, Agriculture Organization (FAO) of the United Nations. OECD-FAO Agricultural Outlook, 2013.

Y. Fu, H. Y. Li, J. Yu, H. Liu, Z. Y. Cao et al., Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai), Sci. Hortic, vol.214, pp.51-57, 2017.

Y. Sago, Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce, HortScience, vol.51, pp.1087-1091, 2016.

X. X. Fan, Z. G. Xu, X. Y. Liu, C. M. Tang, L. W. Wang et al., Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light, Sci. Hortic, vol.153, pp.50-55, 2013.

A. Manivannan, P. Soundararajan, N. Halimah, C. H. Ko, and B. R. Jeong, Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro, Hortic. Environ. Biotechnol, vol.56, pp.105-113, 2015.

X. Peng, T. Wang, X. Li, and S. Liu, Effects of light quality on growth, total gypenosides accuulation and photosynthesis in gynostemma pentaphyllum, Bot. Sci, vol.95, 2017.

J. H. Kang, S. Krishnakumar, S. L. Atulba, B. R. Jeong, and S. J. Hwang, Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system, Hortic Environ. Biotechnol, vol.54, pp.501-509, 2013.

L. Zha and W. Liu, Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs, China Illum. Eng. J, vol.59, pp.511-518, 2017.

L. E. Särkkä, K. Jokinen, C. Ottosen, and T. Kaukoranta, Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield, Agric. Food Sci, vol.26, pp.102-110, 2017.

X. Zhang, D. He, G. Niu, Z. Yan, and J. Song, Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory, Int. J. Agric. Biol. Eng, vol.11, pp.33-40, 2018.

I. Thormählen, A. Zupok, J. Rescher, J. Leger, S. Weissenberger et al., Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light, Mol. Plant, vol.10, pp.168-182, 2017.

A. Philipp, D. Anne, F. L. Luo, and M. Shizue, Acclimatory responses of Arabidopsis to fluctuating light environment: Comparison of different sunfleck regimes and accessions, Photosynth. Res, vol.113, pp.221-237, 2012.

Y. Allahverdiyeva, M. Suorsa, M. Tikkanen, and E. Aro, Photoprotection of photosystems in fluctuating light intensities, J. Exp. Bot, vol.66, pp.2427-2436, 2015.

P. A. Huxley, The effect of fluctuating light intensity on plant growth, J. Appl. Ecol, vol.6, pp.273-276, 1969.

U. Rascher and L. Nedbal, Dynamics of photosynthesis in fluctuating light-Commentary, Curr. Opin. Plant Biol, vol.9, pp.671-678, 2006.

R. A. Slattery, B. J. Walker, A. P. Weber, and D. R. Ort, The impacts of fluctuating light on crop performance, Plant Physiol, vol.176, pp.990-1003, 2018.

Z. H. Yin and G. N. Johnson, Photosynthetic acclimation of higher plants to growth in fluctuating light environments, Photosynth. Res, vol.63, pp.97-107, 2000.

H. Wagner, T. Jakob, and C. Wilhelm, Balancing the energy flow from captured light to biomass under fluctuating light conditions, New Phytol, vol.169, pp.95-108, 2006.

R. Renata, S. E. Smith-unna, R. W. Smith, A. J. Burgess, O. E. Jensen et al., Exploiting heterogeneous environments: Does photosynthetic acclimation optimize carbon gain in fluctuating light?, J. Exp. Bot, vol.66, pp.2437-2447, 2015.

S. Vialet-chabrand, J. S. Matthews, A. J. Simkin, C. A. Raines, and T. Lawson, Importance of fluctuations in light on plant photosynthetic acclimation, Plant Physiol, vol.173, pp.2163-2179, 2017.

P. L. Peri, D. J. Moot, P. Jarvis, D. L. Mcneil, and R. J. Lucas, Morphological, anatomical, and physiological changes of orchardgrass leaves grown under fluctuating light regimes, Agron. J, vol.99, pp.1502-1513, 2007.

C. Külheim, J. Ågren, and S. Jansson, Rapid regulation of light harvesting and plant fitness in the field, Science, vol.297, pp.91-93, 2002.

X. Zhu, S. P. Long, and D. R. Ort, Improving photosynthetic efficiency for greater yield, Annu. Rev. Plant Biol, vol.61, pp.235-261, 2010.

R. Sato, M. Kono, K. Harada, H. Ohta, S. Takaichi et al., Fluctuating-Light-Acclimation Protein1, conserved in oxygenic phototrophs, regulates H + homeostasis and non-photochemical quenching in chloroplasts, Plant Cell Physiol, 2017.

J. Kromdijk, K. Glowacka, L. Leonelli, S. T. Gabilly, M. Iwai et al., Improving photosynthesis and crop productivity by accelerating recovery from photoprotection, Science, vol.354, 2016.

Z. Li, S. Wakao, B. B. Fischer, and K. K. Niyogi, Sensing and Responding to Excess Light, Annu. Rev. Plant Boil, vol.60, pp.239-260, 2009.

L. Nikkanen and E. Rintamäki, Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions, Philos. Trans. R. Soc. B Biol. Sci, vol.369, 2014.

A. Morales, E. Kaiser, X. Yin, J. Harbinson, J. Molenaar et al., Dynamic modelling of limitations on improving leaf CO 2 assimilation under fluctuating irradiance, Plant Cell Environ, vol.41, pp.589-604, 2018.

T. Schneider, A. Bolger, J. Zeier, S. Preiskowski, V. Benes et al., Fluctuating light interacts with time of day and leaf development stage to reprogram gene expression, Plant Physiol, vol.179, pp.1632-1657, 2019.

H. K. Lichtenthaler and A. R. Wellburn, Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Analysis, vol.11, pp.591-592, 1983.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, 2013.

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim et al., Erratum: Corrigendum: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc, vol.9, 2014.

B. Li and C. N. Dewey, RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinform, vol.12, 2011.

G. A. Van-der-auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del-angel et al., From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline, Curr. Protoc. Bioinform, p.43, 2013.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, p.164, 2010.

M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa et al., KEGG for linking genomes to life and the environment, Nucleic Acids Res, vol.36, pp.480-484, 2007.

M. D. Robinson, D. J. Mccarthy, G. K. Smyth, and . Edger, A Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

D. J. Mccarthy, Y. Chen, and G. K. Smyth, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Res, vol.40, pp.4288-4297, 2012.

H. J. Bos, H. Tijani-eniola, and P. Struik, Morphological analysis of leaf growth of maize: Responses to temperature and light intensity, NJAS-Wagening. J. Life Sci, vol.48, pp.181-198, 2000.

B. Deng, X. Shang, S. Fang, Q. Li, X. Fu et al., Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus, J. Agric. Food Chem, vol.60, pp.6286-6292, 2012.

S. W. Hogewoning, G. Trouwborst, H. Maljaars, H. Poorter, W. Van-ieperen et al., Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light, J. Exp. Bot, vol.61, pp.3107-3117, 2010.

Y. Li, Y. Zheng, H. Liu, Y. Zhang, Y. Hao et al., Effect of supplemental blue light intensity on the growth and quality of Chinese kale, Hortic Environ. Biotechnol, vol.60, pp.49-57, 2019.

A. Sanchez, J. Shin, and S. J. Davis, Abiotic stress and the plant circadian clock, Plant Signal. Behav, vol.6, pp.223-231, 2011.

G. Zervoudakis, G. Salahas, G. Kaspiris, and E. Konstantopoulou, Influence of light intensity on growth and physiological characteristics of Common Sage (Salvia officinalis L.). Braz, Arch. Biol. Technol, vol.55, pp.89-95, 2012.

E. Kaiser, A. Morales, and J. Harbinson, Fluctuating light takes crop photosynthesis on a rollercoaster ride, Plant Physiol, vol.176, pp.977-989, 2018.

L. Michelet, M. Zaffagnini, S. Morisse, F. Sparla, M. E. Perez-perez et al., Redox regulation of the Calvin-Benson cycle: Something old, something new
URL : https://hal.archives-ouvertes.fr/hal-01578991

B. Naranjo, A. Diaz-espejo, M. Lindahl, and F. Javier-cejudo, Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana, J. Exp. Bot, vol.67, pp.1951-1964, 2016.

S. Bailey, R. G. Walters, S. Jansson, and P. Horton, Acclimation of Arabidopsis thaliana to the light environment: The existence of separate low light and high light responses, Planta, vol.213, pp.794-801, 2001.

M. Ballottari, L. Dall'osto, T. Morosinotto, and R. Bassi, Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation, J. Biol. Chem, vol.282, 2007.

K. Ljudmila, R. Jennifer, and J. Peter, The roles of specific xanthophylls in light utilization, Planta, vol.225, pp.423-439, 2007.

L. V. Kurepin, R. J. Emery, R. P. Pharis, and D. M. Reid, Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: Putative roles for plant hormones in leaf and internode growth, J. Exp. Bot, vol.58, 2007.

K. A. Franklin and G. C. Whitelam, Phytochromes and shade-avoidance responses in plants, Ann. Bot, vol.96, pp.169-175, 2005.

G. Monica and D. M. Virshup, Post-translational modifications regulate the ticking of the circadian clock, Nat. Rev. Mol. Cell Biol, vol.8, pp.139-148, 2007.

N. Nakamichi, S. Takao, T. Kudo, T. Kiba, Y. Wang et al., Improvement of Arabidopsis biomass and cold-, drought-, and salinity-stress tolerance by modified circadian clock-associated PSEUDO-RESPONSE REGULATORs, Plant Cell Physiol, vol.57, 1085.

A. A. Millar and G. Frank, The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development, Plant Cell, vol.17, pp.705-721, 2005.

L. Brownfield, S. Hafidh, M. Borg, A. Sidorova, T. Mori et al., A plant germlinespecific integrator of sperm specification and cell cycle progression, PLoS Genet, vol.5, 2009.

T. Urao, K. Yamaguchi-shinozaki, S. Urao, and K. Shinozaki, An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence, Plant Cell, vol.5, pp.1529-1539, 1993.

C. Chapple, AtMYB4: A transcription factor general in the battle against UV, Trends Plant Sci, vol.6, pp.135-136, 2001.

S. Nagaoka and T. Takano, Salt tolerance-related protein STO binds to a MYB transcription factor homologue and confers salt tolerance in Arabidopsis, J. Exp. Bot, vol.54, pp.2231-2237, 2003.

M. Agarwal, Y. Hao, A. Kapoor, C. Dong, H. Fujii et al., A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance, J. Biol. Chem, vol.281, pp.37636-37645, 2006.

X. Shen, X. Guo, X. Guo, D. Zhao, W. Zhao et al., PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance, Plant Physiol Biochem, vol.112, 2017.

S. B. Alam and D. Rochon, Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection, J. Virol, vol.90, 2015.

J. Frydman, Folding of newly translated proteins In Vivo: The role of molecular chaperones, Annu. Rev. Biochem, vol.70, p.603, 2001.

M. Taipale, D. F. Jarosz, and S. Lindquist, HSP90 at the hub of protein homeostasis: Emerging mechanistic insights, Nat. Rev. Mol. Cell Biol, vol.11, pp.515-528, 2010.

J. C. Young, V. R. Agashe, K. Siegers, and F. U. Hartl, Pathways of chaperone-mediated protein folding in the cytosol, Nat. Rev. Mol. Cell Biol, vol.5, p.781, 2004.

R. J. Xie, L. Zheng, L. Deng, S. L. He, and Y. Q. Zheng, The role of R2R3MYB transcription factors in plant stress tolerance, J. Anim. Plant Sci, vol.24, pp.1821-1833, 2014.

C. Kissoudis, A. Seifi, Z. Yan, A. T. Islam, H. Van-der-schoot et al., Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress, Front. Plant Sci, vol.7, 2016.

Y. Wu, W. Gong, and W. Yang, Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean, Sci. Rep, vol.7, p.9259, 2017.

L. M. Sandalio, M. Rodríguez-serrano, and M. C. Romero-puertas, Leaf epinasty and auxin: A biochemical and molecular overview, Plant Sci, vol.253, pp.187-193, 2016.

M. T. Osterlund, C. S. Hardtke, N. Wei, and X. W. Deng, Targeted destabilization of HY5 during light-regulated development of Arabidopsis, Nature, vol.405, pp.462-466, 2000.

M. Nakazawa, N. Yabe, T. Ichikawa, Y. Y. Yamamoto, and M. Matsui, DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length, Plant J, vol.25, pp.213-221, 2010.

F. Vandenbussche, R. Pierik, F. F. Millenaar, L. A. Voesenek, and D. V. Straeten, Reaching out of the shade, Curr. Opin. Plant Biol, vol.8, pp.462-468, 2005.

R. Tanaka, Y. Koshino, S. Sawa, S. Ishiguro, and A. Tanaka, Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana, Plant J, vol.26, pp.365-373, 2010.

M. Król, M. D. Spangfort, N. P. Huner, G. Öquist, P. Gustafsson et al., Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant, Plant Physiol, vol.107, pp.873-883, 1995.

C. E. Espineda, A. S. Linford, D. Devine, and J. A. Brusslan, The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana, Proc. Natl. Acad. Sci, vol.96, pp.10507-10511, 1999.

J. Kope?ná, R. Sobotka, and K. Josef, Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC, Planta, vol.237, pp.497-508, 2013.

K. Izui, H. Matsumura, T. Furumoto, and Y. Kai, Phosphoenolpyruvate carboxylase: A new era of structural biology, Annu. Rev. Plant Biol, vol.55, p.69, 2004.

B. O'leary, J. Park, and W. C. Plaxton, The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs, Biochem. J, vol.436, 2011.

A. Tovar-mendez, Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase, Plant Physiol, vol.123, pp.149-160, 2000.

O. E. Bläsing, P. Westhoff, and P. Svensson, Evolution of C4 phosphoenolpyruvate carboxylase in flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics, J. Biol. Chem, vol.275, pp.27917-27923, 2000.

E. A. Peroza, J. C. Ewald, G. Parakkal, J. M. Skotheim, and N. Zamboni, A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics, Anal. Biochem, vol.474, pp.1-7, 2015.

H. Schluepmann, L. Berke, and G. F. Sanchez-perez, Metabolism control over growth: A case for trehalose-6-phosphate in plants, J. Exp. Bot, vol.63, pp.3379-3390, 2012.

, Genes, vol.10, 2019.

V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker et al., Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana, Science, vol.339, pp.704-707, 2013.

J. E. Lunn, R. Feil, J. H. Hendriks, Y. Gibon, R. Morcuende et al., Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana, Biochem. J, vol.397, pp.139-148, 2006.

A. J. Van-dijken, H. Schluepmann, and S. C. Smeekens, Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering, Plant Physiol, vol.135, pp.969-977, 2004.

E. Cabib and L. F. Leloir, The biosynthesis of trehalose-6-phosphate, J. Biol. Chem, vol.231, pp.259-275, 1958.

I. Jang, S. Oh, J. Seo, W. Choi, S. I. Song et al., Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth1, Plant Physiol, vol.131, 2003.

D. A. Elbein, New insights on trehalose: A multifunctional molecule, Glycobiology, vol.13, 2003.

A. K. Garg, K. Ju-kon, T. G. Owens, A. P. Ranwala, C. Y. Do et al., Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses, Proc. Natl. Acad. Sci, vol.99, pp.15898-15903, 2002.

O. J. Goddijn and K. V. Dun, Trehalose metabolism in plants, Plant J. Cell Mol. Biol, vol.79, pp.544-567, 2015.

R. Caputto, L. F. Leloir, C. E. Cardini, and A. C. Paladini, Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation, J. Biol. Chem, vol.184, 1950.

K. Y. Yang, Y. Liu, and S. Zhang, Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco, Proc. Natl. Acad. Sci, vol.98, pp.741-746, 2001.

T. Mizoguchi, Y. Gotoh, E. Nishida, K. Yamaguchi-shinozaki, N. Hayashida et al., Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells, Plant J, vol.5, pp.111-122, 2010.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI