

In EU agricultural accounting systems, the recording of charges is done at the farm level and does not 
provide a direct estimate of the production costs incurred by that farm for each of the agricultural 
crops undertaken. On the other hand, the farm holding sheet8 of the FADN survey provides individually 
by farm from the accounting records the amount of the gross products generated by the various 
speculations and that of the set of specific costs, sum of the purchases of recorded inputs. So that it 
becomes possible to estimate by regression the specific costs on the gross products of the allocation 
coefficients of expenditure to the main agricultural products, which we will call "specific coefficients 
of production". 

The definition of the gross margin 
iM of the farm holding i as a difference between the sum of the 

gross products  
iY  and the sum 

ix  of the specific fees:  
iii xYM  ,  

by linearly decomposing the sum of the specific costs according to each production  j : 
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Thus, the allocation of the specific costs of the farm holding  i  to the set J of the productions carried 
out by this conceptual model makes it possible, because of the complementation to the unit, to deduct 
the unit rates of gross margin 

ĵ  from the estimate of the specific production coefficients 
ĵ  for each 

of the  J productions envisaged:    pjjj ,,1ˆ1ˆ  
.
 

The linear decomposition of the gross margin leads us to estimate the specific production coefficients 
of the stochastic equation (1) for comparison:  

- on the one hand, according to the Ordinary Least Squares (OLS) regression methodology, 

the solution of which   
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 is conventionally expressed in terms of 

conditional expectation;  
- on the other hand, according to that of the quantile regression whose solution  
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is expressed in terms of conditional quantiles of order q, in order to take 

into account the intrinsic heterogeneity of the distribution of specific costs as shown in the 
following section on the estimation methodology. 
 

II.2 The interest of conditional quantiles in the estimation of agricultural production costs  

                                                             

8 The questionnaire used to establish this farm holding sheet and the methodology of the FADN survey are available at: : 
http://wwww.agreste.agriculture.gouv.fr/enquetes/reseau-d-information-comptable-610/reseau-d-information-comptable.  

346



  

 

 

The standard specification of the least squares model raises certain problems that it would be risky to 
neglect in the perspective of the establishment of benchmarks on production costs, taking into account 
the challenges of competitiveness for the various sectors. Firstly, in a context of use mobilizing the 
European FADN as an empirical basis for estimating the specific production costs, the stochastic 
assumptions of the Gauss-Markov model may not be respected: thus, the asymmetry of the 
distributions of specific costs (concentration for lower values and dispersion of values higher than 
average, or vice versa) leads to rejection of the assumption of normality of errors. In addition, given 
the selection method specific to each national RICA (for example, the French FADN is a survey 
administered according to the quota method), the accounting data are not always collected according 
to a stratified random sampling plan allowing to deliver inferential reasoning an interval estimation 
based on a parametric distribution, even in the asymptotic case. 

The conditional estimation of quantiles was developed in (Koenker and Bassett, 1978) under the name 
of "quantile regression" in order to take into account the heterogeneity of the set of values of an 
endogenous variable x in the context of a linear model. When looking at farms, this econometric 
method yields an estimated distribution of specific costs for major agricultural products and thus 
complements the estimates obtained by OLS, which provide only an average value (in terms of 
expectation) of these same costs. Instead of an interval estimate built on a normality assumption, the 
quantile process provides an empirical distribution of the estimates without having to make 
assumptions about the nature of this distribution or to follow a stratified random sampling design. For 

a continuous random variable  x, the qth  quantile of the population is the value q such as x  is less than 

or equal to  q  with the probability q :   qxq Fxq   ]Pr[
   (2) 

where Fx is the cumulative distribution function (CDF) of x giving the cumulative probability of a value 
under the law of  x. The qième quantile is then defined as the image of the value q by the reciprocal 

function of the CDF :     qFx xq

1
       (3) 

In quantile regression, the qth conditional quantile of the cost of production x conditioned by all the 
exogenous variables  Y determining input consumption is the indexed function 𝜇𝑞(𝑥|𝒀) such as the 

random variable  « x knowing  Y » (𝑥|𝒀) is less than or equal to 𝜇𝑞(𝑥|𝒀) with the probability q. Thus, 

we can formally define the qth conditional quantile by the following expression :  

   qFYx Yxq

1

//          (4) 

where 𝐹𝑥|𝒀 is the CDF of x's probability law conditioned by Y. 

Following (Cameron and Trivedi, 2005), suppose that the data generating process is a linear model with 
multiplicative heteroscedasticity: 

  uβYx    avec   εαYu   
et    0αY   

(5), 

where  i.i.d. (0, 2) is an identically and independently distributed random vector of zero mean and 

constant variance 2. 

Under this hypothesis , q(x|Y,), the qth conditional quantile of the production cost  x conditioned 

by Y and the parameters   and  is analytically deduced as follows 
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     qFq

1,,   βYαβY   where F  is the CDF of the random error . 

Thus, for a data generating process following a linear model with multiplicative heteroscedasticity  (i.e. 

u=Y'×, the qte conditional quantile of the cost of production x conditioned by exogenous factors Y 
is linear in  Y. Moreover, the estimation of the parameters associated with the qth quantile regression 

converges towards  qF 1   and therefore behaves monotonically with respect to the evolution 

of the quantile q, depending on the quantile function of the residues ,  qF 1

 . 

Following a typology of models presented in (Givord and D'Haultfoeuille, 2013), several models can be 
distinguished: 

i) 𝑋 = 𝑌′𝛽 + 𝑢 with  𝑢 = 𝐾𝜖 with homoscedastic residues (𝑉(𝜖|𝑌) = 𝜎2) designated as the 
linear model of homogeneous slope conditional quantile ("location shift model"). The case 
where 𝑌′𝛼 = 𝐾 is constant, corresponds to conditional quantiles differing only by a 
constant  (𝜇𝑞(𝑋 ∕ 𝑌, 𝛽, 𝛼) = 𝑌

′𝛽 + 𝐾𝐹𝜀
−1(𝑞), all showing the same slope and growing 

uniformly as the q order of the quantile increases; 
ii) 𝑋 = 𝑌′𝛽 + (𝑌′𝛼)𝜀 with 𝑌′𝛼 > 0 with heteroscedastic residues, referred to as the 

heterogeneous-slope conditional quantile linear model ("location-scale shift model"). the 
case where 𝑌′𝛼 > 0 corresponds to heterogeneous and increasing slopes  𝜇𝑞(𝑋|𝑌, 𝛽, 𝛼) =

𝑌′ (𝛽 + 𝛼𝜇𝑞(𝜖)), involving fixed linear effects  𝛾𝑞 = 𝛽 + 𝛼𝜇𝑞(𝜀) relatively lower for the 

first quantiles and relatively higher for the last quantiles; 
iii) 𝑋 = 𝑌′𝛾𝑈  with 𝑈 random variable independent of Y according to a uniform distribution 

over the interval [0,1] such that the function 𝑢 ⟶ 𝑦′𝛾𝑢 is strictly increasing whatever y , is 
designated as the random coefficient model. 𝑈 corresponds to an unobserved random 
component determining the rank of the individual within the X distribution. Under the 
distribution invariance assumption of ranks, hypothesis considered strong in the scientific 
literature, the random coefficient  𝛾𝑞 would represent the effect of a marginal change in Y 

for farms at the qth  quantile of the U distribution, based on unobserved characteristic . For 
example, this distributional assumption of rank invariance is equivalent to assuming that 
median farms  (𝑞 = 0,5) in terms of input productivity would maintain this rank, regardless 
of the different levels of production  𝑦 𝑖  registered for farm holding i. 

 
II.3 Estimation and test procedures  

The Ordinary Least Squares (OLS) estimator can be written as a solution to an optimization problem 
that minimizes the sum of the squared deviations (in L2 norm) : 

    


YXyx
pp

i

iiMCO













 2
δeminargminargˆ 2

 where e, is the director vector 

of the constant line  in ℝ𝑛, space of observations , and 𝛿2, the vector of quadratic differences. Similarly, 
the quantile regression is defined for each quantile of order q as the solution of a problem of 
minimizing the sum of the deviations in absolute value (in norm L1):  
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p
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1minargˆ   (7) 

which can be written in matrix form as follows: 

        ][0'1][0'minargˆ XβYδeβYXδe
11 
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 with 𝒆’(X − Y′β ≥ 0), vector of indicator values of observations 𝑖 such as 𝑥𝑖−𝑦′𝑖𝛽 ≥ 0, and 𝛿1, the 
vector of absolute deviations. 

Let be 𝑥𝑖 = 𝑦𝑖
′𝛽𝑞 + 𝑒𝑖   with 𝑒𝑖 = 𝑢𝑖 − 𝑣𝑖, 𝑢𝑖 = 𝑒𝑖𝕀(𝑒𝑖 > 0) , 𝑣𝑖 = |𝑒𝑖|𝕀(𝑒𝑖 < 0), then, like the L1 

regression (Barrodale and Roberts, 1973), quantile regression can be formulated as a primal problem 
of linear optimization, which is expressed in matrix form as follows: 

 
 

   vuβYXv1u1 


constrainttheunder

,,

1minargˆ qqq
nxnp vu

 (8) 

This program can be reformulated into a dual problem of equivalent optimization: 

  zx
z

Max
 
under the constraint  Y1Yz q 1  for      (9)

 

Thus, the linear optimization problem solving methods developed for the L1 (median) regression easily 
extend to quantile regression (Koenker and d'Orey, 1994). The simplex method (Danzig, 1949) has an 
algorithmic complexity in Ο(𝑛6)), the "interior point" method (Karmarkar, 1984) of algorithmic 

complexity  Ο(𝑛3,5) is preferable in practice as soon as the size of the sample is important. For large 
samples, Portnoy and Koenker (1997) showed that a combination of the "interior point" algorithm9 
and a smoothing algorithm of (Madsen and Nielsen, 1993) for objective function makes quantile 
regression computationally competitive with least squares regression . 

The weighted conditional quantiles have been proposed as L-estimates in linear heteroscedastic 

models by (Koenker and Zhao, 1994) defined by  , the weighting   of observations 

leads to a quantile regression scheme solving the following minimization problem:

   
   








  
   

 
ii ii

p
yxii yxii

iiiiii yxqyxqq
/ /

1minargˆ
 

(10). 

The weighted estimation procedure uses the "predictor-corrector" implementation of the primal-dual 
algorithm proposed by (Lustig et al., 1992). 
Let assume the following regularity conditions: 

i) The distributions 𝐹𝑖(𝑥) of input expenditures for a given product mix are absolutely 
continuous with densities  𝑓𝑖(𝑥) continuous and uniformly bounded on  ]0, +∞[ at 
𝜉𝑖 = 𝜇𝑞(𝑥|𝑦𝑖) ; 

ii) Σ0 = lim
𝑛⟶∞

1

𝑛
∑ 𝑦𝑖𝑦𝑖

′𝑛
𝑖=1  exists and is positively defined ; 

iii) Σ1 = lim
𝑛⟶∞

1

𝑛
∑ 𝑓𝑖(𝜉𝑖)𝑦𝑖𝑦𝑖

′𝑛
𝑖=1  exists and is positively defined  ; 

iv) 𝑆𝑢𝑝𝑖=1,…,𝑛‖𝑦𝑖‖ ~𝑂(√𝑛), as a product mix normalization factor ; 

(Pollard, 1991) shows that under conditions i) and ii), �̂�𝑞
𝑝
→𝛽𝑞, the estimator converges in 

probability; in addition, under the set of conditions i), ii), iii) et iv), we obtain the asymptotic 
normality, that is: In addition, under conditions iii) and iv), if the hazards attached to the 

                                                             

9 The weighting  is introduced by the standard instruction weight into the QUANTREG procedure of the SAS 9.2 software. 

 nz 1,0

 nii ,,1; 
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 √𝑛(�̂�𝑞 − 𝛽𝑞)
𝑙𝑜𝑖
→ 𝑁(0, 𝑞(1 − 𝑞)Σ1

−1Σ0Σ1)      (11) 

Finally, under the assumption of equality and independence of distributions 𝑓𝑖(𝜉𝑖) = 𝑓𝜀(0), this result 
is simplified as follows: 

(12) √𝑛(�̂�𝑞 − 𝛽𝑞)
𝑙𝑜𝑖
→ 𝑁(0, 𝜎2(𝑞)Σ0

−1) avec 𝜎(𝑞) =
√𝑞(1−𝑞)

𝑓𝜀(0)
 

In addition, under conditions iii) and iv), if the hazards attached to the   𝑖𝑡ℎ observation 𝜀𝑖 = 𝑥𝑖 − 𝑦𝑖
′𝛽 

of identical and independent distributions 𝐹𝑖 , admitting a density 𝑓 = �̇� such as 𝑓(𝐹−1(𝑞)) > 0 at the 

neighborhood of  𝑞, then (Koenker et Bassett, 1982) shows : 

(13) √𝑛(�̂�𝑞 − 𝛽𝑞) → 𝑁(0, 𝜔
2(𝑞, 𝐹)Ω−1) avec 𝜔(𝑞, 𝐹) =

√𝑞(1−𝑞)

𝑓(𝐹−1(𝑞))
 et Ω = lim

𝑛⟶∞

1

𝑛
∑ 𝑦𝑖𝑦𝑖

′𝑛
𝑖=1  

These results can be used to construct confidence intervals for estimates using three procedures: 
inverse density function, rank method, or resampling algorithm. The inverse density function 
estimation is the most direct and the fastest method, but it is sensitive to the hypothesis of identically 
and independently distributed data (iid). For data that is not iid, the rank method, which calculates 
confidence intervals by reversing the rank score test, is preferred. However, based on the simplex 
method, the rank method generates significant computation times for large datasets. The resampling 
method, based on the bootstrap technique, makes it possible to overcome all assumptions but is 
unstable for small samples. Given the size of the FADN sample, its non-random selection and the 
existence of three distinct a priori sub-populations (specialized or non-pig ToFs), we opted for the 
resampling method, based on the procedure use on a Markov chain marginal bootstrap (MCMB) 
because, without hypothesis on random distributions, this method gives robust empirical confidence 
intervals in a reasonable calculation time (He and Hu, 2002). 
 

II.4 Symbolic analysis of empirical distributions of specific costs  

II.4.1 Principal component analysis of distributions 

The PCA of the interval extrema 

In the extension of the principal components analysis (PCA) to the interval data proposed by (Cazes, 
Chaouakria, Diday and Schektman, 1997), called PCA according to the vertices of the intervals 
(V-PCA10), a standard ACP of the centered Z-reduced array (standard ACP) is carried out. In this way, 
the vertices of the hyper-rectangles are vectors of ℝ𝑝, while the estimates of the conditional quantiles 
are elements of ℝ𝑁. Thus, the V-PCA provides a dual representation of the specific empirical cost 
distributions represented by their estimation intervals, which are the symbolic objects, and conditional 
quantiles which are the descriptors.  
As in classical ACP, the proper subspace (optimal for the dual representation) is structured by 
orthonormal axes 𝑣𝑚 (1 ≤ 𝑚 ≤ 𝑝, maximizing the sum of squares of vertex coordinates 𝜓𝑚 = 𝑍𝑣𝑚 
and satisfying in  ℝ𝑁 to the characteristic eigenvector equation 𝑣𝑚 and eigenvalues 𝜆𝑚 of the matrix 
1

𝑁
𝑍′𝑍 : 

1

𝑁
𝑍′𝑍𝑣𝑚 = 𝜆𝑚𝑣𝑚 

The dual analysis ℝ𝑝 leads to a similar equation  
1

𝑁
𝑍𝑍′𝑤𝑚 = 𝜆𝑚𝑤𝑚 

                                                             

10 Vertex Principal Component Analysis 
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 having the same non-zero eigenvalues but eigenvectors 𝑤𝑚 such as: 

𝑣𝑚 = 𝜆𝑚
−1 2⁄

𝑍′𝑤𝑚 

The interpretation of the axes of the V-PCA is based on the conditional quantiles (variables of the V-
PCA) presenting the strongest contributions. In normalized PCA, the contributions to the inertia of the 
variables j to the axis m are calculated as the square of the correlation between the factorial axis and 
the variable (factorial coordinates). The coordinates of the projections of the extremes of the 
estimation intervals of the conditional quantiles (vertices s (i)) of the empirical distribution 𝜔𝑖  specific 
costs (symbolic object) on the main factorial axes are provided by the relation: 

𝜓𝑖,𝑚 = 𝑍𝑖𝑣𝑚 

The representation of the empirical distribution 𝜔𝑖  on the factorial axis 𝑚 is provided by the 
projections of the ends of the estimated quantile intervals (hyper-rectangle of maximum inaccuracy , 
HRIM). The projection of the HRIM on a factorial plane provides a maximum imprecision rectangle 
(RIM) for the empirical distribution represented by the symbolic object 𝜔𝑖. 

In order to avoid the over-dimensioning projection bias of projected rectangles, (Chouakria, Cazes and 
Diday, 1998) propose to retain among the representations those whose vertices are best represented 
by using as a criterion the relative contribution (CTR) defined in cosine terms, that is, for an end of the 
estimation interval s (i) of the quantile distribution 𝑖 : 

𝐶𝑅𝑇𝑠(𝑖),𝑚 =∑ (𝑧𝑠(𝑖),𝑗𝑣𝑚)
2𝑝

𝑗=1
∑ 𝑧𝑠(𝑖),𝑗

2
𝑝

𝑗=1
⁄  

The problems of representation of symbolic objects are studied by (Verde and De Angelis, 1997) in 
terms of better adjustment of convex envelopes. 

The PCA's estimate interval centers 

Let be 𝛿𝑖
𝑗
= [𝑥𝑖

𝑗
; 𝑥𝑖
𝑗
], the estimate interval of the conditional quantile 𝑗 for the empirical distribution 𝑖 

of specific costs, this estimation interval can be represented by the data of the couple (𝑚𝑖𝑗; 𝑟𝑖𝑗) where 

𝑚𝑖𝑗 =
𝑥𝑖
𝑗
+𝑥𝑖

𝑗

2
 is the middle of the interval and  𝑟𝑖𝑗 =

𝑥𝑖
𝑗
−𝑥𝑖

𝑗

2
  its radius. The T matrix of the interval data is 

then constituted by the concatenation of the matrix of the estimation interval centers with the matrix 
of the estimation interval radii. 

The PCA of the interval centers (PCA-IC) in ℝ𝑁, the space of the specific cost distributions, corresponds 
to the following characteristic equation: 

1

𝑛
�̃�′�̃�𝑣𝑚 = 𝜆𝑚𝑣𝑚 

 where �̃� is the matrix M standardized by the standard deviation of the interval centers, 𝑣𝑚 and 𝜆𝑚 

are respectively the eigenvectors and the eigenvalues associated with the inertia operator  
1

𝑛
�̃�′�̃� . It 

is therefore the diagonalization of the correlation matrix 
1

𝑛
�̃�′�̃�   conditional quantile estimators 
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across all specific cost distributions. The centers of quantile estimation intervals 11 are projected on the 
factorial planes, with in additional projection the ends of the estimation intervals (vertices). 

In the vertice-based analysis (PCA-V), these are considered as independent statistical units. In order 
not to lose information on the size and shape of the hyper-rectangles, (Lauro and Palumbo, 2000) 
introduce a constraint of cohesion between the vertices. The method is based on maximizing the 
variance between symbolic inter-objects. Let be A, the Boolean matrix indicating the membership of 
the N estimation interval ends to the n empirical distributions. The expression of the variance between 
symbolic objects is given by: 

1

𝑁
𝑍′𝐴(𝐴′𝐴)−1𝐴′𝑍 

If all the empirical distributions have the same number of estimation intervals, then the same number 

of vertices 
𝑁

𝑛
= 2𝑝 (our case study where the same number of conditional quantiles were estimated 

for each empirical distribution ), then 𝐴′𝐴 = 2𝑝𝐼𝑛.  

Let be, the orthogonal projector 𝑃𝐴 associated with the A matrice on the sub-space of reference : 

𝑃𝐴 = 𝐴(𝐴
′𝐴)−1𝐴′ 

In the space ℝ𝑁, the factorial axes of inertia are obtained as a solution of the following eigenvalue 
equation:  

1

𝑁
𝑍′𝑃𝐴𝑍�̃�𝑚 = �̃�𝑚�̃�𝑚 

 where �̃�𝑚 et �̃�𝑚 are the eigenvalues and the eigenvectors associated with the inertia operator  
1

𝑁
𝑍′𝑃𝐴𝑍. 

The coordinates of the hyper-rectangle associated with the empirical distribution are then computed 
as follows:  

�̃�𝑖,𝑚 = 𝑍𝑖�̃�𝑚 

The analysis in ℝ𝑝 is equivalent to solving the following equation for eigenvalues: 

(𝐴′𝐴)−1 2⁄ (𝐴′𝑍𝑍′𝐴)(𝐴′𝐴)−1 2⁄ �̃�𝑚 = �̃�𝑚�̃�𝑚 

 where �̃�𝑚 = (𝐴′𝐴)
−1 2⁄ 𝐴′𝑍�̃�𝑚 modulo the 

1

𝑁
 constant. 

The relative contributions of the variables (CRT) are defined in the same way as for the ACP-IS. These 
CRTs are also used to select the empirical distributions to be represented on the factorial graphs. As in 
V-PCA, representations of empirical distributions as a symbolic object are constructed by the Maximum 
Covering Area Rectangular (MCAR). If one compares the V-PCA with the IC-PCA proposed by (Cazes 

                                                             

11 It should be noted that Markov chain marginal estimation intervals (MBMC) are not symmetrical in contrast to asymptotic 
estimation intervals, whereas interval-based PCA-IC assumes in its representation the symmetry with respect to center. 
Nevertheless, we propose to use the point estimate as a center and to introduce the concept of lower radius and upper radius 
to locate the ends of the MBMC interval. 
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and al., 1997), where the PCA is performed only on the interval data centers standardized with the 
matrix of the correlations of the centers of the variables, several improvements were introduced: first, 
the data are standardized by the standard deviation of the vertices considered as active units in the 
analysis, whereas they are considered in the IC-PCA as additional units; more generally, this can be 
considered an improvement of the IC-PCA because it can be applied to data constrained by logical or 
hierarchical relationships. 

 PCA ranges of estimation intervals 

Partial PCA can also be used to better emphasize the differences between symbolic objects. The 
following section shows a partial PCA where the vertices of the hyper-rectangles are centered relative 
to the Inf value. 

In order to take into account only the sizes and shapes of the hyper-rectangles associated with the 
descriptions, (Lauro and Palumbo, 2000) proposed a PCA based on scaling interval data that 
summarizes useful information to describe the size and shape of symbolic objects, with the following 

transformation 𝜇(𝑧𝑖
𝑗
) = 𝑥𝑖

𝑗
− 𝑥𝑖

𝑗
. The Description Potential – DP, (De Carvalho, 1992, 1997) is the 

hyper-volume associated to the description of the  𝑖𝑡ℎ empirical distribution, domain defined by the 

cartesian product of the ranges 𝑍𝑖 = 𝑧𝑖
1 ×⋯× 𝑧𝑖

𝑗
⋯𝑧𝑖

𝑝
 of 𝑝 parameters associated with the 

description of the symbolic object  𝜔𝑖. Its measurement is defined by: 𝜋(𝜔𝑖) = ∏ μ(𝑧𝑖
𝑗
)

p
j=1   

where 𝜇(𝑧𝑖
𝑗
) = 𝑧𝑖

𝑗
/𝑠𝑗  is the normalized range relative to the domain 𝐷𝑗 = {𝑧𝑖

𝑗
; 𝑖 ∈ 𝐼} of the descriptor 

𝑍𝑗. However, if the measure of one of the descriptors tends to zero, then the description potential 
tends to zero. To overcome this drawback, we use the linear measure of the potential of description 

(Carvalho, 1997), or for the instance 𝑎𝑖 of the symbolic object 𝜔𝑖: 𝜎(𝑎𝑖) = ∑ 𝜇(𝑧𝑖
𝑗
)

𝑝
𝑗=1 . 

Let all the instances of the empirical distributions of specific costs {𝑎1,⋯ , 𝑎𝑖, ⋯ , 𝑎𝑛} and 𝑿 the matrix 

𝑛 × 𝑝 of general term 𝑥𝑖
𝑗
= √𝑧𝑖

𝑗
,  then the PCA in range of estimation ranges is defined by the factor 

decomposition of the total linear description potential 𝐿𝐷𝑃 = ∑ 𝜎(𝑎𝑖)
𝑛
𝑖=1 , allowing a different 

geometrical representation of the vertices than in the V-PCA. 

The transformation of the data into a range with an affine translation where the minima 

{𝑥𝑖
1,⋯ , 𝑥𝑖

𝑗
, ⋯ , 𝑥𝑖

𝑝
} are all located at the origin. Thus, the search for an optimal representation subspace 

for the size and shape of each symbolic object is made from a non-centered PCA of maxima  

{𝑥𝑖
1,⋯ , 𝑥𝑖

𝑗
, ⋯ , 𝑥𝑖

𝑝
}.  

This Range Transformation PCA (RT-PCA) breaks down the criterion 

 𝐿𝐷𝑃 = 𝑡𝑟(𝑋′𝑋) = 𝑡𝑟(𝑋𝑋′) = ∑ 𝜎(𝑎𝑖)
𝑛
𝑖=1  

according to the following characteristic eigenvector equations: 

𝑋′𝑋𝑡𝑚 = 𝜇𝑚𝑡𝑚 

353



and 

𝑋𝑋′𝑢𝑚 = 𝜇𝑚𝑢𝑚 

Thus, the sum of the eigenvalues  𝜇𝑚 associated with the eigenvectors  𝑡𝑚 in ℝ𝑛and 𝑢𝑚 in 
ℝ𝑝 corresponds to the factorial decomposition of the linear description potential: 

 ∑ 𝜆𝑚 = ∑ 𝜎(𝑎𝑖)
𝑛
𝑖=1

𝑝
𝑚=1 . 

The factorial coordinates of the representation of the specific cost distributions in the optimal 
subspace are given by:             𝜙𝑚 = 𝑋𝑡𝑚 

The absolute contribution (CTA), as the ratio between the factorial coordinate and the eigenvalue, 
measures the contribution of the empirical distribution of specific costs to the potential of description 

of the mth factorial axis; it is defined by:      𝐶𝑇𝐴𝑖,𝑚 =
𝜙𝑖,𝑚
2

𝜇𝑚
 

The relative contribution (CTR) measures the representation quality of the empirical distribution in the 

chosen representation factorial subspace: 𝐶𝑇𝑅𝑖,𝑚 =
∑ 𝜙𝑖,𝑚

2𝑀∗
𝑚=1

∑ 𝑥𝑖,𝑗
2𝑝

𝑗=1

 

The interpretation of the factorial axes is performed according to the contributions (factorial 
coordinates) of the estimated quantiles estimated for the empirical distributions of specific costs, as 

descriptors of the symbolic objects :  𝐶𝑇𝐴𝑗,𝑚 = 𝑡𝑗,𝑚
2 . 

The range ACP can be represented by the projection of the factorial coordinates of the maxima. The 
distributions described by conditional quantile estimates, share representations in hyper-rectangles 
similar in size and shape if they are projected in the same neighborhood. 

If all the terms of matrix X are positive then the first eigenvector𝑢1 and the associated factor 

  𝜙1 = 𝑋𝑡1  

are positive (Lauro and Palumbo, 2000). The first major component can therefore be interpreted as a 
size factor, while the higher order factors order the empirical distributions according to their shape 
characteristics. 

Mixed Strategy PCA of Estimation Intervals  

The mixed strategy in principal component analysis of symbolic objects (SO-PCA) combines the vertex 
PCA (V-PCA) and the range PCA (RT-PCA) in a three-step approach to account for differences in scale 
and shape between empirical distributions of specific costs: 

i) PCA ranges to extract the main axes that best represent the scales and forms of empirical 
distributions of conditional quantiles; 

ii) Projection from Z to �̂� = 𝑃𝐴𝑍 in order to take into account the relations between the 
different extrema, given the order relationships between the different conditional 
quantiles of the distribution of specific costs ; 

iii) PCA line projections �̂�𝑖  on the sub-space of optimal representation Φ =
{𝜙1,⋯ , 𝜙𝑚,⋯ , 𝜙𝑀∗} on the sub-space of optimal representation 𝑃Φ = Φ(Φ′Φ)

−1Φ′. 
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The mixed analysis strategy is therefore based on the solution of the following characteristic 
equation  :  

�̂�′𝑃Φ�̂� = 𝑍
′𝐴(𝐴′𝐴)−1 2⁄ 𝑃Φ(𝐴

′𝐴)−1 2⁄ 𝐴′𝑍𝑠𝑚 = 𝜌𝑚𝑠𝑚 

 where the diagonal matrix (𝐴′𝐴)−1 s broken down in the product (𝐴′𝐴)−1 2⁄ (𝐴′𝐴)−1 2⁄  

for reasons of symmetry, with respectively  𝜌𝑚 and 𝑠𝑚 , eigenvalues and eigenvectors associated 
with the usual orthonormality conditions. 

The interpretation of the results of the analysis depends on the choice of the projection operator   
𝑃Φ, whose diagonal term, interpretable as a normalized weight, is equal to:  

𝜙𝑖(𝜙′𝑖𝜙𝑖)
−1𝜙′𝑖 =∑ 𝜙𝑖,𝑚

2 𝜇𝑚⁄
𝑀∗

𝑚=1
 

 

 

II.4.2 Automatic clustering of empirical distributions of specific costs  

For all empirical distributions of specific costs  Ω = {𝜔1,⋯ ,𝜔𝑖 ,⋯𝜔𝑛} described as symbolic 
objects by a set of  p=6 descriptors12 which are the conditional quantiles 𝑋 =

{�̃�0,10, �̃�0,25, �̃�0,50, 𝑄0,75, �̃�0,90} = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑝}. The dissimilarities associated with interval 

estimates of conditional quantiles  𝛿𝑖
𝑗
= [𝐼𝑛𝑓 = 𝑥𝑖

𝑗
; 𝑆𝑢𝑝 = 𝑥𝑖

𝑗
] can be calculated between two 

closed intervals of the jth conditional quantile  𝛿𝑖
𝑗
= [𝑥𝑖

𝑗
⏟; 𝑥𝑖

𝑗⏞
] and 𝛿𝑘

𝑗
= [𝑥𝑘

𝑗
; 𝑥𝑘
𝑗
] respectively 

associated with the distributions characterizing the country i and the country k, according to the 
following three standards: 

Metric 𝐿1 (sum of absolute differences)13 :  𝛿1(𝛿𝑖
𝑗
, 𝛿𝑘
𝑗
) = |𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
| + |𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
| 

Metric 𝐿2 (sum of quadratic differences )14 : 𝛿2(𝛿𝑖
𝑗
, 𝛿𝑘
𝑗
) = √(𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
)
2
+ (𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
)
2

 

                                                             

12 This choice of a small number of descriptors was made for comparative convenience with some more classical 
graphic approaches (Desbois, Butault and Surry, 2013) and (Desbois, Butault and Surry, 2015); however, like 
these earlier works, it could be extended without disadvantage to sets of cardinality descriptors p = 9 (deciles), 
or even p = 99 (percentiles) if the analysis objectives required it. 
13 Labeled « Type L1 » in SCLUST. 
14 Labeled « Euclidean » in SCLUST. 
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Metric 𝐿∞ (distance from Chebyshev )15 : 𝛿∞(𝛿𝑖
𝑗
, 𝛿𝑘
𝑗
) = 𝑆𝑢𝑝 {(𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
) ; (𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
)} 

For each of these metrics M on ℝ, a dissimilarity between empirical distributions based on the 
differences between estimation intervals of the conditional quantiles can be calculated according 

to a quadratic criterion: 𝑑(𝜔𝑖 , 𝜔𝑘) = (∑ 𝛿𝑀
2 (𝛿𝑖

𝑗
, 𝛿𝑘
𝑗
)

𝑝
𝑗=1 )

1 2⁄
.  

The data of a matrix of dissimilarities between national empirical distributions of specific costs 
makes it possible to directly apply the classical methods of automatic classification based on 
dissimilarities: minimum ultrametric methods (single linkage), maximum ultrametric (complete 
linkage), centroid method , and Ward's method. 

Several automatic classification procedures have been developed for interval data. Among the first 
procedures, (Chavent, 1998) proposes a divisive hierarchical classification procedure (DIV procedure) 
on interval data. 
 

III Data collection and distributional analysis of specific agricultural costs in the EU  

 III.1 European RICA, the model, the aggregates and the countries studied 

Since its establishment in 196516, the European RICA has been defined by European regulations 
specifying the implementation modalities and their revisions, the most recent being the EC Regulation 
n ° 1217/2009 published in JOE L328 of 15/12/2009 for a entered into force on 01/04/2010. Together 
with the Census of Agriculture and the Structural Surveys, it completes the tripod of the Community 
acquis on agricultural statistics, which makes it possible to define the population of agricultural 
holdings, to follow the evolution of their productive structures, and finally to evaluate variations in 
their income. Focused from the outset on monitoring the income of so-called "professional" farmers 
and analyzing the economic functioning of their farms, it has gradually established itself as a vital 
database for ex ante and ex-post analysis of the impact of agricultural policy measures, in particular 
those related to the reforms of the Common Agricultural Policy (CAP).  As underlined (Chantry, 1998 
and 2003), the European FADN is the result of a process of adaptation and harmonization of pre-
existing national arrangements within the Member States. European FADN as a database is fed by 
national FADN which despite the harmonization of accounting and technical-economic concepts 
carried out 17 under the auspices of the Directorate-General for Agriculture (DG Agri), presents a certain 
number of specificities relating mainly to the selection of the sample (sampling plan, selection method, 
economic size thresholds) and the conduct of the survey. For each Member State, the data for each 
holding ("record") collected at European level ("Community record") are derived from data collected 
at national level ("national record"). For some Member States such as Belgium and the Netherlands, 
the national FADN survey questionnaire collects more information than the European FADN 
questionnaire. Conversely, for other Member States, the "European file" incorporates as missing data 
the possibilities of exemption provided for by the Regulation due to limitations or constraints related 
to national FADN. However, as regards the accounting aggregates used in our work (gross products 
and specific expenses), the definitions are harmonized in both plant and animal production; the 
elements of differentiation that can influence estimates via weighting are mainly in the reference 

                                                             

15 Labeled « Hausdorff » in SCLUST. 
16 European regulation n°79/65/CEE, of 15 June 1965. 
17 by the unit L3 in charge of the relations with the national operators of the FADN. 
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population of farms defined as professional (economic size thresholds) and in the sampling 
methodology (random selection versus quota selection).  

Equation (5) is the basic model for estimating conditional quantiles of the direct costs specific to the 
products studied, including the dairy milk, our product of interest. Endogenous variable of the 
empirical modelling noted X, the specific costs18 are defined as the sum: 

 Crop-specific inputs, i.e. items of expenditure on seeds and seedlings, fertilizers and 
amendments, plant protection products, and other crop-specific costs ; 

 Livestock-specific inputs, which include herbivore, granivore, and other animal-specific 
expense items ; 

 inputs specific to forestry activities. 
Exogenous variables of the empirical modelling, for each of the speculations implemented by the multi-
product farm, the raw products 19 (denoted Y) relate to all plant, animal and animal products, or even 
forest products, where appropriate, with the following breakdown into fifteen aggregates: wheat, 
other cereals, industrial crops, protein crops, oilseeds, horticultural productions, fruit, wine, other 
vegetable or forest products, cattle, swine, poultry, dairy milk, other animal products, other raw 
products. 
The sub-populations of farms selected as the basis of estimation are those corresponding to the 
following European FADN samples: for 2006, the following twelve Member States were selected: 
Austria, Belgium, Denmark, France, Germany, Hungary , Italy, Netherlands, Poland, United Kingdom 
and Sweden, together noted EU 12.  
The weighted conditional quantile estimation is carried out using the SAS software, by the QUANTREG 
procedure associated with the WEIGHT instruction, for each of the countries but also for each of the 
dimension classes. 
 

III.2 Distributional characteristics of specific agricultural costs  

According to (Angrist & Pischke, 2009), "For better or worse, 95% of estimates in econometrics are 
provided by averages" however "applied economists want more and more to know what's going on, 
not just on average , but for the whole distribution, the losers as the winners“. Thus, in many evaluative 
and prospective studies, it is often useful to be able to compare results across a large number of sub-
populations, to reflect the heterogeneity of the populations studied, and to be able to propose more 
realistic adjustments. 

The non-parametric estimate of the density of specific costs by the kernel method highlights the 
asymmetry (2,377), indicated by the difference between the median (€ 33,930) and the average 
(€ 47,446) eccentric by the weight of extrema by higher values (see Figure 1, below representing the 
empirical distribution of French FADN for the calendar year 2006). This asymmetry, in addition to the 

                                                             

18 The specific costs are recorded by the European FADN under the variable label SE281. 

19 The gross product is defined, with the variations of stock, as the total gross production from which the total of the intra-
consumptions is subtracted. . 
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dispersion of cultivated areas, reveals the underlying heterogeneity in the mobilization of specific 
factors of production.. 

Figure 1: Specific costs, empirical distribution of French FADN, 2006. 

 

Source: author’s processing, from French FADN 2006. 
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Figure 2: specific costs per unit of gross product, empirical distribution of French FADN, 2006.

 

Source: author’s processing, from French FADN 2006. 
For such asymmetric distributions, it is well known that the median is a better estimator of central 
tendency than the arithmetic mean. However, very often specific cost distributions are not unimodal, 
as is the case for example for the distribution of specific costs per unit of gross product (see Figure 2) 
that we define as specific costs. Other values may then be needed to better characterize the form of 
the empirical distribution of specific costs, such as those of the lower quartile (Q1 = 0.189) and higher 
quartile (Q3 = 0.413) providing more precise information on the empirical distribution of specific costs. 
than that given by the single estimate provided by the average. 

Tableau 1 : national distributions of specific costs per farm, EU 12. 

 

Country Sample Mean CoV Skewness Kurtosis D1 Q1 Medain Q3 D9 IRD*

Austria 1 790 16 870 139% 6,5 86,7 3 500 5 840 10 430 19 700 37 350 133%

Belgium 1 040 74 150 134% 4,5 37,1 11 270 21 980 43 660 90 370 166 150 157%

Denmark 1 690 112 200 241% 3,4 23,1 4 670 10 810 34 620 155 180 314 640 417%

France 6 510 39 310 160% 5,9 63,1 5 620 12 290 24 910 47 500 83 000 141%

Germany 6 750 63 420 261% 6,6 67,1 11 080 19 590 38 170 75 730 137 550 147%

Hungary 1 690 14 850 1023% 7,5 85,7 1 070 1 880 4 350 10 240 25 460 192%

Italia 13 200 12 180 939% 14,4 314,5 700 1 320 2 670 7 200 20 860 220%

Netherlands 1 340 124 330 218% 3,4 17,1 9 870 25 350 56 100 138 300 294 040 201%

Poland 11 000 7 010 383% 10,6 209,5 1 470 2 220 3 660 7 180 14 300 136%

United-Kingdom 2 590 82 620 210% 7,9 97,8 14 300 23 090 44 220 93 150 177 050 158%

Sweden 850 53 970 187% 8,5 111,6 7 300 15 840 28 850 67 030 122 760 177%

United-Kingdom 2 590 82 620 210% 7,9 97,8 14 300 23 090 44 220 93 150 177 050 158%

Total 56 180 22 250 570% 9,0 135,9 1 010 2 010 5 050 18 070 51 490 318%

Q
1 

Q
3 
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Source: author’s processing, from EU-FADN 2006; (*) interquartile ratio of dispersion. 

First of all, if we compare the countries of the EU12 set in terms of central tendency, the median varies 
from € 2,800 (Spain) to € 10,500 (Austria) for a first group also comprising Poland and Portugal. Italy; 
then, we distinguish an intermediate group with France and Sweden between € 25,000 and € 29,000, 
respectively; finally, the third group comprising the other countries with median costs per farm varies 
from € 34,500 for Denmark to € 56,000 for the Netherlands, and also including Germany, Belgium and 
the United Kingdom. 

Secondly, if we compare these EU12 countries in terms of dispersion, the coefficient of variation 
(CoV)20 is between 134% for Belgium, a country with the most homogeneous production structures 
(followed by Austria, France and Sweden) and 1023% for Hungary which appears with Italy as the most 
heterogeneous country. 

Although these distributions are all asymmetrical by positive values with a large number of extreme 
values, they differ however in their form: more asymmetric by positive values (greater dispersion of 
the values above the median) as in Italy, Spain, Poland or Hungary, with a skewness between 5 and 6; 
or less asymmetrical as in Denmark, Austria, the Netherlands, Belgium or France (with a skewness of 
1.5 to 2.5), with the United Kingdom having an intermediate skewness of a factor of 4. In addition, the 
kurtosis varies from minima to 17 for the Netherlands, or 23 for Denmark or 37 for Belgium, to a 
maximum of 210 to 315 for Poland, Spain or Italy. 

Figure 3 : distribution of the specific costs of the operation (SE 281 <€ 750,000) by country, EU12.  

 

Source: author’s processing, from EU-FADN 2006. 

                                                             

20 Expressed as a percentage, the coefficient of variation reports the value of the standard deviation to the mean: 
𝐶𝑜𝑉 = �̂� �̂�⁄  
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For very asymmetric distributions with extreme values, the interquartile ratio of dispersion (IRD)21 is 
preferable to the CV for measuring relative dispersion: Austria, France and Germany (between 130 and 
150%) have the lowest relative dispersion, while Denmark has the highest relative dispersion of specific 
costs (420%). By ignoring the extreme values of inherited farms from increasingly marginal collective 
structures in its production, the IRD reduces the relative dispersion of Hungary to that of Italy. 

Thus, the lowest levels and dispersions per farm are found in southern and eastern European countries, 
with more asymmetrical and flattened distributions, while the highest levels and dispersions are 
observed in countries in the North and West of Europe, with less asymmetrical and more concentrated 
distributions than the previous ones. Since specific cost distributions have many extreme values, it is 
more appropriate to use quartiles to locate the scale of specific costs, as well as the interquartile range 
or interquartile ratio of dispersion to measure dispersion rather than the mean, standard deviation 
and coefficient of variation are weight-sensitive to these extreme values. 
The ratio of the specific costs to the raw products makes it possible to analyze the productivity of the 
inputs and to compare it with that of the other factors of production. Therefore, it is interesting to be 
able to describe by structural type the structural differences from the point of view of the specific costs 
between countries where the production is located: this angle of analysis is therefore developed in the 
rest of the presentation. 
 
IV Econometric results: national estimates of specific costs  

As we have shown in the methodological section, the estimation according to the conditional quantiles 
makes it possible to carry out a conditional allocation of the specific costs by products, allowing the 
comparison of the different workshops within the framework of a multi-product exploitation based on 
gross margin, its complement to the gross product. We use this conditional allocation to provide 
specific cost estimates to answer farm competitiveness measurement questions, which are posed by 
ex-ante or ex-post design and evaluation of different agricultural policy options. In the framework of 
the FACEPA research project, the choice chosen by the managers in charge of the Knowledge Based 
Bio-Economy program (KBBE) of the 7th PCRD was made for feasibility reasons on the three main 
agricultural commodities that are wheat, milk and pig, produced at a level sufficiently broad at the 
European level to allow cross-country comparisons.  Quantile estimates are therefore made for each 
of the EU12 Member States in order to test the national differentiation of the productive framework 
at European level. we have chosen to analyze the estimates obtained for the year 200622, in order to 
compare the results of the conditional quantile approach later with those of the Seemingly Unrelated 
Regressions Equations (SURE) approach. Initially proposed by (Zellner, 1962), the latter approach is the 
standard procedure for estimating the GECOM model of the FACEPA project. 

Thus, we analyze the results obtained in particular for the pig, one of the conveniences selected in the 
framework of the FACEPA project23. 

 

                                                             

21 As a ratio of interquartile dispersion at the median level, the quartile dispersion coefficient 𝐼𝑅𝐷 = (𝑄3 −𝑄1) 𝑄2⁄  provides 
a non-parametric measure of relative dispersion. 
22 The analysis over the entire period is the subject of work in progress to adapt the quantile estimates approach to a panel 
data structure. 
23 The results obtained simultaneously on the other productions are the subject of analyzes in progress, conducted in parallel.  
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IV.1 Pig, comparative analysis of raw products between twelve EU countries 

In 2010, according to EuroStat estimates24, the EU-27 accounts for 24.4% of world pig production. The 
European Union is behind China the second largest producer in the world with 26 million tonnes in 
2010. The number of pigs slaughtered in 2010 was 302.6 million head, or 23% of the herd. The countries 
studied are among the main producing countries in terms of tonnes of carcasses produced, in 
descending order: Germany (21.58%), Spain (13.33%), France (8.29%), Poland (7.44%), Denmark 
(6.61%), Italy (6.15%), the Netherlands (5.18%), Belgium (4.26%), the United Kingdom United Kingdom 
(2.91%), Austria (2.09%), Hungary (1.67%) and Sweden (0.98%), or 80.5% of European production. 

Even if the correlation with national statistics is less good25, the hierarchy of raw products observed 
within the European FADN (table 2) remains in line with the hierarchy of national statistics on pig 
production26, ranking differences exist for the Netherlands (overestimation of 6%), France 
(overestimation of 4%) and Spain (underestimation of 3%). 

Table 2: pig, distribution of gross product by country, EU12. 

 

Source: author’s processing, from EU-FADN 2006. 

IV .2 Factor Analysis of Estimated Range Distributions 

Table 3 presents the main estimates of conditional quantiles (lower decile D1, lower quartile Q1, 
median Q2, upper quartile Q3, upper decile D9) for pig, derived from quantile regression and ordinary 
least squares regression (OLS) for the specific costs of agricultural production (accounting aggregate 
SE281 of the European FADN) from a breakdown of the gross product into fifteen aggregates (cf. III.1), 
for the subset of 12 European countries selected in 2006. Among the results that may be encountered 
in estimates of conditional specific cost quantiles for pig (table 3), the estimated gross product shares 
for pig from the standard FACEPA model, cf. table A3.3 in (Kleinhanss, Offerman, Butault and Surry, 

                                                             

24 According to Focus on the Common Agricultural Policy, Eurostat 2012. 
25 Coefficient of correlation: r = 0.92. 
26 Coefficient of correlation r = 0.98. 

Country Population D1 Q1 Median Q3 D9 Mean

Austria 29 040 64 126 506 33 031 81 340 24 698

Belgium 5 140 19 243 85 255 184 581 319 312 512 674 228 803

Denmark 6 950 5 544 65 231 213 944 506 288 902 508 354 530

France 13 370 1 620 41 845 123 884 271 555 450 627 194 908

Germany 52 980 1 341 11 946 51 488 135 958 230 833 91 407

Hungary 19 330 761 1 318 2 483 6 843 16 751 16 008

Italia 17 310 400 650 1 530 6 897 132 600 95 450

Netherlands 6 530 45 457 101 343 251 186 460 617 751 500 359 503

Poland 422 190 402 980 2 100 4 624 10 928 5 275

United-Kingdom 2 980 2 739 23 329 133 288 310 707 658 173 228 966

Sweden 3 100 3 209 13 388 54 656 173 638 319 639 124 786

United-Kingdom 2 980 2 739 23 329 133 288 310 707 658 173 228 966

Total 56 180 606 610 368 1 088 10 765 77 316 35 625
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2011), show consistent ranking: in fact, in 11 EU Member States27, the first (Q1) and second (Q2) 
conditional quartile estimators are significantly correlated with the linearly constrained estimator of 
FACEPA (the levels are close to the level reached by the OLS estimator28). 

Table 3: pig, specific costs for 1,000 € of gross product, EU12. 

Source: author’s processing, from EU-FADN 2006. 

The visualization of the specific cost estimates is done according to the graph in Figure 3, showing the 
conditional quantile estimates in ascending order for each country. For 2006, this graph  of the point 
estimates of conditional quantiles of specific pig costs by country identifies four types of distributional 
scales: first type, Italy (ITA) and Spain (ESP) having a similar form (high inter-quantile growth with an 
inter-decile difference D1-D9 greater than 400 €) despite distinct locations (the minimum of the 
differentials between respective quantiles is greater than 200 €); second type, Austria (OST) opposes 
the previous model with an inter-decile gap D1-D9 of 100 €; third type, the United Kingdom presenting 
a distributional scale with significant inter-quantile growth (inter-decile gap D1-D9 greater than 300 €); 
and fourth, a subset of countries with moderate inter-quantile growth (inter-decile range of between 
€ 200 and € 300). The conditional median (Q2) estimation levels are also a second criterion for 
distinguishing between these different distributional scales with two subsets: on the one hand, Italy 
(ITA) and Austria (OST) on the median estimates. less than 450 €; on the other hand, all the other 
countries whose median conditional estimates are between € 500 and € 600. 

Among the differences that can be identified in 2006, let us first note the significant difference 
between two similar distributional scales with heterogeneous slopes, Spain (ES)29 and Italy (IT)30, figure 
3 confirming this separation of distributional scales for all conditional quantiles; this is an illustration 
of the linear model of conditional quantile with heterogeneous slope (cf. above § II.2.ii). Less easy to 
identify, we secondly note the absence of overlapping distributional scales of Belgium (BE), Denmark 
(DA) and Austria (OS) whose separation of confidence intervals can be seen on the figure 3. Apart from 
certain differences in precision for the estimation of the upper conditional decile (D9) between Belgium 

                                                             

27 Austria was not included in the FACEPA report. 
28 The rank correlation levels of Spearman are increasing from 𝑐𝑜𝑟𝑟(𝑆𝑈𝑅𝐸,𝐷1) = 0,62 to 𝑐𝑜𝑟𝑟(𝑆𝑈𝑅𝐸, 𝐷9) = 0,69, 
comparable to 𝑐𝑜𝑟𝑟(𝑆𝑈𝑅𝐸,𝑀𝐶𝑂) =  0,72. 
29 For which, the differences between extreme conditional quantiles overlap those between Comunitat 
Valenciana (PDO Jamon de Teruel) at the highest costs and Extremadura at the lowest costs. 
30 Whose highest quantile estimates correspond to those recorded in Emilia-Romagna (PDO Prosciutto di Parma) 
or Venetto (PDO Veneto Berico-Eugeano), which oppose the lowest quartile and decile estimates in Lombardia. 

Pig D1 [ Min ; Max ] Q 1 [ Min ; Max ] Q 2 [ Min ; Max ] Q 3 [ Min ; Max ] D9 [ Min ; Max ] O LS [ Min ; Max ]

Austria [347.2 ; 369.2] [397.3 ; 409.1] [425.6 ; 447.4] [463.5 ; 485.3] [523.1 ; 562.5] [433.7 ; 442.1]

Belgium [539.9 ; 566.1] [561.2 ; 579.8] [591.5 ; 608.7] [642.7 ; 674.7] [684.6 ; 707.4] [630.9 ; 641.8]

Denmark [445.2 ; 458.6] [503.0 ; 515.4] [558.9 ; 570.9] [617.7 ;632.1] [654.7 ; 671.3] [535.2 ; 542.6]

France [470.9 ; 493.5] [509.9 ; 527.7] [547.9 ; 561.7] [577.6 ; 594.2] [610.8 ; 644.6] [541.6 ; 547.4]

Germany [444.3 ; 454.7] [475.6 ; 485.4] [514.8 ; 526.4] [567.7 ; 582.7] [593.4 ; 618.8] [493.6 ; 502.7]

Hungary [369.0 ; 451.8] [459.3 ; 568.1] [589.2 ; 662.2] [633.3 ; 681.5] [647.8 ; 737.0] [605.1 ; 620.7]

Italy [116.5 ; 170.1] [162.2 ; 245.2] [325.1 ; 386.5] [559.6 ; 633.0] [627.9 ; 718.3] [300.7 ; 307.8]

Netherlands [487.4 ; 506.2] [528.2 ; 550.4] [584.6 ;602.4] [639.9 ; 661.5] [676.0 ; 721.6] [573.2 ; 595.1]

Poland [471.3 ; 483.3] [541.8 ; 552.2] [603.0 ; 618.0] [655.1 ; 674.7] [704.5 ; 727.3] [641.7 ; 648.1]

Spain [191.5 ; 285.3] [369.8 ; 441.6] [552.3 ; 638.5] [743.8 ; 802.2] [824.6 ; 893.4] [449.9 ; 456.7]

Sweden [396.3 ; 443.9] [507.2 ; 533.1] [533.1 ; 578.1] [547.5 ; 619.5] [641.7 ; 722.9] [528.1 ; 543.2]

United-Kingdom [376.8 ; 559.2] [548.4 ; 596.0] [599.2 ; 629.6] [641.3 ; 712.9] [723.2 ; 805.4] [565.7 ; 588.4]
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and Austria on the one hand, and Denmark on the other hand; this illustrates the linear model of 
conditional quantile with homogeneous slope (cf. above § II.2.i). 

 

Figure 4: pig, estimation of conditional quantiles for 12 EU member states (2006). 

 

 
Source: author’s processing, from EU-FADN 2006. 

 
Figure 5 : pig, quantile estimation interval SO-PCA, factorial plane F1xF2 of EU12 countries (2006). 
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Source: author’s processing, from EU-FADN 2006. 

The SO-PCA interval estimates of conditional quantiles allow to specify this distributional structure. 
The first principal component F1 (Axis 1) representing 64% of the inertia, is negatively correlated with 
the first conditional quantiles (decile D1 and quartile Q1 highly correlated). The second principal 
component F2 (Axis 2), representing 35% of the inertia, is positively correlated with the upper decile 
(D9) and the third quartile (Q3). The median Q2 is also correlated with the first two major components. 
the ACPEIQ F1xF2 first factorial factor, representing 99% of the country variability, makes it possible to 
identify two distinct groups of countries differentiating according to the level of the conditional 
estimate of the first quantiles (D1 and Q1): on the other hand, in F1> 0, Italy with the first quantiles 
lower than 205 € and, on the other hand in F1 <0, all the other countries for which the first quantiles 
are greater than 235 €. The second main component makes it possible to distinguish three groups: on 
the one hand, Austria in F2> 0 to the most homogeneous quantile estimates situated between € 350 
and € 430; on the other hand, Spain with the highest estimates (from € 770 for Q3 to € 860 for D9); 
and all other countries in the quadrant (F1 <0, F2 <0) or close to it. 

Figure 6: pig,  location shift model (FRA-DEU/OST) versus location-scale shift model (ITA/ESP). 
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Source: author’s processing, from EU-FADN 2006. 

Thus, does the SO-PCA identify Austria's cost homogeneity model and distinguish two models of cost 
heterogeneity, one for lower cost quantiles (d1 and Q1) by Italy, the second by the higher costs (D9 
and Q3) represented by Spain. Finally, taking into account additional parameters could make it possible 
to better separate two putative subgroups: on the one hand, Denmark, France, Hungary and Sweden; 
on the other hand, Germany, Belgium, Poland and the United Kingdom. 

Hierarchical descending clustering  (DIV)31 allows the cost structure to be specified by country class 
(figure 7). First, there is a major distinction in the location of distributional scales: Austria (OST) is 
separated from other countries by an upper quartile estimate Q3 <516.50 €; Italy stands out with a 
median estimate Q2 <429.75 €; Spain, Denmark and Sweden are distinguished by an estimate of the 
first quartile Q1 <€ 491; the United Kingdom is characterized by a higher decile estimate .is less than 
this value; on the other hand, among these other countries, a supplementary distinction must be made 
between those whose estimate of the last decile (D9) exceeds € 738; Hungary is distinguished by an 

                                                             

31 Unsupervised classification algorithm on the MBMC confidence interval table at 95% quantile estimates (SODAS 2.5 
software). 
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estimate of the first decile (D1) less than 442.25 €. The other countries are divided into two sub-groups: 
on the one hand, France and Germany are characterized by an estimate of the upper quartile (Q3) of 
less than € 636; on the other hand, Belgium and the Netherlands, and Poland, which are distinguished 
by a quartile estimate (Q3) of over € 636. 

This descending hierarchy shows that the set of quantile estimates is mobilized by the discriminant 
values, which implies keeping all the parameters describing the distribution, and possibly extending it 
by a finer quantile scale allowing some of the national distributions to be better distinguished.  
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Figure 7: pig, specific costs for € 1,000 gross product, country classification, EU12. 

 

Source: author’s processing, according to EU-FADN 2006. 

 

 

V Discussion of results 

The heterogeneity of national distributions of specific costs covers the combined effect of different 
dispersal factors, including the economic dimension of farms that should be analyzed. In fact, the 
European countries studied have neither the same composition in terms of the economic dimension 
of the farms, nor the same thresholds to define a professional exploitation. Thus, the heterogeneity of 
the quantile estimates of specific costs within national distributions, either in Italy either in Spain, 
probably covers those of very different production structures both in their economic dimension and in 
the production technology used. 

Regionalised estimates make it possible to specify national situations that are not all homogeneous: 
the Spanish region Communitat Valenciana is distinguished by the maximum estimate of the median 
quantile of specific costs; in contrast, the Spanish region of Extremadura and the Italian region of 
Venetto are distinguished by the lowest overall levels of quantile estimates, especially for the median 
quantile; the Spanish region Andalucia and the Italian region Emilia-Romagna are characterized by 
higher quantile estimates (Q3 and D9); the central Swedish region Skogs-och mellanbygdslan, the 
central Hungarian region Kozép-Magyarorszàg, the French region Basse-Normandie, and the German 
region Sachsen-Anhalt are associated with lower quantile estimates (D1 and Q1) among the highest. 
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:= (Q3 < 516,50 €)
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It cannot be ruled out that the high values of some estimates may in some cases come from artifacts 
related to the estimation methodology for countries where pig production correlates with other 
production facilities on the farm. Indeed, the size of the pig workshop compared to the other 
workshops, according to the more or less pronounced productive specialization of the farms, can 
produce artifacts resulting from the productive correlations at the level of mixed technical-economic 
orientations to the extent that the weight of the costs Specifically related to the other workshops 
would lead, depending on the hierarchy of specific costs, either to an underestimation bias for minority 
pig workshops compared to other products with a smaller production detour or conversely to an 
overestimation bias for productions presenting with the detour of more important production such as 
pig production. 

However, the existence of very high specific costs may also signal the maintenance of technically less 
efficient producers in less favorable areas because of the existence of comprehensive income support 
measures (Barkaoui, Daniel and Butault, 2009), or even agri-environmental measures specific to 
certain productive contexts, in particular those aimed at maintaining agricultural production in certain 
territories. On the other hand, the lower estimates can point to either the presence of intensive farms 
that perform better technically, such as for pig producers in western France, or the presence of 
productive systems based on less demanding input and output techniques as in piedmont and 
mountain areas. 

VI Conclusions 

On the basis of European FADN, we have tested the feasibility of the micro-econometric estimation 
methodology of the specific production costs according to the conditional quantiles, and we have 
illustrated its relevance to take into account the intrinsic heteroscedasticity of these distributions 
fornone of the major commodities of the European market, the pig. The lessons learned from these 
analyzes are relatively consistent for the pig: the lower quantiles (D1 and Q1) and, respectively, the 
higher quantiles (Q3 and D9) are the specific cost parameters that can differentiate national 
productions according to their cost distributions based on regional differences observed. 

The analysis of these estimates makes it possible to identify types of national distributions of specific 
costs. The main producing countries are located in a two-dimensional repository based on a principal 
component analysis of the conditional quantile interval estimates that provides a test of significance 
for the differences found between national distribution scales according to their respective conditional 
quantiles. Differences and similarities between countries are exploited using hierarchical top-down 
classification to produce country classes with comparable costs. The differences between these groups 
of countries are delimited by thresholds expressed according to the conditional quantiles in terms of 
the gross product. These thresholds can be mobilized to segment farm populations to analyze the 
differential effects of agricultural policy measurement. These analyzes therefore make it possible to 
identify different models of distributional scale, notably that of the location shift one opposite that of 
the location-scale shift one. 

We hypothesize that the differentiation of these national distributions takes place on the one hand 
between specialized and input-intensive farms and on the other hand mixed or extensive farms in 
inputs. We also trace the prospects of pursuing and valuing the estimation methodology according to 
the conditional quantiles in the context of an input-output analysis of European agriculture. The unit 
estimates given in terms of the share of the specific costs in the gross product that we have privileged 
in this paper can be used in the context of the calculation of standard gross margins, whether at the 
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normative level to provide a statistical basis for the estimation of but also feed the input-output 
matrices of the particular agri-food sector to a set of EU countries, or even certain groups of European 
regions, to implement sensitivity analyzes for possible options. agricultural policy through social and 
environmental accounts matrices (Léon and Surry, 2009). In the current context of the greening of the 
Pac, the proposed national typology for the pig could be mobilized to carry out simulations aimed at 
exploring the relocation of pig production in mountain areas or in intermediate regions. 
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