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Prediction of Pressure–Discharge Curves of Trapezoidal
Labyrinth Channels from Nonlinear Regression

and Artificial Neural Networks
Rogério Lavanholi1; Antonio Pires de Camargo2; Wagner Wilson Ávila Bombardelli3; José Antônio Frizzone4;

Nassim Ait-Mouheb5; Eric Alberto da Silva6; and Fabrício Correia de Oliveira7

Abstract: Emitters are important components of drip irrigation systems, and the use of labyrinths as a mechanism of energy dissipation
stands out in the drippers’ design. Relating the geometric characteristics of labyrinths with their operational and hydraulic characteristics is
not trivial and generally requires the use of computational simulation tools. This study developed and evaluated models that can predict the
discharge of labyrinth channels as a function of their geometry to make possible the rapid prediction of pressure–discharge curves due to
modifications in the labyrinth geometry. An empirical mathematical model was developed based on nonlinear regression, and a computational
model was trained based on artificial neural networks (ANNs). Twenty-four designs of prototypes were built in polymethyl methacrylate
to operate at a discharge of approximately 1.4 L h−1 under 100 kPa. The pressure–discharge curve of each prototype was determined in the
laboratory in the range 50–350 kPa. Based on the experimental data, the coefficients of an empirical nonlinear model were fitted, and 11
single-hidden-layer ANN architectures were compared. The best accuracy was provided by an ANN architecture with an input layer with six
neurons, six neurons in the hidden layer, and an output layer with a single neuron. The maximum relative errors of the predicted discharges
were 9.5% and 9.4% for the ANN and nonlinear models, respectively. Both models were accurate and enabled rapid prediction of the emitter’s
discharge. An open-source web application was developed to simulate the pressure–discharge curve of labyrinths within a range of geometric
and operational characteristics. DOI: 10.1061/(ASCE)IR.1943-4774.0001485. © 2020 American Society of Civil Engineers.

Introduction

The emitters are the main components of drip irrigation systems.
These devices are installed along polyethylene pipes (i.e., the

lateral lines) and are responsible for controlling the discharge to
apply water evenly on the soil (Frizzone et al. 2012). Drippers
designed based on labyrinth channels commonly are used in drip
irrigation systems due to their low cost, simple structure, and effi-
cient hydraulic performance (Yu et al. 2019; Zhang et al. 2010). A
labyrinth consists of a narrow channel with several baffles that gen-
erate head losses and ensure discharge regulation (Al-Muhammad
et al. 2018; Wei et al. 2006; Zhang et al. 2016).

The geometric parameters (i.e., dimensions and shape) of
labyrinth channels are critical for hydraulic performance and the
resistance of drippers to clogging (Feng et al. 2018; Haosu et al.
2016; Wei et al. 2006; Yu et al. 2019; Zhang et al. 2013). The re-
sistance of drippers to clogging (i.e., anticlogging performance)
relies on the drippers’ design and the water quality. The narrow
flow path of the drippers can be clogged easily by particles, inor-
ganic matter, chemical precipitation, biofilm development, and
other impurities. Several current studies investigated and optimized
the flow path geometrical characteristics to enhance the transport
capacity of particles through the labyrinth channel (Feng et al.
2018; Li et al. 2006; Yu et al. 2019; Zhang et al. 2011, 2010).

The emitter hydraulic performance of drippers may be linked
with the flow exponent (x) of the pressure–discharge equation. The
lower the flow exponent, the better is the hydraulic performance.
A low flow exponent indicates that the emitter discharge is less
sensitive to inlet pressure. In addition, the maximum length of the
lateral lines may increase as the emitter flow exponent decreases
(Frizzone et al. 2012), and this may be economically beneficial
in the design of the irrigation subunits.

Relating the constructive characteristics of labyrinths to their
hydraulic performance usually is a complex process in which
hydraulic parameters, such as head loss and discharge, cannot
be determined by means of trivial hydraulic equations used in the
study of pressurized pipes. Conventionally, the development of
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emitters involves the manufacturing and testing of several proto-
types until a prototype with the desired characteristics is obtained,
increasing the time and cost for the development of a new dripper
(Celik et al. 2011). Computational fluid dynamics (CFD) has been
a useful tool in the study of flow characteristics and particle trans-
port in labyrinth channels of drippers (Al-Muhammad et al. 2018;
Feng et al. 2018; Haosu et al. 2016; Yu et al. 2019, 2018). Although
CFD is a powerful and effective tool to investigate and support
the design of labyrinth channels, such numerical simulations usu-
ally demand considerable computational capacity. A rapid method
for predicting the hydraulic performance of labyrinth channel drip-
pers by exploring the relationship between structural parameters of
emitters and hydraulic performance was proposed by Zhang et al.
(2013). They described an approach to estimate pressure loss and
discharge in labyrinths that is based on a coefficient φ. This coef-
ficient is a dimensionless parameter that quantifies the total head
loss caused in each labyrinth baffle. They proposed an empirical
second-order polynomial model to estimate the coefficient φ that
considers the geometry of the labyrinth.

The present study assumed that it is possible to develop empiri-
cal mathematical models based on nonlinear regression and to use
neural networks based on multilayer perceptrons (MLPs) to relate
geometrical and operational characteristics of labyrinth channels.
Artificial neural networks (ANNs) can solve nonlinear and com-
plex problems, and they are adaptable systems that learn relation-
ships from the input and output data sets and then predict a
previously unseen data set with similar characteristics to the input
set (Haykin 1999). ANNs are suited to the modeling of agricultural
data, which are known to be complex and often nonlinear (Mattar
and Alamoud 2015). The use of ANNs is expanding in irrigation
engineering, and they have been applied successfully for simulating/
predicting the distribution of water by drippers (Elnesr and Alazba
2017; Hinnell et al. 2010), minor losses for integrated emitters
(Martí et al. 2010), hydraulic performance of labyrinth channel
emitters (Mattar and Alamoud 2015), filtered volume in microir-
rigation sand filters (Puig-Bargués et al. 2012), photovoltaic irri-
gation systems (Dursun and Özden 2014), soil water retention
(Nguyen et al. 2017), and evapotranspiration modeling (Kumar
et al. 2011).

This study developed and evaluated models that can predict the
discharge of labyrinth channels as a function of their geometry to
make possible the rapid prediction of pressure–discharge curves
due to modifications in the labyrinth geometry. The study was lim-
ited to the evaluation of non-pressure-compensating, trapezoidal
labyrinths with a rectangular flow section, but the approaches de-
scribed might be useful for modeling other geometries of labyrinth
channels.

Material and Methods

Geometry and Design of Prototypes

Twenty-four distinct flat, non-pressure-compensating prototypes
with trapezoidal labyrinths and rectangular flow section were de-
signed, manufactured, and evaluated. Because of the differences in
design characteristics, the prototypes were divided into two groups.
The first group, Type 1, had prototypes with labyrinths that pro-
vided uniform flow through the channel section and undeveloped
vortices. The emitters in the second group, Type 2, had regions that
make possible the development of well-defined vortices of various
magnitudes. In both groups, the labyrinths were sized to provide a
discharge near 1.4 L h−1 under 100 kPa pressure. Drippers with

discharges lower than 2 L h−1 commonly are used in microirriga-
tion systems (Frizzone et al. 2012).

The choice of the two groups studied was linked to the funda-
mentals of clogging processes and sediment transport within the
labyrinths. Some low-speed regions associated with vortices are
prone to sediments deposition and should be avoided to enhance
particle transport through the emitter flow path (Feng et al. 2018).
Therefore, at first, it was supposed that one way to reduce the emit-
ters’ sensitivity to clogging was to maintain a large mainstream area
and eliminate or reduce low-flow-velocity regions. The uniform
flow emitters (Type 1) had a geometry and characteristics that mini-
mized the vortex zones and emphasized the mainstream area. How-
ever, the Type 2 emitters had a design that favored the formation of
vortices, and, consequently, as discussed subsequently, an evalu-
ation of both groups showed the importance of vortices in the
hydraulic performance of labyrinths.

For Type 1 emitters, the labyrinth geometrical variables consid-
ered [Fig. 1(a)] were channel width (W), channel depth (D), and
tooth angle (α). The length of the flow path centerline in Region
1 [Fig. 1(b)] was twice the channel width, whereas Region 2 had a
length equal to W. The Type 1 prototypes had square flow cross
sections (i.e., W ¼ D). Four values of channel width and depth
(0.5, 0.6, 0.7, and 0.8 mm) and three values of tooth angle (45°,
60°, and 75°) were evaluated, resulting in 12 prototype models of
Type 1. Most of the values mentioned were selected within a prac-
tical range that represents commercially available drippers and
made it possible to obtain discharges close to the target value of
1.4 L h−1.

For the Type 2 prototypes, the geometrical parameters consid-
ered were channel width (W) and ratio H=W (Fig. 2). Three values
of channel width (0.7, 1.0, and 1.3 mm) and four values of H=W
ratio (1.0, 1.2, 1.4, and 1.6) were evaluated, resulting in 12 proto-
type models of Type 2. The channel depth (D) and tooth angle (α)
parameters were set at 0.8 mm and 75°, respectively.

Fig. 1. (a) Geometry of the Type 1 prototypes; and (b) representation of
a labyrinth baffle. W = channel width, D = channel depth, H = tooth
height, and α = tooth angle.

Fig. 2. Geometry of the Type 2 prototypes. W = channel width, D =
channel depth, H = tooth height, and α = tooth angle.
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To obtain the target discharge in each of the combinations, the
number of teeth (N) and, consequently, the labyrinth length (L)
were estimated. Because of the pressurized-pipe hydraulics, the en-
ergy is dissipated under two forms in the labyrinth channel: one
occurs in the straight sections of the channel and is related to
the friction losses during fluid flow, and the other is related to minor
losses resulting from sudden changes in flow direction and dissi-
pation because of vortices. The labyrinth channels consist of
a series of teeth that have the same shape, providing the same head
loss in each baffle when flow conditions are fully developed
(Adachi and Hasegawa 2006). Therefore, as proposed by Zhang
et al. (2011), the total pressure drop between the inlet and outlet
sections of the labyrinth (Δp) can be expressed as

Δp ¼ NðΔpd þΔplÞ ð1Þ

where Δp = pressure drop in labyrinth (Pa); Δpd and Δpl =
friction and local pressure drops, respectively (Pa); andN = number
of baffles. Based on the Darcy–Weisbach equation and the minor
loss equation, Eq. (1) can be rewritten

Δp ¼ N

�
f

l
Dh

þ ζ

�
ρQ2

2A2
ð2Þ

where f = friction factor of the Darcy–Weisbach equation; l =
length of flow path centerline [Fig. 1(b)] (m); Dh = hydraulic diam-
eter of flow section (m); ρ = water density (kgm−3); ζ = minor loss
coefficient; Q = flow rate through labyrinth (m3 s−1); and A = flow
section area (m2).

The baffle pressure loss coefficient, φ [Eq. (3)], serves as an
indicator of total head loss caused in each labyrinth baffle. Higher
values of φ indicate flow characteristics that cause greater head loss
and enable smaller and more-compact labyrinths to be obtained

φ ¼
�
f

l
Dh

þ ζ

�
ð3Þ

When Eqs. (2) and (3) are combined and N is isolated, Eq. (4) is
obtained, and it makes possible to calculate the number of baffles
and, consequently, the labyrinth length

N ¼ 2A2

ρφ
Δp
Q2

ð4Þ

The value of φ for each prototype model was estimated by CFD
in COMSOL Multiphysics version 5.1 using the standard k–ε
model and free tetrahedral meshing. The numerical simulations
were run using a labyrinth segment, and it was assumed the total
head loss was similar in every baffle [Eq. (2)]. The mean flow
velocity at the inlet of the first baffle was set to the corresponding
flow rate of 1.4 L h−1. The atmospheric pressure was fixed at the
outlet section of the eighth baffle. From the simulations, the mean
pressure at the inlet section was obtained, and, consequently, the
total head loss in the labyrinth segment was the difference between
the inlet and outlet pressures. The value of φ was obtained by di-
viding the total head loss by the number of baffles in the labyrinth
segment. Once φ was estimated, the number of baffles and
labyrinth length were calculated [Eq. (4)] to obtain 1.4 L h−1 at
100 kPa. No rigorous simulations were required for the purpose
of this work, because the simulations were used only to approxi-
mate the lengths of labyrinths. After that, the mathematical models
were fitted based only on experimental data.

Manufacture and Assembly of Emitter Prototypes

The prototypes were built using a computer-numerical-control
(CNC) milling machine with 0.01-mm resolution, equipped with
a milling cutter with a 0.5-mm diameter, 3.0-mm cutting height,
and 3.2-mm shaft diameter. The labyrinth channels were carved
on 2-mm-thick polymethyl methacrylate plates of varying length
and width according to the dimensions of each prototype model.

The prototypes were mounted in an accessory designed to en-
able the labyrinth to operate like commercial emitters integrated
into polyethylene pipes. The experimental setup (Fig. 3) was built
from a nylon rod with 41-mm outer diameter, 18-mm internal
diameter, and 150-mm length, with a cavity made for laying the
acrylic plate with the engraved labyrinth. The cavity was a leveled
surface 33 mm wide and 117 mm long. At the cavity, 2-mm-thick
silicon rubber was installed between the acrylic plate and the
nylon surface to avoid water leakage. An orifice of 16.6 mm2

(diameter = 4.6 mm) enabled water to flow from the nylon pipe
to the labyrinth. An 8-mm-thick glass plate was installed at the
upper surface of the acrylic plate and fixed using metal plates,
screws, and nuts. The glass plate was fully transparent and made
it possible to visualize the flow in the labyrinth channels. In real
cases, when an emitter is installed in polyethylene pipes, the fric-
tion losses in the labyrinth might be different from those occurring
with the thick glass plate. The prototype did not have any kind of
grid or prefilter to retain particles before the labyrinth channel,
because clogging experiments were not part of the purpose of this
research.

Experiments for Hydraulic Evaluation of Emitters

Laboratory tests were carried out with clean water to determine the
pressure–discharge equation of the prototypes

q ¼ khx ð5Þ

where q = emitter discharge (L h−1); k = coefficient of pressure–
discharge equation; x = exponent of flow; and h = operating pres-
sure head (m).

Fig. 3. Components of the accessory built for testing the emitter pro-
totypes: 1 = screw, 2 = metal frame, 3 = nylon tube, 4 = silicone rubber,
5 = acrylic plate with engraved labyrinth, 6 = glass plate, and 7 = nuts.

© ASCE 04020018-3 J. Irrig. Drain. Eng.
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The flow exponent (x) is affected by the emitter geometry, and
ranges from 0 to 1, and it serves as an indicator of discharge sen-
sitivity to variations in operating conditions, such as pressure and
water temperature (Clark et al. 2005; Rodríguez-Sinobas et al. 1999).
Based on the flow exponent, emitters can be classified as fully tur-
bulent flow for x ¼ 0.5, partially turbulent for 0.5 < x<0.7, unstable
for 0.7 < x<1.0, and laminar flow for x ¼ 1.0 (Keller and Karmeli
1974). When the emitters are regulated (i.e., when they have mech-
anisms to compensate for the pressure), the exponent tends to zero.

The experiments were undertaken using a test bench consisting
of a hydraulically closed circuit (Fig. 4). A 120-μm disk filter was
installed at the pump outlet to retain undesirable contaminants.
A digital manometer (measurement range 0–500 kPa, resolution
0.1 kPa, expanded uncertainty 0.5% full scale) was used to monitor
testing pressure. Four prototypes were evaluated simultaneously,
spaced 0.20 m apart. The flow rate of each prototype was deter-
mined by the mass of water collected from each emitter in 30 min.
One unit of each prototype model was evaluated under seven pres-
sures, ranging from 50 to 350 kPa in increments of 50 kPa. During
the experiments water temperature was 25°C� 1°C.

Modeling Emitters Discharge Based on Nonlinear
Regression

Nonlinear regression was evaluated as one of the approaches for
modeling emitter discharge. Nonlinear regression models based
on the power law have been used successfully to model hydraulic
phenomena (Perboni et al. 2015; Vekariya et al. 2010; Vilaça et al.
2017; Zitterell et al. 2013). For a steady water temperature, it was
assumed that the labyrinth discharge was influenced mostly by the
labyrinth geometry and the operating pressure. To obtain an equa-
tion for rapid prediction of discharge, several mathematical models
were evaluated by a trial-and-error approach. The model presented
in Eq. (6) fitted the experimental data, and high values of accuracy
indicators were obtained. The empirical coefficients were adjusted
using the least-squares method and the Solver tool of Microsoft Ex-
cel. The variables were empirically chosen based on the physical
interpretation of the phenomenon, because the flow exponent from
Eq. (5) is influenced mostly by the tooth angle (α), because α has a
significantly impact on the total head loss coefficient in each baffle
(φ) and, consequently, on the labyrinth flow characteristics (Table 3)

q ¼ β1

�
H
W

�
β2

Lβ3ðWDÞβ4αβ5hβ6ðαÞβ7 ð6Þ

where q = emitter discharge (L h−1); H = tooth height (mm);
W = channel width (mm); L = labyrinth length (mm);

α = tooth angle (rad); D = channel depth (mm); h = pressure head
at labyrinth inlet (m); and βi = empirical coefficients.

Computational Modeling of Emitter Discharge Based
on Neural Networks Using Multilayer Perceptron

In this study, MLP feed-forward networks were used with back-
propagation (Haykin 2009; Rumelhart and Hintont 1986) because
of their adaptability to many engineering problems.

The ANN input layer had the following variables: tooth height
(H), channel width (W), labyrinth length (L), tooth angle (α), chan-
nel depth (D), and pressure head at the labyrinth inlet (h). The out-
put layer had only the emitter discharge (q). The water density and
the coefficient of dynamic viscosity were the same in all experi-
ments; hence, they were not included in the ANN model.

All ANN neurons used were configured based on the model by
Haykin (1999). The hidden and output neurons can be mathemati-
cally characterized as follows:

υj ¼
XNi

i¼1

ωjiXSi þ Bj ð7Þ

yj ¼ ϕðυjÞ ð8Þ
where υj = neuron’s activation value; ωji = synaptic weight; XSi =
normalized input parameter; Bj = bias at hidden layer; yj = output
layer neuron; and φ = activation function. The hyperbolic tangent
(tanh) function was used as an activation (transfer), which com-
monly is applied in engineering problems (Mattar and Alamoud
2015; Zanetti et al. 2007). The tanh can be mathematically
expressed as

φðυÞ ¼ 1 − e−2υ
1þ e−2υ

ð9Þ

The connections or synapses [Fig. 7(b)] have weights (i.e., syn-
aptic weights) to store information. Changing these weights under a
learning algorithm is known as the learning or training process.
Additionally, the Adam optimization algorithm (Kingma and Ba
2015) was implemented to optimize the loss function. According
to Mattar and Alamoud (2015), training a network with back-
propagation involves three stages: (1) the feed-forward of the input
training pattern, (2) the calculation and back-propagation of the as-
sociated error, and (3) the adjustment of the weights.

The ANN model was trained over multiple iterations, and the
number of neurons in the hidden layer was selected based on a
trial-and-error approach, which is typical in such problems. Before
exporting the data to the ANN for training, the network input was
automatically normalized to a range of values between 0 and 1.
This normalization accelerates the training process and improves
the network’s generalization capabilities, and learning algorithms
benefit when they feed on standardized data (Shanker et al. 1996).
The following equation was used:

XSi ¼
Xi − Xmin

Xmax − Xmin
ð10Þ

where XSi = normalized input parameter; Xi = raw input parameter;
Xmin = minimum feature value; and Xmax = maximum feature value.

MLP architectures are prone to overfitting (Prechelt 1998)—that
is, although the model fits well to the training set, at some point
during training, the error increases in the testing set, and overfitting
starts to occur. During the training process, k-fold cross-validation
was performed using early stopping as the criterion to decide when
to stop training. K-fold cross-validation consisted of splitting

Fig. 4.Representation of the test bench used to determine the pressure–
discharge equation of the prototypes. 1 = reservoir, 2 = pump, 3 = disk
filter, 4 = needle valves for adjusting testing pressure, 5 = digital man-
ometer, 6 = prototypes, and 7 = catch cans.
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the available training data into five partitions, instantiating five
identical models, and training each one on four partitions, while
evaluating on the remaining partition (i.e., the validation subset)
(Chollet 2017). Early stopping is a method for avoiding overfitting,
because it is a regularization technique based on choosing a stop-
ping time for an iterative algorithm (Raskutti et al. 2014).

The ANN algorithms were coded in Python using the libraries
Keras (2020) and Tensorflow (2020).

Fitting and Assessment of Models

The data set used to fit and evaluate the models was obtained from
experiments to determine the pressure–discharge curves of the
prototypes. Twenty-four prototypes were evaluated under seven op-
erating pressures, resulting in a data set with 168 records. The
experimentally obtained data set was randomly divided into two
subsets: (1) the training data set, accounting for 80% of the exper-
imental data (134 records), which was used to fit the models; and
(2) the testing data set, consisting of the remaining 20% of the data
(34 records), which was used to validate the accuracy and perfor-
mance of the models. Because a relatively small data set was
available, the testing data set of 20% was defined to favor proper
training of the models. The models’ performances were assessed
using two statistical indicators: the mean squared error (MSE)
and the RMS error (RMSE)

MSE ¼ 1

n

Xn
i¼1

ðOi − PiÞ2 ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðOi − PiÞ2
s

ð12Þ

where Oi = observed or measured value; Pi = predicted value; and
n = number of records evaluated.

The MSE was used during the training stage by the early-
stopping algorithm. The RMSE is a common index to measure
the accuracy of models (Duran-Ros et al. 2010; Provenzano et al.
2016) that quantifies differences between estimated and observed
values and also makes it possible to compare the performances of
models. Graphical error analysis also was performed to evaluate the
accuracy of the predictions, and it was a useful tool to quantify
prediction errors associated with the frequency of occurrence
(Sobenko et al. 2018; Vilaça et al. 2017).

Results and Discussion

Geometric Characteristics of Prototypes

Table 1 presents geometric characteristics of the Type 1 prototypes.
The number of baffles and the labyrinth length were calculated
using Eq. (4). For a given tooth angle (α), as the flow section was
enlarged, longer labyrinths were required to obtain the target/
project discharge. The increase in the number of baffles and, con-
sequently, the channel length had the effect of increasing head loss
along the labyrinth, reducing the flow velocity and adjusting the
discharge to the target value. Therefore, one obvious way to control
the emitter discharge is by changing the number of baffles (Wei
et al. 2007).

Regarding the tooth angle, the prototypes with α ¼ 45° pro-
vided the longest labyrinths. With a 15° increase in the tooth angle,
the labyrinth length was reduced by 57%, and with a 30° increase
in the tooth angle, the reduction was approximately 81%. In addi-
tion, the coefficient of total head loss per baffle (φ) was little

influenced by changes in the flow section, but φ had strong sensi-
tivity to variations in the tooth angle. Increasing α by 15° obtained
an average increase of 85% in φ, and when the angle was increased
by 30°, the increase in φ was approximately 238%. Li et al. (2006)
mentioned that the tooth angle is one of the constructive parameters
that most affects the coefficient of head loss φ in trapezoidal laby-
rinths. The tooth angle influences the changes in the flow direction,
which cause abrupt changes in the flow conditions and cause var-
iations in the minor loss component. Therefore, tooth angles closer
to 90° provide greater head loss in each baffle and make it possible to
design shorter labyrinths (Li et al. 2006; Zhang et al. 2013).

Table 2 presents the geometric characteristics of the Type 2
prototypes. The values of φ, N, and L were obtained by the same
procedure described for the Type 1 prototypes. As with the Type 1
prototypes, as the flow section was enlarged, longer labyrinths were
required to obtain the target/project discharge. However, increases
in the ratio H=W resulted in a significant increase in the coefficient
of head loss φ and reduction in the labyrinth length (L) for a given
flow section (A). The shortest labyrinths were obtained at the high-
est H=W ratio, indicating that these prototypes had the highest
values of φ and better hydraulic performance compared with the
others.

The labyrinth length decreased as the H=W ratio increased
(Fig. 5). The first increase in H=W ratio, from 1.0 to 1.2, provided
the most significant reductions in L, ranging from 17.4% to 25.8%

Table 1. Geometric characteristics of Type 1 prototypes

Prototype
W ¼ D
(mm)

A
(mm2)

H
(mm)

α
(degree) φ N

L
(mm)

1-1 0.5 0.25 0.71 45 2.23 37 89.32
1-2 0.5 0.25 0.87 60 4.42 18 36.00
1-3 0.5 0.25 0.97 75 8.04 10 15.18
1-4 0.6 0.36 0.85 45 2.25 75 217.28
1-5 0.6 0.36 1.04 60 4.24 40 96.00
1-6 0.6 0.36 1.16 75 7.80 22 40.07
1-7 0.7 0.49 0.99 45 2.28 136 459.68
1-8 0.7 0.49 1.21 60 4.10 76 221.80
1-9 0.7 0.49 1.35 75 7.55 41 87.11
1-10 0.8 0.64 1.13 45 2.31 230 888.42
1-11 0.8 0.64 1.39 60 3.99 133 425.60
1-12 0.8 0.64 1.55 75 7.28 73 177.26

Note: W = channel width, D = channel depth, H = tooth height, α = tooth
angle, A = flow section area, φ = head loss coefficient, N = number of
baffles, and L = labyrinth length.

Table 2. Geometric characteristics of Type 2 prototypes

Prototype
W ¼ D
(mm) H=W

A
(mm2) φ N

L
(mm)

2-1 0.7 1.0 0.49 17.71 23 33.33
2-2 0.7 1.2 0.49 21.21 19 27.54
2-3 0.7 1.4 0.49 24.43 17 24.64
2-4 0.7 1.6 0.49 25.32 16 23.19
2-5 1.0 1.0 1.00 18.82 44 91.10
2-6 1.0 1.2 1.00 24.58 34 70.40
2-7 1.0 1.4 1.00 28.05 30 62.00
2-8 1.0 1.6 1.00 30.09 28 58.00
2-9 1.3 1.0 1.69 20.97 67 177.65
2-10 1.3 1.2 1.69 28.84 49 131.89
2-11 1.3 1.4 1.69 30.14 47 126.51
2-12 1.3 1.6 1.69 31.84 45 118.43

Note: W = channel width, D = channel depth, H = tooth height, α = tooth
angle, A = flow section area, φ = head loss coefficient, N = number of
baffles, and L = labyrinth length.
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decreases from the initial length. Decreases in L gradually became
smaller in the next two changes in H=W ratio, and values of H=W
higher than 1.6 produced insignificant decreases in the labyrinth
length. The increase in the H=W ratio of the Type 2 prototypes
intensified vortices capable of causing greater head loss per baffle,
resulting in shorter emitters of better hydraulic performance. Ratio
H=W between 1.2 and 1.4 had the most significant effects on the
labyrinth length, and higher values did not contribute to producing
compact and short labyrinths.

For similar channel widths, the Type 2 prototypes had shorter
labyrinths than the Type 1 prototypes (Tables 1 and 2). Prototypes
with geometric characteristics that promoted the development of
more-intense vortices tended to be more efficient in terms of hy-
draulic performance. Feng et al. (2018) evaluated the optimization
of trapezoidal labyrinths and observed that eliminating regions that
allowed the formation of vortices increased the emitter discharge by
2–5 times. They also reported that the reduction of vortices in the
emitter design would require an increase in the labyrinth length,
resulting in higher manufacturing costs. Therefore, vortices are im-
portant mechanisms for energy dissipation and discharge control,
and are necessary in the design of emitter labyrinths.

Experimental Pressure–Discharge Curves

Table 3 shows the flow exponents (x) and the coefficients k of the
pressure–discharge equations fitted from the experimental data set
and the discharge measured under an operating pressure head
of 10 m.

For the Type 1 prototypes, as the tooth angle increased, the ex-
ponent of flow decreased according to the function x ¼ 0.57α−0.35,
where α is the tooth angle (rad). Although this function has little
relevance, the coefficients served as initial values for fitting some

of the coefficients of Eq. (6). For the Type 2 prototypes, the tooth
angle was maintained at 75°, and the values of x did not change
significantly because of other geometrical changes in the proto-
types. This supports the assumption that α is a parameter of high
influence in the flow exponent. For the Type 2 prototypes, emitters
with desirable hydraulic performance were observed because the
values of x were less than 0.5 for all prototypes of this group.
For the Type 2 prototypes, the increase in the H/W ratio increased
the coefficient of total head loss per baffle (ϕ), but it caused a minor
decrease in the values of x.

For all Type 1 prototypes, exponents of flow ranged from 0.5 to
0.7, making it possible to classify them as partially turbulent flow
(Keller and Karmeli 1974). For a tooth angle of 75°, the lowest
values of x were obtained (from 0.518 to 0.524), and, thus, the best
hydraulic performance was achieved for this group of prototypes.
In terms of hydraulics, emitters with low exponents of flow (<0.5)
are preferable because the discharge is less-affected by fluctuations
in the operating pressure and water temperature (Rodríguez-
Sinobas et al. 1999).

For the Type 2 prototypes, the flow exponents ranged from
0.453 to 0.491. The three prototypes with H=W ¼ 1.0 had the
highest values of flow exponent, with values of 0.480, 0.482, and
0.491 for channel widths of 0.7, 1.0, and 1.3 mm, respectively. The
lowest exponents were observed for the emitters with a channel
width of 1.3 mm, with values of 0.462, 0.453, and 0.458 for the
H=W ratios of 1.2, 1.4, and 1.6, respectively. These results indicate
that the geometric characteristics of this group of prototypes pro-
vided turbulent flow and had superior hydraulic performance to
those of Type 1. The increase in the H=W ratio provided more-
developed vortices, contributing to the increase of turbulence and
head loss, resulting in reduction of x.

Based on the discharge measured at a 10-m pressure head
(Table 3), the values obtained experimentally were close to the tar-
get value of 1.4 L h−1. For the Type 1 prototypes, the discharge
ranged from 1.29 to 1.52 L h−1, whereas for the Type 2 prototypes
it ranged from 1.44 to 1.52 L h−1. The observed differences be-
tween the target and the measured discharges can be attributed
to imperfections in the process of engraving the flow paths on
the acrylic plate and in the simulation procedures to obtain the
labyrinth lengths.

Empirical Model Based on Nonlinear Regression for
Estimating Discharge of Prototypes

When several potential predictors are available, the selection of var-
iables required to build a model represents a frequent problem in
regression analysis related to hydraulics (Vilaça et al. 2017).
Unnecessary predictors included in the model complicate the
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Fig. 5. Effect of increases in the H=W ratio on the labyrinth length of
the Type 2 prototypes.

Table 3. Pressure–discharge coefficients, discharge, and Reynolds number (R) at 10-m pressure head

Prototype k x q (L h−1) R Prototype k x q (L h−1) R

1-1 0.330 0.625 1.39 864.1 2-1 0.489 0.480 1.47 652.7
1-2 0.415 0.553 1.52 944.9 2-2 0.507 0.469 1.49 661.6
1-3 0.437 0.524 1.49 926.3 2-3 0.501 0.459 1.44 639.4
1-4 0.322 0.625 1.36 704.5 2-4 0.521 0.466 1.52 674.9
1-5 0.402 0.570 1.51 782.2 2-5 0.481 0.482 1.45 450.7
1-6 0.430 0.521 1.44 746.0 2-6 0.507 0.468 1.49 463.1
1-7 0.341 0.619 1.42 630.5 2-7 0.515 0.464 1.50 466.2
1-8 0.380 0.573 1.43 635.0 2-8 0.513 0.464 1.49 463.1
1-9 0.434 0.518 1.43 635.0 2-9 0.464 0.491 1.44 344.3
1-10 0.306 0.628 1.29 501.2 2-10 0.511 0.462 1.48 353.9
1-11 0.371 0.578 1.41 547.8 2-11 0.519 0.453 1.46 349.1
1-12 0.418 0.521 1.39 540.1 2-12 0.521 0.458 1.49 356.3
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description of the process and may result in poor predictions,
whereas omitting important effects may reduce predictive power
(Chatterjee and Simonoff 2013). An approach to select a subset
of variables to build a model consists of defining a criterion that
measures how well a model performs, evaluating the criterion
for each subset of potential variables, and picking the subset that
optimizes the criterion (Seber and Lee 2003). Generally, the model
with the smallest RMSE should be chosen (Bates and Watts 1988).

The model in Eq. (13) was the simplest model found with
satisfactory performance. Eq. (13) includes the labyrinth geometric
characteristics and the operating pressure head. Water physical
properties were assumed to be constant during the experiments;
hence, they were not included in the regression or in the ANN
models

q ¼ 0.4041

�
H
W

�
0.0115 α0.5903

L0.0014ðWDÞ0.0285 h
½0.5412ð1=αÞ0.4025� ð13Þ

where q = emitter discharge (L h−1); H = tooth height (mm);
W = channel width (mm); L = labyrinth length (mm); α = tooth
angle (rad); D = channel depth (mm); and h = pressure head at
labyrinth inlet (m). Eq. (13) is valid for trapezoidal labyrinths with
rectangular flow sections and was fitted based on experimental

data within the following ranges: 45 ≤ α ≤ 75°, 5 ≤ h≤35 m,
0.5 mm ≤ W ≤ 1.3 mm, 0.7 mm ≤ H ≤ 2.08 mm, 15.18 mm ≤
L ≤ 888.42 mm, and 0.5 mm ≤ D ≤ 0.8 mm.

Fig. 6(a) shows the linearity between the observed and estimated
values of discharge for the training and test data sets. Analyzing the
training and test data sets revealed that the RMSE values were
0.0530 and 0.0606, respectively. The maximum relative errors (δ)
of the predicted discharges were 9.0% and 9.4% for the training
and test data sets, respectively [Fig. 6(b)]. In addition, 95% of the
predictions had δ lower than 6.0% and 6.3% for the training and test
data sets, respectively. These results prove the adequate fitting
of the mathematical model proposed in Eq. (13) and show that,
although the model is quite simple, it can be useful to relate geomet-
ric and operational characteristics of emitters such as those
described. The model presented proper goodness of fitting for the
training and test data sets, which indicates no problem of overfitting.
A similar approach could be extended to other designs of labyrinths.

Computational Method for Predicting Discharge Based
on Neural Networks

After preliminary tests, 11 single-hidden-layer ANN architectures
were evaluated using the RMSE as the indicator of model
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Fig. 6. Nonlinear regression: (a) observed versus estimated values of discharge; and (b) graphical error analysis presenting relative errors (δ) versus
frequency of errors in predictions of discharge [δ ¼ 100jðobserved − estimatedÞ=observedj].
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highest performance (6-6-1).
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performance [Fig. 7(a)]. The highest-performance ANN architec-
ture had an input layer with six neurons, six neurons in the hidden
layer, and an output layer with a single neuron [Fig. 7(b)].

During the training process of the ANN models, k-fold
cross-validation was performed using early stopping as the cri-
terion to decide when to stop training in order to avoid overfitting.
Errors quantified by MSE varied during the iterations (i.e., epochs),
reaching MSE values of 0.0210 (training data set) and 0.0192
(validation subset—k-fold cross-validation) in Epoch 836, when
the iterations were stopped by the early-stopping algorithm
[Fig. 8(a)]. As the number of epochs increased, the values of
weights were optimized in the neural network and the curves went
from underfitting to optimal condition. The MSE values of the
training data set and validation subset decreased until Epoch
836 [Fig. 8(b)]. From this point, MSE values of the validation sub-
set started to increase, indicating risk of overfitting. Figs. 8(a and b)
indicate that the iterations were stopped before overfitting
occurred.

Fig. 9(a) plots only test data, and it makes possible a comparison
between the discharge predictions from the regression model in
Eq. (13) and the ANNmodel, indicating linearity between observed
and predicted values for both models. Fig. 9(b) also presents only
test data for comparison of both models. Analyzing the ANNmodel

indicated that the maximum relative error (δ) of the predicted dis-
charges was 9.5%, and 95% of the predictions had relative errors
less than 7.3%.

Based on RMSE and δ values, both models had high accuracy in
predictions of discharge, but the nonlinear regression was slightly
better than the ANN model. Definition of the nonlinear regression
model was an empirical and time-consuming procedure that
required many trials to obtain the functional relation in Eq. (6).
Because this study was limited to the evaluation of non-pressure-
compensating, trapezoidal labyrinths with a rectangular flow sec-
tion, there is no guarantee that the mathematical function in Eq. (6)
would fit well to data obtained from evaluating other designs of
labyrinths. Although the approach described might be useful for
modeling other geometries of labyrinth channels, obtaining math-
ematical functions different from Eq. (6) might require time,
assumptions, and trials. On the other hand, the procedure to obtain
single-hidden-layer ANN models for other designs of labyrinths
would demand less time than obtaining mathematical functions
different from Eq. (6). As a starting point, the number of neurons
at the input layer matches the input variables available in the data
set, and the output layer will have a single neuron (i.e., a single
output). Computational simulations would be necessary only to
optimize the number of neurons in the hidden layer [Fig. 7(a)].
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Fig. 8. Number of iterations (epochs) and the corresponding values of MSE: (a) complete simulation; and (b) increase in MSE values of validation
curve after Epoch 836.
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Fig. 9. Performance indicators using only the test data set: (a) observed versus estimated values of discharge; and (b) graphical error analysis
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The early stopping algorithm automatically prevents model over-
fitting. The methodology adopted to obtain the computational
ANN model can be useful in similar future works.

Web Application to Simulate Discharge of Labyrinths

Aweb application was developed as a tool to simulate the discharge
of labyrinths as a function of their dimensions and operating
pressure. The user fills out the forms with input values and obtains
the estimated values of discharge from the model based on nonlin-
ear regression in Eq. (13) and from the ANN model [Fig. 7(b)].
In addition, the pressure–discharge curve and the corresponding
equation is presented for the user. The website front end was pro-
grammed using HTML, CSS, and JavaScript, whereas the ANN
routines ran in Python (back end). The web application is available
online (Lavanholi et al. 2020).

Conclusions

Mathematical models based on nonlinear regression and neural net-
works using MLP were developed to relate geometric and opera-
tional characteristics of labyrinths.

The nonlinear regression model has only seven coefficients
and the ANN model has an input layer with six neurons, a hidden
layer with six neurons, and an output layer with a single neuron
(i.e., ANN architecture 6-6-1). Both models were accurate and
made possible the rapid prediction of the emitter’s discharge. Ana-
lyzing the test data set indicated that the maximum relative errors of
predicted discharges were 9.5% and 9.4% for the ANN and nonlinear
models, respectively. An open-source web application was devel-
oped to simulate the pressure–discharge curve of labyrinths within
a range of geometric and operational characteristics. The nonlinear
regression model and the methodology adopted to obtain the com-
putational ANN model can be useful in similar future works.

Changes in the channel width resulted in significant increases in
labyrinth length for both groups of prototypes. The increase in the
ratio H=W decreased the labyrinth length. Ratios of H=W between
1.2 and 1.4 had the most-significant impacts on the labyrinth
length, and values higher than that did not help to produce compact
and short labyrinths. For the Type 2 prototypes, the increase in the
H=W ratio increased the coefficient of total head loss per baffle, but
caused a minor decrease in the values of the exponent of flow (x).
The flow exponent was strongly affected by the tooth angle, indi-
cating that the higher values of α resulted in lower values of x and
better hydraulic performance.
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