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Abstract 20 

There is a growing body of knowledge that ecosystem functions, in particular soil-based ecosystem 21 

functions, are related to biodiversity. However, how plant species diversity influences soil-based 22 

functions along post-agricultural secondary succession is still a largely ignored question in 23 

Mediterranean semi-arid conditions. Therefore, we used the plant functional group approach to 24 

investigate the relationships between plant species diversity indices and soil-based functions 25 

including microbial biomass carbon (MBC), basal respiration (BR) and carbon sequestration (CS) 26 

across three different stages of the vegetation succession corresponding to ~ five years after 27 

agricultural abandonment, ~ 15 years after abandonment, and oak forests which represent the 28 

terminal stage. We also tested if these relationships are supported by the niche complementarity 29 

and selection effect hypotheses. The results showed that soil-based functions significantly 30 

increased with time since abandonment as BR, MBC and CS increased respectively by 1.7, 1.5 31 

and 2.7 times across the three successional stages. We also found strong correlations between the 32 

diversity indices and the soil-based functions BR, MBC and CS which were positive for richness 33 

(R2 values: 0.75, 0.74 and 0.75) and Shannon diversity (R2 values: 0.61, 0.58 and 0.61) but negative 34 

for evenness (R2 values: 0.38, 0.38 and 0.36 for, respectively). Similarly, richness and Shannon 35 

diversity of the different plant functional groups positively correlated with soil-based functions. 36 

However, contrasted results were found for evenness which positively correlated with soil-based 37 

functions for perennial grass only. We suggested that increasing the diversity of plant species and 38 

facilitating dominant species would be needed to improve the soil-based ecosystem functions after 39 

abandonment of degraded soils. This study also revealed that the mechanisms behind the 40 

relationships between biodiversity and ecosystems functions were influenced by the vegetative 41 

forms. 42 

Keywords Carbon sequestration . Cropland abandonment .  Land use change . Richness . Semi-43 

arid forest 44 

 45 
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Highlights 48 

 Species diversity and soil-based functions improve along the successional stages after land 49 

abandonment 50 

 The relationships between plant diversity and soil-based functions are influenced by the 51 

plant functional groups. . 52 

 Niche complementarity plays a more vital role in soil-based ecosystem functions than the 53 

selection effect. 54 

 55 

Introduction 56 

Biodiversity is one of the most important concepts in ecology and is essential for the preservation 57 

and maintenance of ecological services and functions in any ecosystem. The dependence of 58 

services and functions (i.e., water balancing, mitigation of the microclimate, limitation of erosion, 59 

carbon sequestration and soil fertility restoration), in each ecosystem on biodiversity on the one 60 

hand, and on the other hand, the accelerating trend of biodiversity reduction in recent decades (e.g. 61 

Verdura et al. 2019) has raised concerns about the decline of sustainable ecosystem services and 62 

functions (Deng 2012). In this regard, ecologists have been focusing on the impact of diversity on 63 

ecosystem functions and services over the past two decades (Tilman et al. 1997; Grime 1997; 64 

Naeem et al. 2009; Isbell et al. 2015). 65 

In many parts of the world, human activities and their dependence on natural resources, especially 66 

forests, have caused land use changes and destruction of forests (e.g. Cai et al. 2018; Kepfer-Rojas 67 

et al. 2019;  Heydari et al. 2019). These disturbances have led to the loss of ecological niches of 68 

many species, to reduced biodiversity (Isbell et al. 2017; Heydari et al. 2017 a; Miedema et al. 69 

2019) and to the disruptions of various ecosystem services for instance in terms of food production, 70 
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pest and disease control, carbon sequestration (Cardinale et al. 2007; Poorter et al. 2015). Under 71 

such circumstances, awareness of the relationship between diversity and ecosystem services is not 72 

only important for the conscious management of forest areas but also valuable for the preservation 73 

of biodiversity itself (Forrester and Bauhus 2016).  74 

In many areas, in particular in the Mediterranean region, forests result from the secondary 75 

succession leading abandoned agricultural lands to woodlands. Forest vegetation diversity was 76 

shaped by this process as the successional pathways increased the complexity of forest structure 77 

influencing species richness, species composition and variations of taxonomic and functional traits 78 

(Lebrija-Trejos et al. 2010; Cadotte et al. 2011). 79 

In addition, the development of a forest structure was accompanied by a profound modification of 80 

the environmental factors such as changes in nutrients and light availability resulting in the gradual 81 

replacement of pioneer species with permanent species more effective in increasing biomass 82 

accumulation (e.g. Pinho et al. 2017). The increase in the presence of such species is directly 83 

related to the production of the ecosystem and its ecological services such as carbon storage (Beer 84 

et al. 2010). 85 

In general, in examining the relationship between biodiversity and ecosystem functions, two main 86 

hypotheses are mentioned including the concepts of ‘selection effects’ (species with specific traits 87 

are dominant) (Tilman et al. 1997; Loreau et al. 2001) and ‘complementarity effect’ (niche 88 

differentiation) (Loreau et al. 2001), which have shown contrasted results for different regions and 89 

ecosystems. Some studies in forest ecosystems support the hypothesis of selection effects (Prado-90 

junior et al. 2016) while some support niche complementary (Mensah et al. 2018). These 91 

contradictory results indicate that the mechanisms driving the diversity of ecosystem-service 92 
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relationships depend on various factors such as environmental factors, habitat heterogeneity, 93 

temporal and spatial scale, as well as changes of plant communities during succession. 94 

The evaluation of various functions of the ecosystem is an effective way to highlight the relative 95 

importance of the selection effects versus the niche complementary hypotheses. For example, 96 

Finke and Snyder (2008) emphasized the importance of diversity in increasing the use of available 97 

resources (due to niche complementary) leading to a higher production of biomass and carbon 98 

storage. In contrast, Tahmasebi et al. (2017) put forward the central role played by the dominant 99 

ecosystem species (selection effects) while they found no evidence to support the niche 100 

complementary hypothesis. These contrasted studies illustrate that changes in environmental 101 

conditions can cause differences in the mechanisms that determine the relationships between 102 

biodiversity and ecosystem functioning (Mokany et al. 2015). 103 

Soil, as an essential component of terrestrial ecosystem, provides various functions, including 104 

carbon storage and support vegetation establishment and growth and activity of various organisms 105 

(Binkley and Fisher 2013). Although, many studies have explored the relationships between 106 

biodiversity and aboveground biomass (Morandi et al. 2018; Wekesa et al. 2019), especially in 107 

forests, the relationships between species diversity indices and soil-based functions have received 108 

much less attention. Similarly, the negative impact of land use change on diversity and ecosystem 109 

functions was largely investigated (Paudyal et al. 2017; Newbold et al. 2019), while studies on the 110 

relationships between plant species diversity and soil-based functions during the secondary 111 

succession from abandoned agricultural lands to forests were less frequent. 112 

Moreover, an approach based on plant functional groups could increase our insights related to the 113 

effect of diversity of different plants groups on ecosystem functions (Hevia et al. 2016; Biswas et 114 

al. 2019). In fact, the relationships between the diversity of different functional groups and the 115 
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above- ground biomass in forest systems have been largely studied (Zuo et al. 2018; Fayiah et al. 116 

2019), but have been less investigated for soil-based ecosystem functions (e.g., carbon 117 

sequestration and basal respiration) (Rey Benayas et al. 2007). This was particularly proven in 118 

Mediterranean forests established on previous agricultural lands such as the Zagros oak forest in 119 

western Iran. 120 

In this area, there is a long history of disturbances over the last half-century including grazing 121 

(Erfanzadeh et al. 2015; Hashemi et al. 2019) and fires (Heydari et al. 2020), linked to the high 122 

dependence of people's livelihood on oak forest services and functions and to the conversion of 123 

most of these forests into arable lands or agroforestry systems (Henareh Khalyani et al. 2013). 124 

These disturbances were shown to be major factors in the degradation of the physical, chemical 125 

and biological properties of the soil (Heydari et al. 2017 a; Hashemi et al. 2019). Afterward, some 126 

of these lands were abandoned as a result of conservation management by the office of the natural 127 

resources or due to a significant decline of soil fertility and were then gradually colonized by a 128 

forest vegetation. 129 

The present study seeks to investigate the relationships between plant species diversity indices of 130 

functional groups and soil-based functions of this ecosystem according to three different stages of 131 

the vegetation succession corresponding to ~ five years after abandonment, ~ fifteen years after 132 

abandonment, and oak forests, which represent the 'climax' stage of the vegetation succession. 133 

In this study, the functional groups are defined according to species growth form and lifespan. 134 

We hypothesize that: 135 

 i) Soil-based functions and diversity indices improve across the successional stages. 136 

ii) There is a positive relationship between species diversity and soil based functions supporting 137 

the niche complementary hypothesis. 138 



7 
 

iii) The functional groups differentially influence the relationships between diversity and 139 

ecosystem functions. 140 

 141 

Methods  142 

Site description  143 

The forest cover of the study area (383 ha) was originally dominated by the Brant's oak (Quercus 144 

brantii Lindl.) and was partly cleared for agricultural needs. The study area is characterized by 145 

homogeneous physiographic conditions: a global flat topography (slope < 10 %) and a mean 146 

elevation of about 1450 m a.s.l. Forests were converted into an agroforestry system consisting in 147 

cultivating cereals between oak trees and shrubs (wheat/oak farming system). Due to rural-to-148 

urban migration and to a loss of productivity after soil erosion, a part of these fields were 149 

abandoned at different time periods and progressively colonized by a woody vegetation. We 150 

selected three stages of the succession from abandoned areas to forests (Fig. 1): 151 

 (i) The forest stage (“FOR”) which represents the terminal stage of the succession. Field evidences 152 

suggest that this stage was previously used by agroforestry, which was abandoned several decades 153 

ago (~ 40-60 years) although a precise date of abandonment cannot be given. It is composed of 154 

sparse overstory of Persian oak trees (density = 85 n/ha, mean height = 7.6 m) and an understory 155 

dominated by shrubs such as Daphne mucronata Royle and Crataegus pontica C. Koch.  This 156 

formation is run as simple coppice mainly for the production of firewood.  157 

 (ii) The wheat/oak farming system after 15 years of abandonment from 1999-2014 (“LONG'': 158 

long-term abandonment) and, 159 

 (iii) The wheat/oak farming system after 5 years of abandonment from 2009-2014 (''SHORT”': 160 

short-term abandonment'). 161 
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The climate of the area is of a Mediterranean type (Fathizadeh et al. 2017) characterized by a dry 162 

period of 5-6 months (May-October). The mean annual rainfall and temperature are 621.3 mm and 163 

17°C, respectively (Ilam weather station, 1999-2015). The soil is classified as Inceptisol (Soil 164 

Survey Staff, 2014). It is a calcareous soil, rich in organic matter with a clay loamy texture and a 165 

mean depth of 30-40 cm (Heydari et al. 2017). 166 

 167 

  168 

 169 

  170 

 171 

 172 

  173 

 174 

 175 

 176 

 177 

 178 

Fig 1. The location of the study area in Iran and Ilam province, : Forest, : Long- term 179 

abandonment and : Short- term abandonment 180 

 181 

 Experimental design and vegetation measurements 182 

Three areas, each of 2-4 ha, were selected for each stage of the succession (i.e. nine areas). Areas 183 

were selected in similar site conditions, in particular a same altitude (1450 m a.s.l.) and a 184 

comparable slope (<10%), and separated by a distance of 800 m to 1600 m. In each area, two 185 

randomly perpendicular transects of  30m length were set up. Seven plots composed of two 186 

0 250 100500 

m 

N 

631200 633600 632800 632000 

37
20

00
0 

37
19

20
0  

37
18

40
0  

37
16

80
0  

37
17

60
0  



9 
 

subplots of 1m2 were regularly distributed along the transects (3 plots in each transect and 1 plot 187 

where transects met) (Tárrega et al. 2009). All vascular species were recorded on each subplot and 188 

each species was named according to the available literature and given of cover percentage. Each 189 

species was then distributed in one of the four functional groups based on plant life form 190 

(forb/grass) and plant life span (annual/perennial): annual forbs, annual grasses, perennial forbs 191 

and perennial grasses. These two plant traits were commonly used in previous studies because they 192 

are elucidative on species morphology, phenology, competitive competition potential and 193 

taxonomy (e.g. Verma et al. 2014). 194 

We then computed at plot level three diversity indices: The species richness (SR), diversity (H’) 195 

and evenness (J’) using the following equations:  196 

 197 

SR= S  198 

i

s

i
i ppH ln

1



      (Shannon and Weaver 1949) 199 

E = H' / ln (S)      (Pielou 1966) 200 

 201 

Where S = total number of species and pi = proportion of cover of species ‘i’. All diversity indices 202 

were calculated using the Ecological Methodology software. 203 

 204 

 Soil sampling and analysis 205 

Around each plot, three soil subsamples were collected at 20 cm depth and then combined (1 206 

sample/plot). Soils were immediately sieved through a 2 mm sieve and divided into two 207 

subsamples. The first subsample was air dried and used to measure soil organic carbon (SOC) by 208 
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dichromate oxidation according to the Walkley-Black method (Nelson and Sommers 1982). The 209 

second subsample was kept at field moisture and stored at 4 °C for subsequent measurements of 210 

soil microbial activity. Microbial biomass carbon (MBC) was measured by determining the 211 

organic carbon in chloroform-fumigated and non-fumigated samples by dichromate oxidation, as 212 

described by Vance et al. (1987). Soil basal respiration (BR) was measured by trapping (in 1 M 213 

NaOH traps) and quantifying CO2 that was emitted from soil samples over a five-day period (Alef 214 

and Nannipieri 1995).  215 

The following equations was used for estimating carbon sequestration (CS): 216 

CS (T.ha-1) = 100 × OC (%) × BD (g.cm-3) × Soil depth (cm) where OC is the organic carbon 217 

content and BD is the bulk density.      218 

Also, undisturbed soil samples were also taken to determine bulk density (Blake and Hartge 1986). 219 

 220 

Statistical analysis  221 

First, the normality and homogeneity of variance of the data assessed by means of the 222 

Kolmogorov–Smirnov test and Levene's test, respectively, and the necessary conversions made 223 

when needed. The differences in diversity, richness and evenness indices of all species as well as 224 

different vegetative forms (annual forb, perennial forb, annual grass and perennial grass) among 225 

different stages of the succession were tested by one-way analysis of variance (ANOVA) followed 226 

by Duncan’s multiple range test. Linear regressions were used to investigate the relationships 227 

between species diversity, richness and evenness indices of total species and soil-based functions: 228 

Microbial Biomass Carbon (MBC), Basal Respiration (BR) and Carbon Sequestration (CS). 229 

Pearson's correlation coefficient analysis was also used to determine the relationships between 230 

diversity, richness and evenness indices of different plant functional groups (annual forb, perennial 231 
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forb, annual grass and perennial grass) with soil-based functions including MBC, BR and CS. This 232 

analysis was performed using "ggplot2" package in R var. 3.6.0 (R Core Team 2019). 233 

 234 

Results 235 

Plant functional diversity among different stages of succession 236 

Diversity, richness and evenness indices of total species and different functional groups based on 237 

growth form and lifespan were significantly different (P< 0.01) between successional stages 238 

(except evenness of annual grasses: P=0.819). The highest values of Shannon diversity and 239 

richness indices were observed in FOR, except for the annual grass group (maximum in LONG), 240 

while the lowest values were recorded in SHORT. Evenness showed a different pattern: it 241 

decreased from SHORT to FOR in all groups but Perennial forb and Perennial grass where values 242 

were the lowest in SHORT (Table 1).  243 

Table 1 Mean values (mean ± standard error) of plant diversity indices across the three stages of 244 

the secondary succession following land abandonment. Different letters indicate significant 245 

differences between three stages of the secondary succession: FOR: forest, SHORT: short-term 246 

abandonment and LONG: long-term abandonment.  247 

 Variables  
 

P-value MS FOR LONG SHORT 

Total species      
Richness <0.001 2160.33 28.76± 0.46 a 24.71± 0.84 b 9.50± 0.45 c 
Evenness <0.001 5.89 0.69± 0.01 b 00.70± 0.02 b 0.80± 0.01 a 
Shannon <0.001 0.08 2.98± 0.02 a 2.84± 0.05 a 2.00± 0.07 b 

      
Annual forb      

Richness <0.001 592.11 17.66± 0.44 a 16.28± 0.74 a 7.85± 0.37 b 
Evenness <0.001 0.10 0.69± 0.01 b 0.70± 0.01 b 0.82± 0.01 a 
Shannon <0.001 2.802 2.49± 0.02 a 2.41± 0.06 a 1.82± 0.06 b 

      
Perennial forb      
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Richness <0.001 267.57 7.00± 0.27 a 4.71± 0.23 b 0 c 
Evenness <0.001 4.94 0.81± 0.03 a 0.86± 0.02 a 0 b 
Shannon <0.001 1.71 1.71± 0.07 a 1.34± 0.05 b 0 c 

      
Annual grass      

Richness 0.001 5.90 2.42± 0.27 a 2.80± 0.23 a 1.76± 0.00 b 
Evenness 0.819 1.20 0.88± 0.03  0.87± 0.03  0.90± 0.02  
Shannon 0.001 0.004 0.66± 0.09 a 0.83± 0.08 a 0.36± 0.07 b 

      
Perennial grass      

Richness <0.001 16.20 1.71± 0.15 a 1.19± 0.08 b 0 c 
Evenness <0.001 6.31 0.92± 0.02 b 0.97± 0.01 a 0 c 
Shannon <0.001 0.74 0.36± 0.07 a 0.10± 0.04 b 0 b 

Significant p-values at p<0.05 are indicated in bold. 248 

Soil-based functions along abandonment gradient 249 

The three soil-based functions were significantly influenced by land abandonment i.e., BR (F-250 

value= 181.03; P-value <0.001), MBC (F-value= 193.36 P-value <0.001) and CS (F-value= 251 

122.21; P-value <0.001) which showed significant differences among the three stages of the 252 

secondary succession (Fig. 2 a, b, c). 253 

MBC, BR and CS values were the highest in FOR and the lowest in SHORT while values were 254 

intermediate in LONG. In other words, long-term abandonment compared to short-term 255 

abandonment increased respectively by 1.7, 1.5 and 2.7 times, the basal respiration, the microbial 256 

biomass carbon, and the carbon sequestration (Fig. 2 a, b, c). 257 

 258 

 259 

 260 

 261 

 262 

 263 
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 264 

 265 

 266 

Fig 2. Comparison of the soil-based functions (mean ± SE) between the three stages of the 267 

secondary succession. Different letters indicate significant differences among the treatments 268 

(Duncan's multiple range test). Basal respiration (BR) (A), Microbial biomass carbon (MBC) (B) 269 

and carbon sequestration (CS) (C) 270 

 271 

The relationships between species diversity indices of total species and soil-based functions 272 

We found positive significant linear relationships between the soil-based functions and the species 273 

richness and diversity indices for all species (all P < 0.05). The lowest regression coefficients (R2) 274 

between species richness and diversity were found for MBC (R2 values: 0.74 and 0.58, 275 

respectively), while BR and CS had the highest coefficients with species richness and diversity 276 
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indices (Fig. 3). In contrast, negative relationships were found between all soil-based function and 277 

evenness with similar regression coefficients (R2 values: 0.38, 0.38 and 0.36 for BR, MBC and 278 

CS, respectively) (Fig. 3).   279 

 280 

    281 

    282 

   283 

Fig 3. Relationships between species diversity indices of total species and soil-based functions 284 

including microbial biomass carbon (MBC), basal respiration (BR) and carbon sequestration (CS) 285 

for the three stages of the succession ( : SHORT, : LONG and : FOR). Linear regressions and 286 

regression coefficients are indicated. 287 
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 Correlation between diversity of plant functional groups and soil- based functions 289 

Species richness and Shannon diversity indices of different functional groups were positively and 290 

significantly correlated with all soil-based ecosystem functions (Fig. 4). However, contrasted 291 

results were observed for species evenness as a) the correlation was negative for annual and 292 

perennial forbs, b) positive for annual grass and c) no significant correlation was found for 293 

perennial grass (Fig. 4). 294 

 295 

 296 

 297 

Fig 4. Pearson's correlation coefficient between diversity of plant functional groups and soil- 298 

based functions: Microbial biomass carbon (MBC), basal respiration (BR) and carbon 299 

sequestration (CS). (* p<0.05, ** p<0.01, *** p<0.001). 300 

 301 
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 303 

 304 

Discussion 305 

Total species diversity and functional groups diversity after abandonment 306 

We found an increase in richness and diversity and a decrease in evenness of total plant species 307 

along the successional trajectory from recently abandoned lands to the forest system. 308 

It is well known that land use change from forest to simpler ecosystems such as agroforestry 309 

systems and orchards, causes an alteration of main soil properties (Ayala‐Orozco et al. 2018; 310 

Lizaga et al. 2019) accompanied by a degradation of most vegetation characteristics including 311 

plant diversity and composition (Colombaroli et al. 2013; Tinoco, et al. 2018). This profound 312 

alteration of the forest structure (Plieninger et al. 2011) and the soil seed bank depletion (Lemenih 313 

and Teketay 2006; Weerasinghe et al. 2019) negatively affect richness and diversity of plant 314 

species (e.g., Rembold et al. 2017). These changes also reflect the loss of forest-dependent species 315 

and the shift from native to alien-dominated plant communities. 316 

On the other hand, with the passage of time from the abandonment of agricultural lands to the 317 

terminal forest stage, the rate of seed dispersal and the possibility of establishment of forest-318 

dependent species are likely to increase and the dominance by opportunistic species (invasive) of 319 

croplands to decline (Nepstad et al. 1990). In our study, this change was observed and we noted 320 

that recovery of species diversity and richness was slow in the early years after abandonment but 321 

hastened with time. The main reasons for this slow recovery are the high limitation of seed 322 

dispersal (Wijdeven and Kuzee 2000; Cubiña and Aide 2001), intense competition with pioneer 323 

species in particular annual grasses (Ortega-Pieck et al. 2011), adverse microclimatic conditions 324 
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prevailing in open areas due to excessive solar radiation and extreme temperatures and poor soil 325 

conditions due low soil fertility, soil compaction and erosion. These conditions are not favorable 326 

for the germination and establishment of incoming seeds (Bassett et al. 2005; Trujillo-Miranda et 327 

al. 2018).  328 

We noted that species diversity and richness of all plant functional groups increased along the 329 

successional stages. With time, the obstacles to plant species establishment and the intense 330 

competition for resources are gradually removed, facilitating the recovery of most annual and 331 

perennial functional groups (Meli et al. 2017). 332 

This change also reflects amelioration of the environmental conditions and other studies have also 333 

reported the replacement of weedy annual species belonging to the early stages of succession with 334 

shade-tolerant and moisture-preferring perennial species at later stages of succession (Holmes et 335 

al. 2018). 336 

Basically, after abandonment in degraded sites, the passive landscape restoration (or rewilding) 337 

facilitates the restoration of natural ecosystems. However, the time required to achieve this 338 

restoration is not same in the different ecosystems depending on the conditions before and after 339 

degradation (Meli et al. 2017). 340 

We found that increasing abandonment history increase the evenness of permanent forbs and 341 

decrease the evenness of annual forbs. This result can be explained by the improvement of the 342 

environmental conditions along the succession accompanied by the migration and establishment 343 

of permanent forms and the decline of opportunistic annual forms such as annual grasses.  344 

As time after abandonment goes by, late-successional perennial species dominate over annual 345 

pioneers of early stages after abandonment. These perennial species are dispersed throughout the 346 



18 
 

area with the same abundance and occupy most of the ecological niches. This trend increases the 347 

evenness index of these species in the second decade after abandonment. 348 

Similarly, Paillet et al. (2010) recorded the decrease of the evenness of early-successional shade-349 

intolerant species for the benefit of intermediate-successional species due to the shadier conditions 350 

prevailing in the later stages of the succession. In addition, this decline of evenness in annuals 351 

species can be explained by the greater dominance of perennial species and shrubs, which are 352 

superior competitors for resources (Kouba et al. 2015). 353 

 354 

Comparison of soil-dependent ecosystem functions between different stages of secondary 355 

succession  356 

Soil-based functions of the ecosystem improved with the passage of time since the abandonment 357 

from agriculture to the forest stage. In fact, the levels of basal respiration, microbial biomass 358 

carbon and soil carbon sequestration were doubled between the forest stage and the short 359 

abandonment stage. Our results about the increasing of soil respiration in the later stages of 360 

secondary succession (LONG) are consistent with the findings reported by Griffiths and Swanson 361 

(2001), and are related to a higher annual organic matter input to soil surface. Microbial respiration 362 

has a direct relationship with soil organic carbon storage due to the high dependence of soil 363 

microbial activity on substrate carbon availability (Zhang et al. 2014). Therefore, with higher 364 

carbon storage in the later stages of the succession, the basal respiration increases (Soleimani et 365 

al. 2019). Also, higher amount and stability of organic carbon in forests than in arable lands (Gelaw 366 

et al. 2015) increase microbial biomass and microbial derivatives and stimulates decomposition 367 

products and metabolites (Leff et al. 2012).  368 
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Our results are also consistent with those of Islam and Weil (2000) who observed a significant 369 

reduction of microbial biomass carbon and a decrease in soil quality when forests are turned into 370 

agricultural lands. The negative effect of farming operations such as soil compaction, soil 371 

disruption, harvesting of crops every year and significant decline in litter input reduce the soil 372 

organic matter and the resources availability for microorganisms leading to a general degradation 373 

of the amount and quality of the substrate (Niemeyer et al. 2012; Soleimani et al. 2019). These 374 

changes negatively influence microorganism’s populations and decrease MBC and BR (Van 375 

Leeuwen et al. 2017). Also, due to the lack of permanent forest cover following land use change; 376 

the soil temperature increases which accelerates the loss of soil carbon (Karmakar et al. 2016). 377 

Consistent with our results, Rasouli-Sadaghiani et al. (2018) showed that conversion of forests into 378 

agricultural lands significantly reduced carbon sequestration by 68%, and microbial respiration by 379 

50%. Therefore, soil-based functions can be considered as suitable indicators for monitoring 380 

changes of soil processes after land abandonment. 381 

Soils with different vegetation have different litter decomposition processes, resulting in the 382 

modification of carbon release and storage processes in the soil (Zhang et al. 2013). Therefore, the 383 

difference in soil carbon storage between the successional stages could rely for a part in the 384 

difference in the type of plant cover (plant functional groups) after abandonment. 385 

Aboveground and belowground biomass of perennial species is higher than the biomass of annuals 386 

and there is a direct relationship between biomass and carbon sequestration (McCarty and Ritchie 387 

2002). Recovery of perennial grasses and forbs after long-term abandonment is therefore one of 388 

the main factors contributing to higher soil carbon stocks in LONG and FOR than in SHORT. 389 

The basal respiration and microbial biomass carbon increased after long-term abandonment but 390 

they remained significantly lower than in the forest stage. In contrast, the gradual increase in soil 391 
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carbon sequestration with time did not last after 15 years of abandonment in our study as we found 392 

no significant difference between LONG and FOR. Our results indicated that after 15 years of 393 

abandonment the soil carbon stock is almost comparable to the pre-land use stock. This time is 394 

likely to be vary in different ecosystems. For example, Deng et al. (2013) studying different stages 395 

of succession after grassland abandonment in northwest China (1, 7, 13, and 20 years), showed 396 

that soil carbon stock in the last stage has not yet reached the pre-land use stock.  397 

 398 

Selection Effect vs. Niche Complimentary: response of total and plant functional groups 399 

The results of the present study show that soil-based functions of ecosystem increase 400 

simultaneously with increasing richness and diversity of plant species. Many studies have recorded 401 

a positive relationship between increased species richness and ecosystem function including soil 402 

carbon sequestration (Cardinale et al. 2012; Tahmasebi et al. 2017), microbial respiration (Dias et 403 

al. 2010), and microbial biomass carbon (Rawat et al. 2019). A positive relationship was also 404 

observed between ecosystem functions and species richness not only in forest ecosystems (Poorter 405 

et al. 2015; Sullivan et al. 2017; Liu et al. 2018) but also in other ecosystems such as grasslands 406 

(Li et al. 2019) or marine ecosystems (Worm et al. 2006; Burkepile and Hay 2008). 407 

Increase in species richness in various ecosystems (including low- to medium-sized production 408 

areas) is likely to enhance the exploitation of existing resources which in turn can stimulate the 409 

ecosystem productivity and ecosystem dynamics (Loreau 2010). This positive relationship 410 

between species richness and soil-based ecosystem functions provides support to the niche 411 

complimentary hypothesis. One of the effective mechanisms in creating complementary use of 412 

resources between plants and enhancing the functioning of the ecosystem is resource partitioning 413 

(Barry et al. 2018). It implies an increase in productivity due to differences in functional 414 
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characteristics (functional divergence) which enhances the functioning of the ecosystem. In line 415 

with our results, this mechanism leads to a positive relationship between species richness and 416 

ecosystem functions such as carbon sequestration. 417 

As the number of species increases along with a better capture of ecosystem resources, a 418 

corresponding increase in ecosystem function will occur. However, the positive effects of this 419 

increase in richness depend on the reduction or absence of competition between plants in the use 420 

of environmental resources (Grime 2006). In addition, facilitation has also been identified as one 421 

of the key drivers of complementary use of resources among plants and has a positive impact on 422 

ecosystem functioning (Cardinale et al. 2002; Lambers et al. 2004; Brooker et al. 2016). In the late 423 

stages of the secondary succession in our study area, the role of nurse and facilitator species was 424 

likely to be reinforced, increasing species diversity and richness and thereby promoting ecosystem 425 

function. For example, the higher abundance of woody species such as Quercus brantii L., 426 

Crataegus pontica K. Koch., Daphne mucronata Royle. and Astragalus adscendens Boiss. in the 427 

LONG stage may provide favorable conditions for the establishment of other plants. 428 

We found negative relationships between plant evenness and the ecosystem soil-based functions, 429 

a finding also recorded in other studies (Mulder et al. 2004). In general, the effect of evenness on 430 

ecosystem function depends on the contribution and role of dominant species in ecosystem 431 

function (Maestre and Reynolds 2006). In areas where the major contribution of ecosystem 432 

function is provided by dominant species (e.g. the more important role of woody species than 433 

herbaceous species in carbon sequestration), the increase in plant evenness, which reflects a low 434 

abundance of dominant species, is likely to have a negative impact on ecosystem functions. 435 

Therefore, the negative relationship between evenness and soil-based functions in this study 436 
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confirms the hypothesis of selection effect that emphasizes the role played by some dominant 437 

species. 438 

The contrasted influence of evenness on ecosystem functions according to the plant functional 439 

groups (perennial forbs or grasses, see Figure 3) indicates the positive influence of some dominant 440 

forbs on main soil functions, while this effect relies on the contribution of more species for 441 

perennial grasses. 442 

We found that the increase of evenness of perennial grasses in the second decade after 443 

abandonment was positively correlated with soil-based ecosystem functions. This result could be 444 

explained by the key role played by some species such as Poa bulbosa or Hordeum bulbosum as 445 

also reported in other studies in arid and semiarid regions (e.g. Eghdami et al. 2019). Based on 446 

their root systems (tiny dense shallow roots) and the high number of active leaves, these species 447 

can increase soil-based functions, especially carbon sequestration (Barnhart 1985; Kadović et al. 448 

2012; Erfanzadeh et al. 2014). In fact, in the late stages of the succession, the establishment of 449 

oaks and shrubs acting as nurse species, (Heydari et al. 2017) facilitate the installation of a floor 450 

vegetation composed of different vegetative forms, especially perennial grasses and forbs, such as 451 

Alyssum marginatum Steud. ex Boiss., Allium stamineum Boiss., Tragopogon buphthalmoides 452 

(DC.) Boiss., Trigonella elliptica Boiss., and Heteranthelium piliferum (Banks & Soland.) Hochst, 453 

that were not present shortly after abandonment and only established in the late stages. These 454 

changes increase species diversity and could enhance soil carbon capture (Cardinale et al. 2012) 455 

as it is by ~ 2.5 times higher in LONG than SHORT in our study. Consistent with our results, Yang 456 

et al. (2019) found a 178 % increase in annual rates of soil carbon storage after 22 years of 457 

abandonment. This rapid change was attributed to the rapid recovery and increasing richness and 458 

diversity of C3 grasses and legumes, especially perennials species that have higher root: shoot 459 
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ratios, lower decomposition rates of these roots and higher aboveground and belowground 460 

production.  461 

The increase in diversity and richness along the successional pathway in addition to carbon 462 

sequestration has further enhanced multiple ecological and environmental benefits, including a 463 

reduced leaching and a higher production of soil nutrients needed for microbial communities 464 

(Tilman et al. 2006; Dijkstra et al. 2007). In contrast, a decrease in plant diversity has a negative 465 

effect on the activity of soil heterotrophic organisms: first, by limiting plant biomass production, 466 

and the second by producing less diverse mixtures causing a less balanced diet in terms of food 467 

quality and a less constant supply in time for microbial activity (Spehn et al. 2000). 468 

Therefore, a decreasing richness in plant species has a negative effect on microbial community 469 

activity due to the reduction of temporal and spatial heterogeneity of these resources (Holland and 470 

Coleman 1987). The increase number of species in LONG and FOR with more diverse ecological 471 

traits such as higher nitrogen concentration in roots and leaves (Garnier et al. 1997; Roumet et al. 472 

2006) can explain the positive correlation between plant species diversity and soil-based microbial 473 

functions such as basal respiration and microbial biomass carbon (Yadav 2012; Guillaume et al. 474 

2016). 475 

In this regard, Lange et al. (2015) stated that more carbon inputs to the soil is linked to a greater 476 

diversity of plant communities leading to higher activity and abundance of microbial communities. 477 

It seems that favorable conditions 15 years after abandonment (such as greater diversity of plant 478 

species and higher abundance of perennial species) were effective in increasing microbial activity 479 

of this ecosystem and in producing positive relationships between diversity indices and basal 480 

respiration and microbial biomass carbon (Zhou et al. 2013).  481 

 482 
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CONCLUSIONS 483 

Biodiversity is one of the most important determinants of ecosystem functions and a wealth of 484 

studies has been conducted to analyze the relationships between diversity indices and ecosystem 485 

functions in various types of ecosystems. However, the question of how some diversity indices 486 

such as evenness can influence soil-based functions, in the context of agroforestry abandonment 487 

in semi-arid Mediterranean areas has received much less attention. The results of this study reveals 488 

that species diversity indices and soil-based functions improve with time after land abandonment 489 

in accordance with our first hypothesis. Our second hypothesis is also partially confirmed as we 490 

found positive relationships between richness and species diversity with soil-based ecosystem 491 

functions as predicted by the niche complementarity hypothesis. However, the negative 492 

relationships between evenness and soil-based ecosystem functions supports the selection effect 493 

hypothesis. These results are in line with many other studies which have emphasized the 494 

simultaneous existence and role of both mechanisms and have concluded that these hypotheses are 495 

not mutually exclusive (e.g. Conti and Díaz 2013; Tahmasebi et al. 2017). Lastly, as hypothesized, 496 

we showed that the functional groups based on plant life form have an influence on the 497 

relationships between plant diversity and soil functions.  In terms of management, a passive 498 

restoration relying on spontaneous recovery of perennial plants (in particular woody species) 499 

beneficial to main soil processes can be recommended if the environmental conditions are suitable. 500 

In particular, abandoned lands should not be in a too critical stage of degradation impairing the 501 

main soil-based functions (e.g. high soil compaction, heavily eroded soils). Therefore, protection 502 

measures against major disturbances frequently occurring in semiarid areas submitted to a strong 503 

human pressure, such as grazing or fire, are also needed to prevent any regressive vegetation 504 

dynamics. 505 
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