O. Who and . Overweight, , 2019.

Y. Imai, H. R. Patel, and E. J. Hawkins, Insulin secretion is increased in pancreatic islets of neuropeptide Y-deficient mice, Endocrinology, vol.148, pp.5716-5739, 2007.

R. Ouedraogo, E. Näslund, and A. L. Kirchgessner, Glucose regulates the release of orexin-A from the endocrine pancreas, Diabetes, vol.52, pp.111-118, 2003.

P. Verhulst and I. Depoortere, Ghrelin's second life: from appetite stimulator to glucose regulator, World J Gastroenterol, vol.18, pp.3183-95, 2012.

M. O. Huising, T. Van-der-meulen, and J. M. Vaughan, Crfr1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner, Proc Natl Acad Sci U S A, vol.107, pp.912-919, 2010.

P. Yue, H. Jin, and M. Aillaud, Apelin is necessary for the maintenance of insulin sensitivity, Am J Physiol Endocrinol Metab, vol.298, pp.59-67, 2010.

L. Plum, B. F. Belgardt, and J. C. Brüning, Central insulin action in energy and glucose homeostasis, J Clin Invest, vol.116, pp.1761-1767, 2006.

R. Coppari, Hypothalamic neurones governing glucose homeostasis, J Neuroendocrinol, vol.27, pp.399-405, 2015.

T. Fujikawa, E. D. Berglund, and V. R. Patel, Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin, Cell Metab, vol.18, pp.431-475, 2013.

N. Chartrel, C. Dujardin, and Y. Anouar, Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity, Proc Natl Acad Sci U S A, vol.100, pp.15247-52, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01960798

S. Fukusumi, H. Yoshida, and R. Fujii, A new peptidic ligand and its receptor regulating adrenal function in rats, J Biol Chem, vol.278, pp.46387-95, 2003.

Y. Jiang, L. Luo, and E. L. Gustafson, Identification and characterization of a novel RF-amide peptide ligand for orphan Gprotein-coupled receptor SP9155, J Biol Chem, vol.278, pp.27652-27659, 2003.

N. Chartrel, J. Alonzeau, and D. Alexandre, The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions, Front Neuroendocrinol, vol.32, pp.387-97, 2011.

N. Chartrel, M. Picot, E. Medhi, and M. , The neuropeptide 26RFa (QRFP) and its role in the regulation of energy homeostasis: a minireview, Front Neurosci, vol.10, p.549, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02330463

S. Takayasu, T. Sakurai, and S. Iwasaki, A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice, Proc Natl Acad Sci, vol.103, pp.7438-7481, 2006.

J. Leprince, D. Bagnol, and R. Bureau, The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR review 24, Br J Pharmacol, vol.174, pp.3573-607, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01972620

F. Bruzzone, B. Lectez, and H. Tollemer, Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord, J Neurochem, vol.99, pp.616-643, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01960726

F. Bruzzone, B. Lectez, and D. Alexandre, Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat, J Comp Neurol, vol.503, pp.573-91, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01960728

R. Moriya, H. Sano, and T. Umeda, Rfamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice, Endocrinology, vol.147, pp.2916-2938, 2006.

B. Lectez, L. Jeandel, and F. El-yamani, The orexigenic activity of the hypothalamic neuropeptide 26RFa is mediated by the neuropeptide Y and proopiomelanocortin neurons of the arcuate nucleus, Endocrinology, vol.150, pp.2342-50, 2009.

K. Ukena, T. Tachibana, and E. Iwakoshi-ukena, Identification, localization, and function of a novel avian hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-coupled receptor-103, Endocrinology, vol.151, pp.2255-64, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01977102

Y. Liu, Y. Zhang, and S. Li, Molecular cloning and functional characterization of the first non-mammalian 26RFa/QRFP orthologue in goldfish, Carassius auratus, Mol Cell Endocrinol, vol.303, pp.82-90, 2009.

S. D. Primeaux, C. Blackmon, and M. J. Barnes, Central administration of the RFamide peptides, QRFP-26 and QRFP-43, increases high fat food intake in rats, Peptides, vol.29, 1994.

, BMJ Open Diab Res Care, 2020.

G. Prévost, L. Jeandel, and A. Arabo, Hypothalamic neuropeptide 26RFa acts as an incretin to regulate glucose homeostasis, Diabetes, vol.64, pp.2805-2821, 2015.

G. Prévost, M. Picot, L. Solliec, and M. , The neuropeptide 26RFa in the human gut and pancreas: potential involvement in glucose homeostasis, Endocr Connect, vol.8, pp.941-51, 2019.

M. Mulumba, C. Jossart, and R. Granata, GPR103b functions in the peripheral regulation of adipogenesis, Mol Endocrinol, vol.24, pp.1615-1640, 2010.

R. Granata, F. Settanni, and L. Trovato, Rfamide peptides 43RFa and 26RFa both promote survival of pancreatic ?-cells and human pancreatic islets but exert opposite effects on insulin secretion, Diabetes, vol.63, pp.2380-93, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01962746

G. Prévost, A. Arabo, L. Solliec, and M. A. , The neuropeptide 26RFa is a key regulator of glucose homeostasis and its activity is markedly altered in diabetes, Am J Physiol Endocrinol Metab, vol.317, pp.147-57, 2019.

M. Belle, D. Godefroy, and G. Couly, Tridimensional visualization and analysis of early human development, Cell, vol.169, pp.161-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01497677

J. Georgsson, F. Bergström, and A. Nordqvist, GPR103 antagonists demonstrating anorexigenic activity in vivo: design and development of pyrrolo[2,3-c]pyridines that mimic the C-terminal Arg-Phe motif of QRFP26, J Med Chem, vol.57, pp.5935-5983, 2014.

R. D. Palmiter, J. C. Erickson, and G. Hollopeter, Life without neuropeptide Y, Recent Prog Horm Res, vol.53, pp.163-99, 1998.

Y. Sun, S. Ahmed, and R. G. Smith, Deletion of ghrelin impairs neither growth nor appetite, Mol Cell Biol, vol.23, pp.7973-81, 2003.

K. Okamoto, M. Yamasaki, and K. Takao, QRFP-deficient mice are hypophagic, lean, hypoactive and exhibit increased anxiety-like behaviour, Plos One, vol.10, p.1371, 2016.

, BMJ Open Diab Res Care, 2020.