W. Aeschbach and T. Gleeson, Regional strategies for the accelerating global problem of groundwater depletion, Nat. Geosci, vol.5, pp.853-861, 2012.

R. Taylor, B. Scanlon, P. Doell, M. Rodell, R. Van-beek et al., Ground water and climate change, Nat. Clim. Chang, vol.3, pp.322-329, 2013.

J. Famiglietti, The global groundwater crisis, Nat. Clim. Chang, vol.4, pp.945-948, 2014.

M. W. Farthing and F. Ogden, Numerical Solution of Richards' Equation: A Review of Advances and Challenges, Soil Sci. Soc. Am. J, vol.81, pp.1257-1269, 2017.

D. L. Corwin, J. Hopmans, and G. H. De-rooij, From Field-to Landscape-Scale Vadose Zone Processes: Scale Issues, Modeling, and Monitoring. Vadose Zo, J, vol.5, pp.129-139, 2006.

A. Mermoud and D. Xu, Comparative Analysis of Three Methods to Generate Soil Hydraulic Functions, Soil Tillage Res, vol.87, pp.89-100, 2006.

A. Isch, D. Montenach, F. Hammel, P. Ackerer, and Y. Coquet, A Comparative Study of Water and Bromide Transport in a Bare Loam Soil Using Lysimeters and Field Plots, vol.11, p.1199, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02262291

A. Ritter, F. Hupet, R. Muñoz-carpena, S. Lambot, and M. Vanclooster, Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods, Agric. Water Manag, vol.59, pp.77-96, 2003.

J. Mertens, R. Stenger, and G. F. Barkle, Multiobjective Inverse Modeling for Soil Parameter Estimation and Model Verification. Vadose Zo, J, vol.5, pp.917-933, 2006.

J. Groh, C. Stumpp, A. Lücke, T. Pütz, J. Vanderborght et al., Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data, Vadose Zo. J, vol.17, 2018.

Y. Pachepsky, K. Smettem, J. Vanderborght, M. Herbst, H. Vereecken et al., Reality and Fiction of Models and Data in Soil Hydrology, Unsaturated-zone Modeling: Progress, Challenges and Applications

R. A. Feddes, G. H. De-rooij, and . Van-dam, , vol.6, pp.233-260, 2004.

X. Lu, M. Jin, M. T. Van-genuchten, and B. Wang, Groundwater Recharge at Five Representative Sites in the Hebei Plain, vol.49, pp.286-294, 2011.

T. Wang, T. E. Franz, W. Yue, J. Szilagyi, V. A. Zlotnik et al., Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network, J. Hydrol, vol.533, pp.250-265, 2016.

T. Wohling, J. A. Vrugt, and G. F. Barkle, Comparison of Three Multiobjective Optimization Algorithms for Inverse Modeling of Vadose Zone Hydraulic Properties, Soil Sci. Soc. Am. J, vol.72, pp.305-319, 2008.

J. Groh, H. Puhlmann, and K. Wilpert, Calibration of a soil-water balance model with a combined objective function for the optimization of the water retention curve, Hydrol. Wasserbewirtsch, vol.57, pp.152-162, 2013.

F. Abbasi, J. Simunek-jirka, J. Feyen, and P. J. Shouse, Simultaneous Inverse Estimation of Soil Hydraulic and Solute Transport Parameters from Transient Field Experiments: Homogeneous Soil, Am. Soc. Agric. Eng, vol.46, pp.1085-1095, 2003.

C. Stumpp, W. Stichler, M. Kandolf, and J. ?im?nek, Effects of Land Cover and Fertilization Method on Water Flow and Solute Transport in Five Lysimeters: A Long-Term Study Using Stable Water Isotopes, Vadose Zone J, vol.11, 2012.

M. Sprenger, T. H. Volkmann, T. Blume, and M. Weiler, Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes, Hydrol. Earth Syst. Sci, vol.19, pp.2617-2635, 2015.

P. Koeniger, C. Leibundgut, T. Link, and J. D. Marshall, Stable isotopes applied as water tracers in column and field studies, Org. Geochem, vol.41, pp.31-40, 2010.

U. Zimmermann, K. O. Münnich, and W. Roether, Downward Movement of Soil Moisture Traced by Means of Hydrogen Isotopes, Isotopes in Hydrology; IAEA, Isotopes in Hydrology, pp.567-585, 1966.

J. C. Gehrels, J. E. Peeters, J. J. Vries, and M. Dekkers, The mechanism of soil water movement as inferred from 18O stable isotope studies, Hydrol. Sci. J, vol.43, pp.579-594, 1998.

R. Souchez, R. Lorrain, and J. L. Tison, Stable water isotopes and the physical environment, vol.2, pp.133-144, 2002.

P. Goblet, Simulation D'écoulement et de Transport Miscible en Milieu Poreux et Fracturé; Manual, 2010.

F. Campolongo, J. Cariboni, and A. Saltelli, An effective screening design for sensitivity analysis of large models, Environ. Model. Softw, vol.22, pp.1509-1518, 2007.

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul, vol.55, pp.271-280, 2001.

M. Larocque, G. Meyzonnat, M. A. Ouellet, M. H. Graveline, S. Gagné et al., Projet de connaissance des eaux souterraines de la zone de Vaudreuil-Soulanges, 2015.

A. Mattei, F. Barbecot, S. Guillon, P. Goblet, J. Hélie et al., Improved accuracy and precision of water stable isotope measurements using the direct vapour equilibration method, Rapid Commun. Mass Spectrom, vol.33, pp.1613-1622, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02460247

F. Mesinger, G. Dimego, E. Kalnay, K. Mitchell, P. C. Shafran et al., North American Regional Reanalysis. Bull. Am. Meteorol. Soc, vol.87, pp.343-360, 2006.

R. L. Folk and W. C. Ward, Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Petrol, vol.27, pp.3-26, 1957.

Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res, vol.12, pp.513-522, 1976.

M. T. Van-genuchten, A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils 1, Soil Sci. Soc. Am. J, vol.44, pp.892-898, 1980.

R. A. Feddes, P. Kowalik, K. Kolinska-malinka, and H. Zaradny, Simulation of field water uptake by plants using a soil water dependent root extraction function, J. Hydrol, vol.31, pp.13-26, 1976.

J. ?im?nek, M. ?ejna, H. Saito, M. Sakai, and M. T. Van-genuchten, The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, 2013.

G. H. Hargreaves and . Samani, Z.A. Estimating Potential Evapotranspiration. Appl. Eng. Agric, vol.1, pp.96-99, 1982.

J. A. Ritchie, Model for Predicting Evaporation From a Low Crop With Incomplete Cover, Water Resour. Res, vol.8, pp.1204-1213, 1972.

S. Sutanto, J. Wenninger, M. Coenders-gerrits, and S. Uhlenbrook, Partitioning of evaporation into transpiration, soil evaporation and interception: A comparison between isotope measurements and a HYDRUS-1D model, Hydrol. Earth Syst. Sci, vol.16, pp.2605-2616, 2012.

A. Valéry, Modélisation Précipitations-Débit sous Influence Nivale: Elaboration d'un Module Neige et Evaluation sur 380 Bassins Versants, AgroParisTech, 2010.

J. Vanderborght and H. Vereecken, One-Dimensional Modeling of Transport in Soils with Depth-Dependent Dispersion, Sorption and Decay. Vadose Zone J, vol.6, pp.140-148, 2007.

R. Gonfiantini and P. Fritz, Chapter 3-Environmental isotopes in lake studies, The Terrestrial Environment, pp.113-168, 1986.

G. Skrzypek, A. Myd?owski, S. Dogramaci, P. Hedley, J. J. Gibson et al., Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator, J. Hydrol, vol.523, pp.781-789, 2015.

J. R. Gat and Y. Levy, Isotope hydrology of inland Sabkhas in the Bardawil area, Limnol. Oceanogr, vol.23, pp.841-850, 1978.

J. J. Gibson, S. J. Birks, and T. W. Edwards, Global prediction of ?A and ?2H-?18O evaporation slopes for lakes and soil water accounting for seasonality, Glob. Biogeochem. Cycles, vol.22, 2008.

J. Horita and D. J. Wesolowski, Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Acta, vol.58, pp.3425-3437, 1994.

J. R. Gat, A. Lerman, D. M. Imboden, and . Gat, Stable Isotopes of Fresh and Saline Lakes BT-Physics and Chemistry of Lakes, pp.139-165, 1995.

K. Beven, A manifesto for the equifinality thesis, J. Hydrol, vol.320, pp.18-36, 2006.

A. Saltelli, Sensitivity Analysis for Importance Assessment, Risk Anal, vol.22, pp.579-590, 2002.

W. Usher, J. Herman, C. Mutel, and . Salib, Contains Sobol, Morris, Fractional Factorial and FAST methods, Sensitivity Analysis Library in Python (Numpy), 2015.

H. Kling, M. Fuchs, and M. Paulin, Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol, pp.264-277, 2012.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.21, pp.239-245, 1979.

J. A. Vrugt, C. J. Ter-braak, M. P. Clark, J. M. Hyman, and B. A. Robinson, Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res, vol.44, 2008.

T. Mannschatz and P. Dietrich, Model Input Data Uncertainty and Its Potential Impact on Soil Properties, Sensitivity Analysis in Earth Observation Modelling

G. Petropoulos, P. K. Srivastava, and . Eds, , pp.25-52, 2017.

S. Gebler, H. Franssen, T. Pütz, H. Post, M. Schmidt et al., Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket, Hydrol. Earth Syst. Sci, vol.19, pp.2145-2161, 2015.

M. Hoffmann, R. Schwartengräber, G. Wessolek, and A. Peters, Comparison of simple rain gauge measurements with precision lysimeter data, Atmos. Res, pp.120-123, 2016.

C. Peters-lidard, D. M. Mocko, M. Garcia, J. Santanello, M. A. Tischler et al., Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment, Water Resour. Res, vol.44, 2008.

D. A. Angers and J. Caron, Soil Structure: Processes and Feedbacks. Biogeochemistry, vol.42, pp.55-72, 1998.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI