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Abstract: Diseases of fruit and foliage caused by fungi and oomycetes are generally controlled by
the application of fungicides. The use of decision support systems (DSSs) may assist to optimize
fungicide programs to enhance application on the basis of risk associated with disease outbreak.
Case-by-case evaluations demonstrated the performance of DSSs for disease control, but an overall
assessment of the efficacy of DSSs is lacking. A literature review was conducted to synthesize the
results of 67 experiments assessing DSSs. Disease incidence data were obtained from published
peer-reviewed field trials comparing untreated controls, calendar-based and DSS-based fungicide
programs. Two meta-analysis generic models, a “fixed-effects” vs. a “random-effects” model within
the framework of generalized linear models were evaluated to assess the efficacy of DSSs in reducing
incidence. All models were fit using both frequentist and Bayesian estimation procedures and the
results compared. Model including random effects showed better performance in terms of AIC or DIC
and goodness of fit. In general, the frequentist and Bayesian approaches produced similar results.
Odds ratio and incidence ratio values showed that calendar-based and DSS-based fungicide programs
considerably reduced disease incidence compared to the untreated control. Moreover, calendar-based
and DSS-based programs provided similar reductions in disease incidence, further supporting the
efficacy of DSSs.

Keywords: Bayesian models; confidence/credibility intervals; disease management; epidemiological
models; generalized linear mixed models; incidence ratio; JAGS software; predictive distribution;
odds ratio

1. Introduction

According to Higgins et al. [1], “meta-analysis refers to the statistical synthesis of results from
a series of studies”. In plant pathology, meta-analysis has become in a powerful tool [2] to address
questions such as factors determining the effects of different pesticides and biological treatments for
managing diseases [3–5]. Meta-analysis implementation requires the selection of proper statistical
models to draw robust conclusions. Different types of statistical models were proposed with that regard;
however, there is a risk of biased parameter estimation, misinterpretation and incorrect conclusions if
a quality control of statistical techniques is not considered [6]. According to Philibert et al. [7], one
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of the quality control measures which meta-analysis should incorporate is a sensitivity study of the
estimated effects in relation to the statistical model characteristics.

In practice, the selection of a statistical model rises two important issues: (i) the nature of the
measured variable (continuous, binary, categorical) and (ii) the consideration between-experiments
variability in the measured variable which leads to the choice between fixed and random effects
models [1,8,9]. Furthermore, model type will determine the “treatment effect” (also named“effect size”)
choice to summary effects and assess differences between treatments evaluated. In plant pathology,
meta-analysis sensitivity analyses addressed differences between fixed-effect and random-effect models
within different modelling frameworks (linear models, generalized linear models) [3,5] and also for
frequentist vs. Bayesian inferential approaches [5].

In this paper, we consider experiments where the measured variable is binary and corresponds to
the occurrence of a disease in treated/untreated plant materials. Within this framework, a sensitivity
analysis between two different meta-analysis models (fixed effects vs. random effects) and two different
estimation methods (frequentist vs. Bayesian) were proposed from a generic generalized lineal model
(GLM) [10] to assess the efficacy of fungicide programs based on decision support systems (DSSs) in
comparison to standard calendar-based programs.

Currently, agricultural policies promote the adoption of more sustainable low-input agricultural
systems reinforcing the reduction of fungicide application among other measures. In that context,
the use of predictive models (empirical or process-based) allows estimating the risk of disease and
devise more efficient fungicide spray programs optimizing spray timing and avoiding unnecessary
treatments [11,12]. Building on predictive models, DSS programs integrate all types of information
required for control decisions, including action thresholds [11]. However, the level of adoption of them
is generally low [13]. The perceived lack of reliability of DSSs could be overcome with more studies
comparing the efficacy of this strategy with the standard calendar-based fungicide programs. In this
context, meta-analysis is a powerful methodology in the sense that can combine different sources of
information covering a wide range of disease-crop systems.

In this paper, we compare four different GLMs to perform a meta-analysis on the efficacy of DSS
and calendar fungicide programs. The four models differ in the assumption made on the variability of
the treatment effect (which is assumed to be either constant or variable between experiments) and in
the inferential method used for parameter estimation (frequentist or Bayesian). For all models, three
treatment effects measures: disease incidence, odds ratios and incidence ratios were estimated and
compared to evaluate the efficacy of DSS and calendar fungicide programs.

2. Material and Methods

2.1. Literature Search and Data

A database was assembled based on a systematic literature review from the (i) Web of Science
(WOS) and (ii) the Fungicide and Nematicide Tests (F&N Tests and Plant Disease management reports).
For (i), publications were selected according to multiple search strings described in Appendix A.
For (ii), reports were extracted according to multiple key words (Appendix A). Hard copies of volumes
published prior to 2000 were examined directly. Relevant experiments were selected according the
following criteria: (a) the experiment evaluated at least one DSS-based strategy, one calendar-based
strategy and an untreated control (as a minimum each experiment included three sub-experiments
according to the type of treatment); (b) all sub-experiments reported disease incidence (i.e., proportion
of diseased organs) and sample size (i.e., total of organs considered to evaluate disease incidence).
All experiments fulfilling those criteria were included in the meta-analysis. In calendar-based programs
the number and timing of fungicide applications was fixed before the experiment, usually based on
the standard practices for disease control. In DSS-based programs the number and timing of fungicide
applications was decided during the course of the experiment based on risk indicators.
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Each experiment was defined as a unique combination of location (country, state), year,
crop, organ evaluated, disease, pathogen, treatment strategy, number of sprays and treatment id
(see Table A2 for detailed information about the location, crop and disease information). Conversely,
each sub-experiment was characterised by the type of treatment (DSS, calendar or untreated),
the observed disease incidence, the sample size and the number of sprays. For both sources ((i) and (ii))
a total of 67 experiments, 285 sub-experiments were selected from a total of 19 publications/reports (see
Table A3 for further details). The number of independent experiments among the papers varied from 1
to 11 and the number of sub-experiments among experiments from 3 to 7 (Table A3). The database
included a total of 67 sub-experiments under untreated conditions, 86 under a calendar-based strategy
and 132 under DSS-based strategy (Table A3). An overall and individual (per sub-experiment)
description of the dataset is provided in Section 3.1 in terms of the observed disease incidence
and incidence ratios (IRs) between calendar (Cal./Unt.) and DSS (DSS/Unt.) strategies against the
untreated control.

2.2. Meta-Analysis

The response variable used to quantify the level of disease in all experiments (sub-experiments)
was the number of diseased organs. Given the nature of this metric, meta-analysis was formulated
within the familiar framework of GLMs [10] and applied to data with a binomial likelihood [14] and a
logit link function. The GLM overcomes problems of models based on normal likelihood [15]. It was
formulated to compare the effect of the two fungicide strategies (DSS and calendar) simultaneously in
comparison to the untreated control.

This generic model was extended by the inclusion of random effects usually named as generalised
linear mixed model (GLMM) [16] with the aim to account for the unobserved sources of variability
among experiments beyond the fungicide treatment effects, such as the different pathogens/crops
targeted, the mode of action of the fungicides, and inoculum levels. Both GLM and GLMM were fitted
using two statistical methods, a frequentist and a Bayesian method. All implementations were made
in the R environment (version 3.5.1). The full analysis can be reproduced using code and data archived
at https://bitbucket.org/elaher/comparative-meta-analysis/src/master/.

Statistical Modelling

The logistic GLM was formulated as:

Yij ∼ Binomial(nij, θij), (1)

logit (θij) = log

(
θij

1− θij

)
= β0 + βcal Ical(ij) + βdss Idss(ij), (2)

where the random variable Yij which describes the number of diseased organs in the sub-experiment j
of the experiment i out of a total of nij organs analyzed, is assumed to follow a Binomial distribution
with unknown probability of disease θij (disease incidence); Ical(ij) and Idss(ij) are dummy variables
for calendar and DSS treatments equal to 1 if the sub-experiment j of the experiment i was conducted
with one of these strategies and to zero otherwise; βcal and βdss are fixed parameters (regression
coefficients) which capture calendar and DSS treatment effect compared to the untreated control, β0.
This model formulation is usually denoted in meta-analysis framework as “fixed-effects” model [5,9]
due to it assumes that each treatment effect does not vary across experiments.

https://bitbucket.org/elaher/comparative-meta-analysis/src/master/
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The logistic GLMM was formulated as an extension of the GLM defined previously by the
inclusion of three random effects describing the between-experiment variability of the treatment effects.
In the GLMM model, Equation (2) is modified as follows:

logit (θij) = log

(
θij

1− θij

)
= (β∗0 + b0(i)) + (β∗cal + bcal(i)) Ical(ij) + (β∗dss + bdss(i)) Idss(ij), (3)

= γ0(i) + γcal(i) Ical(ij) + γdss(i) Idss(ij), (4)

where γcal(i), γdss(i) are random parameters which capture calendar and DSS treatment effect for
each experiment i in relation to the untreated control, γ0(i). Each individual experiment effect is
assumed to be multivariate normally distributed about the means β∗0, β∗cal(i), β∗dss(i) with a 3 × 3
variance-covariance matrix Σ, defined as follows: γ0(i)

γcal(i)

γdss(i)

 ∼ N3


 β∗0

β∗cal
β∗dss

 ,

 σ2
0 σ0,cal σ0,dss

σ0,cal σ2
cal σcal,dss

σ0,dss σcal,dss σ2
dss


 . (5)

The means (fixed parameters), β∗cal and β∗dss, in constrast to GLM interpretation, describe the
average effects of calendar and DSS treatments within the population of experiments in comparison to
the untreated control, β∗0. Their corresponding random effects, bcal(i) and bdss(i), capture individual
experiment calendar and DSS treatment effects in relation to the untreated control, b0(i). Thus, under
GLMM specification, each treatment effect varies from experiment to experiment i. The variances, σ2

0 ,
σ2
cal and σ2

dss capture the extent of the above mentioned variability while covariances, σ0,cal, σ0,dss,
σcal,dss point correlations between sub-experiments belonging to the same experiment. This model is
usually called the “random-effects” model [1] in the context of meta-analysis.

2.3. Parameter Estimation: Frequentist vs. Bayesian Approach

Inference for both models (GLM and GLMM) was carried out using frequentist and Bayesian
statistics, successively, leading to two different sets of estimated parameters. Frequentist models
were denoted as GLM_F and GLMM_F and their Bayesian counterparts as GLM_B and GLMM_B.
Parameters of frequentist models were estimated by maximum likelihood through iterative reweighted
least squares method and Laplace approximation using the glm() and the glmer() functions of the
package lme4 [17] implemented in the R software [18] version 3.5.1, respectively. Likelihood ratio tests
were performed to assess the significance of the fungicide treatment effects. Model comparison was
done using the Akaïke Information Criterion (AIC) [19], smaller values of AIC correspond to preferred
models. A rule of thumb outlined in Burnham and Anderson [20] is that models with ∆i(AIC) =

AICi −min AIC higher than 10 have no support against a model with minimum AIC value.
In the Bayesian approach, uncertainty about quantities of interest and experimental results

is always expressed in probabilistic terms. Inferential processes for learning about a quantity of
interest φ always start with a prior distribution which contains all relevant information about φ, π(φ).
Experimental data are related to φ via a sampling model (i.e, binomial model) which is the basis
for computing the likelihood function L(φ). Both elements are formally combined by means of the
Bayes’ rule to obtain the posterior distribution for φ, π(φ | Data), which synthesize all the available
knowledge about φ, π(φ | Data) ∝ L(φ)π(φ).

Bayesian simple inferential processes are based on conjugate families for which the prior and
the posterior distribution belongs to the same distribution family. Under this specific context the
posterior distribution can be calculated analytically. However, for more complex models such as ours,
it needs to be approximated with numerical methods such as Markov chain Monte Carlo (MCMC)
methods [21]. Then, the posterior distribution of the inference parameters is described by a random
sample of parameter values. The same sample of parameters can be used to approximate the posterior
distribution of any quantity of interest, for examples, the disease incidence, the odds ratio (OR),
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the incidence ratio (IR), etc. All these distributions can be summarised using several point estimates
such as the mean, the median, the mode. Furthermore, Bayesian approach makes possible to quantify
uncertainty of any posterior distribution by means of credible intervals [22].

GLM_B and GLMM_B inferential processes were performed under several independent prior
scenarios. For the GLM_B, following the recommendation of Gelman et al. [23] a weakly informative
prior scenario with Cauchy distributions was considered. Specifically, the prior of β0 was defined by
a Cauchy distribution with location parameter µ fixed at 0 and a scale parameter σ of 10, (C(0, 10)).
Conversely, the priors of βdss and βcal were defined by Cauchy distributions also centered at 0 with
scale parameter σ = 2.5, (C(0, 2.5)). This default prior scenario implies that model fitting uses an
adaptation of the standard iteratively weighted least squares computation [23] which makes similar
this model with its frequentist counterpart. In GLMM_B, a standard non-informative prior scenario
was defined to give prominence to data and also to make it comparable with GLMM_F. The prior for
β∗0, β∗dss and β∗cal was defined independently by means of normal distributions centered at 0 and with
a wide variance (N(0, 1000)) . An inverse Wishart distribution (IW(Ψ, ν)) was considered to specify the
prior to the variance-covariance matrix, Σ. Specifically, the inverse Wishart distribution is defined with
an r× r scale matrix Ψ with r equal to the number of random parameters, and with several degrees of
freedom ν. Ψ was specified as an identity matrix (values of 1 in the diagonal and 0 otherwise) of 3× 3
and ν = 3. For both models, posterior distribution was approximated by means of Markov chain
Monte Carlo (MCMC) simulation methods by means of the JAGS software (version 4.3.0) through the
R2jags package (version 0.5-7) [24] of the R software.

The MCMC algorithm was run with three Markov chains each including 120,000 iterations after a
burn-in period of 20,000 iterations. In addition, the chains were thinned by storing one in ten iterations
in order to reduce autocorrelation in the subsequent sample. Convergence was assessed via three
different criteria: (i) graphically, drawing trace plots and assessing the simulated values of the chains
appear overlapping one another, (ii) based on the potential scale reduction factor, R̂, whose values
must be equal or close to 1, and (iii) by means of the effective number of independent simulation
draws, ne f f , which must be >100 [25]. Regarding methods for Bayesian model choice, the deviance
information criterion (DIC) [26] was considered. Smaller values of DIC correspond to preferred models,
and a DIC difference of 5 or more is generally regarded as practically meaningful [27].

In addition to the standard model selection criteria (AIC or DIC), the goodness of fit for the
different models was evaluated graphically comparing observed vs. fitted disease incidence in the
logit scale. Note that for Bayesian models, logit fitted values were based on the median of the posterior
distribution of the logit disease incidence.

2.4. Treatment Effects: Disease Incidence, Odds Ratio, Incidence Ratio and Predictive Distribution of the
Odds Ratio

Effect measures were assessed by the estimation of disease incidence, OR and IR for the four
models [28,29]. With the “random-effects” models (GLMM), these quantities are assumed to vary
across experiments and this variability was described by computing the predictive distribution for a
new experiment chosen at random.

2.4.1. Disease Incidence

For GLM_F models, disease incidence (in probability scale) was estimated for each specific
fungicide strategy (untreated, calendar and DSS) according Equation (2) notation as follows:

θ̂0 =
exp{β̂0}

1 + exp{β̂0}
, θ̂cal =

exp{β̂0 + β̂cal}
1 + exp{β̂0 + β̂cal}

, θ̂dss =
exp{β̂0 + β̂dss}

1 + exp{β̂0 + β̂dss}
, (6)
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in which β̂0, β̂cal and β̂dss correspond to the maximum likelihood parameter estimates.
Their associated 95% confidence intervals were calculated according to

95%CIθ̂0
= inv.logit{β̂0 ± z0.975 SE(β̂0)}

95%CIθ̂cal
= inv.logit{(β̂0 + β̂cal)± z0.975 SE(β̂0 + β̂cal)}

95%CIθ̂dss
= inv.logit{(β̂0 + β̂dss)± z0.975 SE(β̂0 + β̂dss)}. (7)

in which z0.975 denotes the 0.975 quantile of the normal distribution and SE the standard error.
Note that disease incidence computation was calculated in the logit scale due to errors are

assumed normally distributed and then logit-transformed (inv.logit(x) =
exp{x}

1+exp{x} ) [30]. Generally,

SE =
√

V̂ar with V̂ar denoting estimated variance.
For GLM_B, posterior distribution of the disease incidence was drawn from the posterior

distribution of the model parameters following the tranformation described in Equation (6) and
summarized by means of the median as a point estimate and the 95% credible intervals as a measure
of uncertainty.

For GLMM_F model, average “experiment” disease incidence was computed for a each specific
fungicide strategy (untreated, calendar and DSS) according Equation (4) notation as follows:

θ̂0M =
exp{β̂∗0}

1 + exp{β̂∗0}
, θ̂calM =

exp{β̂∗0 + β̂∗cal}
1 + exp{β̂∗0 + β̂∗cal}

θ̂dssM =
exp{β̂∗0 + β̂∗dss}

1 + exp{β̂∗0 + β̂∗dss}
. (8)

As with the GLM_F computation, 95% confidence intervals were estimated following the same
approach described in Equation (7) but adapting it to the parameters involved. For GLMM_B, posterior
distribution of the average the disease incidence was drawn from the transformation of the posterior
distribution of the model parameters involved and summarised by means of the median as a point
estimate and the 95% credible intervals as a measure of uncertainty.

2.4.2. Odds Ratio

Based on the formal definition of the disease incidence described previously, OR for calendar
(ORcal) and DSS (ORdss)-based strategies against control as well as OR for calendar against DSS
(ORcal/dss) were estimated for GLM_F model as follows:

ÔRcal =
θ̂cal/(1− θ̂cal)

θ̂0/(1− θ̂0)
= exp{β̂cal}

ÔRdss =
θ̂dss/(1− θ̂dss)

θ̂0/(1− θ̂0)
= exp{β̂dss}

ÔRcal/dss =
θ̂cal/(1− θ̂cal)

θ̂dss/(1− θ̂dss)
= exp{β̂cal − β̂dss} (9)

Note the OR computation was carried out on a log scale [31]. Thus, based on the previous
statement 95% confidence intervals were estimated according to

95%CIÔRcal
= exp{β̂cal ± z0.975 SE(β̂cal)}

95%CIÔRdss
= exp{β̂dss ± z0.975 SE(β̂dss)}

95%CIÔRcal/dss
= exp{(β̂cal − β̂dss)± z0.975 SE(β̂cal − β̂dss)} (10)

in which z0.975 denotes the 0.975 quantile of the normal distribution and SE the standard error.
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For GLM_B, posterior distribution of the OR was drawn from the posterior distribution of the
relevant model parameters based on the transformation described in Equation (9) and summarized by
means of the median as a point estimate and the 95% credible intervals as a measure of uncertainty.

Under GLMM_F model, average “experiment” OR for calendar and DSS-based strategy against
the untreated control and OR for calendar against DSS were computed as follows:

ÔRcalM =
θ̂calM/(1− θ̂calM)

θ̂0M/(1− θ̂0M)
= exp{β̂∗cal}

ÔRdssM =
θ̂dssM/(1− θ̂dssM)

θ̂0M/(1− θ̂0M)
= exp{β̂∗dss}

ÔRcalM/dssM =
θ̂calM/(1− θ̂calM)

ˆθdssM/(1− θ̂dssM)
= exp{β̂∗cal − β̂∗dss} (11)

but also in the log scale with 95% confidence intervals estimated as described in Equation (10) using
the relevant parameters. For GLMM_B, posterior distribution of the average OR was drawn from the
transformation of posterior distribution model parameters and summarised by means of the median
as a point estimate and the 95% credible intervals as a measure of uncertainty.

ORcal and ORdss were used as a summary measure to quantify the efficacy of each fungicide
program by means of relative changes in odds disease. ORcal/dss was used to assess differences of
calendar strategy in relation to DSS in terms of relative changes in odds disease.

2.4.3. Incidence Ratio

Following the same strategy specified in the previous section for OR computation, IR for calendar
(IRcal) and DSS (IRdss)-based strategies against untreated control and IR for calendar against DSS were
estimated for GLM_F model as follows:

ÎRcal =
θ̂cal

θ̂0
, ÎRdss =

θ̂dss

θ̂0
, ÎRcal/dss =

θ̂cal

θ̂dss
, (12)

Also for IR computation was carried out on a log scale and then log-transformed to convert them
into the original metric [31]. Thus, based on the previous statement 95% confidence intervals were
calculated according to

95%CIÎRcal
= exp{log(ÎRcal)± z0.975 SE(log(ÎRcal)}

95%CIÎRdss
= exp{log(ÎRdss ± z0.975 SE(log(ÎRdss)}

95%CIÎRcal/dss
= exp{log(ÎRcal/dss ± z0.975 SE(log(ÎRcal/dss)} (13)

in which z0.975 denotes the 0.975 quantile of the normal distribution and SE the standard error.
For GLM_B, posterior distribution of the IRs was drawn from the transformation of posterior

distribution of the model parameters involved and summarized by means of the median as a point
estimate and the 95% credible intervals as a measure of uncertainty.

For GLMM_F model, average “experiment” IR for calendar and DSS-based strategy against the
untreated control and IR for calendar against DSS were computed as follows:

ÎRcalM =
θ̂calM

θ̂0M
, ÎRdssM =

θ̂dssM

θ̂0M
, ÎRcalM/dssM =

θ̂calM

θ̂dssM
, (14)

but also in the log scale and with 95% confidence intervals were estimated in the same way as described
in Equation (13) but adapting it to the parameters involved. For GLMM_B, posterior distributions of
average IR were drawn from the transformation of posterior distribution of the model parameters
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concerned and summarised by means of the median as a point estimate and the 95% credible intervals
as a measure of uncertainty.

IRcal and IRdss were used as a summary measure to quantify the efficacy of each fungicide program
by means of relative changes in disease incidence. IRcal/dss was used to assess differences of calendar
strategy in relation to DSS in terms of relative changes in disease incidence.

2.4.4. Predictive Distribution of the Odds Ratio

To assess the extent of the heterogeneity estimates among experiments, the uncertainty of the
ORcal , ORdss and ORcal/dss were also re-evaluated by calculating their corresponding predictive
distributions. These predictive distributions allow us to incorporate between-experiment variability
and to derive the so-called prediction intervals. Following the computation strategy described in
Section 2.4.2, predictive distributions of the OR were computed in log-scale and then back-transformed.
Parameters involved here were γcal,new and γdss,new (they represent the values of γcal(i) and γcal(i)

for a new experiment and new sub-experiments chosen at random). According to Higgins et al. [1],
their corresponding predictive distribution were defined as

γcal,new − β̂∗cal√
σ̂2
cal + SE(β̂∗cal)

2
∼ tN−2

γdss,new − β̂∗dss√
σ̂2
dss + SE(β̂∗dss)

2
∼ tN−2 (15)

in which tN−2 denotes a t-distribution with N − 2 degrees of freedom with N = 19 representing
the number of experiments. With GLMM_B, the OR predictive distributions were derived from
the predictive distributions of γcal,new, γdss,new. These distributions were obtained by sampling
values of γcal(i) and γcal(i) from their corresponding posterior distributions using the following
transformations, exp{γcal,new} and exp{γdss,new}.

3. Results

3.1. Descriptive Analysis of the Database

Disease incidence data are shown in Figure 1a and IRs for calendar and DSS strategies against
the untreated control and for calendar against DSS in Figure 1b. Individual disease incidence data
and IR values are shown in Figure 2a and Figure 2b, respectively. Note that some experiments show
more than one IR (Cal./Unt. and DSS/Unt.) (Figure 2b) because more than one calendar and/or DSS
strategies were evaluated (Table A3).

Untreated

Calendar

DSS

0 25 50 75 100

(a) Disease Incidence (%)

Cal./Unt.

DSS/Unt.

Cal./DSS.

0 2 4 6

(b) Incidence ratio (IR)

Figure 1. Overall distribution of: (a) Disease incidence for DSS, calendar-based strategies and untreated;
and (b) incidence ratios for Cal./DSS, DSS/Unt. and Cal./Unt..
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Figure 2. (a) Individual disease incidence for sub-experiments under untreated, calendar and
DSS-based strategies; and (b) individual Incidence Ratio for Cal./Unt. and DSS/Unt. Each letter
encodes a paper and each letter/number encodes an experiment. Each row displays individual values
for each sub-experiment.
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The disease incidence in untreated sub-experiments ranged from 1.5% to 100%. The mean and
the median values were 43.17% and 39.00% (Figure 1a). The disease incidence for calendar and
DSS-based strategies, showed overlapping distributions with similar mean (11.94% and 13.92%) and
median (4.06% and 4.56%) values (Figure 1a). For Cal./Unt. and DSS/Unt. ratios the vast majority
of observations were concentrated below the 1 with third quantile values (Q3) equal to 0.430 and
0.610 (Figure 1b, respectively, which shows a tested efficacy of both programs. Furthermore, both
IR distributions overlap partially which reflects a similar efficacy between the two strategies (Q3 for
Cal./DSS ratio was equal to 1).

Individual disease incidence under untreated sub-experiments presented in the vast majority
of experiments higher values than their calendar and DSS counterparts, with only a few exceptions
(A1, C1, D1, P1 and Q9) (Figure 2a). Calendar and their corresponding DSS showed similar disease
incidence and IR values, sometimes higher for calendar, sometimes lower. Most IRs for Cal./Unt. and
DSS/Unt. were lower than 1 with a few exceptions (A1, C1, D1, P1 and Q9 experiments) (Figure 2b).

3.2. Statistical Modelling Evaluation

The “random-effects” models performed better than “fixed-effects” models with both frequentist
and Bayesian approaches according to the AIC or DIC scores. AIC for models GLM_F and GLMM_F
were estimated at 64189.00 and 26098.96 (Table 1). Their Bayesian counterparts (GLM_B and GLMM_B)
got DIC scores of 64188.97 and 25860.42 (Table 2), respectively. Thus, with both inferential approaches,
results were in favor of the GLMMs. This result was confirmed by the graphical analysis of
logit(observed) vs. logit (estimated) of GLMs against GLMMs (Figure 3a,c and Figure 3b,d) in
which differences between observed and estimated (in logit scale) for GLMM were smaller. Figure 3a,c
and Figure 3b,d also showed that similar inferences were obtained between frequentist models and
their Bayesian counterparts.

Table 1. Parameter estimates, standard error and 95% confidence intervals for GLM_F and GLMM_F.

GLM_F GLMM_F

β0 −0.282 * (−0.302, −0.262) β∗0 −0.461 (−1.205, 0.282)
βcal −1.748 * (−1.781; −1.714) β∗cal −2.604 * (−3.944, −1.264)
βdss −1.460 * (−1.487, −1.433) β∗dss −2.014 * (−3.077; −0.951)

σ2
0 2.677

σ2
cal 8.369

σ2
dss 5.387

σ0,cal −1.066
σ0,dss −1.453
σcal,dss 6.387

AIC 64,189.000 26,098.962

* 0 outside the confidence interval.

Table 2. Median of the posterior distribution and 95% credible intervals for GLM_B and GLMM_B.

GLM_B GLMM_B

β0 −0.282 * (−0.302, −0.262) β∗0 −0.462 (−1.252, 0.337)
βcal −1.748 * (−1.781; −1.714) β∗cal −2.585 * (−4.131, −1.189)
βdss −1.459 * (−1.486, −1.432) β∗dss −2.017 * (−3.222; −0.877)

σ2
0 2.778 (1.453, 6.057)

σ2
cal 8.717 (3.961, 22.126)

σ2
dss 5.726 (2.849, 13.340)

σ0,cal −1.061 (−4.512, 1.301)
σ0,dss −1.433 (−4.562, 0.292)
σcal,dss 6.614 (3.167, 15.701)

DIC 64,188.970 25,860.42

* 0 outside the credible interval.
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Figure 3. Comparison of logit(observed disease incidence) vs. logit(fitted disease incidence) for:
(a) GLM_F; (b) GLMM_F; (c) GLM_B; and, (d) GLMM_B. In solid black line, regression line 1:1.

3.3. Statistical Modelling Inference Results

3.3.1. Parameter Estimates

Estimates for model parameters are shown in Table 1 (for frequentist, GLM_F and GLMM_F) and
Table 2 (for Bayesian, GLM_B and GLMM_B). β0, βcal and βdss (for GLMs) and (β∗0, β∗cal and β∗dss) (for
GLMMs) had different point estimates. However, the signs of the coefficients were consistent between
the GLM and GLMM. On the other hand, β∗0, β∗cal and β∗dss showed wider confidence intervals (credible
intervals) than β0, βcal and βdss. For the “random-effects” models (GLMM_F and GLMM_B), variance
parameters (σ2

0 , σ2
cal and σ2

dss) were far from 0 indicating a strong between-experiment variability.

3.3.2. Disease Incidence, Odds Ratio and Incidence Ratio Estimates

Disease incidence, OR and IR estimates are displayed in Figure 4a–c for the four fitted models
(GLM_F, GLM_B, GLMM_F and GLMM_B). Overall, all models showed similar point estimates.
Confidence intervals obtained with the frequentist models were also similar to the credible intervals
obtained with Bayesian models (GLM_F vs. GLM_B and GLMM_F vs. GLMM_B).

With the GLM_F, the estimated median disease incidence was higher for the untreated control,
0.43, than for calendar-based (0.116) and DDS-based strategies (0.149). The same trend was observed
with the GLMM_F (median values of 0.387, 0.045, 0.078 for control, calendar and DDS strategies,
respectively). GLMM_F revealed that the calendar and DDS estimates strongly overlap. Comparable
results were obtained with the Bayesian models (GLM_B and GLMM_B).
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With the GLM_F, OR median values for ORcal , ORdss, ORcal/dss were equal to 0.174, 0.232 and
0.750, respectively. With GLMM_F, these estimates were equal to 0.074, 0.133 and 0.55 (lower than
frequentist estimates). Based on GLMM_F outputs, both calendar and DSS programs provide strong
reduction of odds disease compared to the untreated controls (ORcal and ORdss < 1). Nevertheless, odds
disease in calendar programs would be lower that in DSS (ORcal/dss < 1, but with some uncertainty).
The level of reduction obtained with DSS is already very high and leads to low disease incidences
(see Figure 4a). Similar results were obtained with the Bayesian models (GLM_B and GLMM_B) and
also for the different modelling IR estimates (Figure 4c).
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Figure 4. Comparison of estimated values of disease incidence, odds ratios and incidence ratios
obtained with the four fitted models. (a) Disease incidence for DSS (blue), calendar (green) and
untreated (pink) treatments; (b) odds ratio for calendar/DSS (purple), DSS/untreated (blue) and
calendar/untreated (green); and (c) incidence ratio for calendar/DSS (purple), DSS/untreated (blue)
and calendar/untreated (green).

3.3.3. Predictive Distribution of the Odds Ratio

Figure 5 shows predictive distributions for the OR for the GLMM_F (Figure 5a–c) and GLMM_B
(Figure 5d–f). The x-axis shows the possible values of the ORs and the y-axis the percentiles (%)
of its corresponding predictive distribution. That is, for each specific value of the OR showed,
its corresponding cumulative probability denotes the % of chance to be less than this value.

Predictive distributions obtained with GLMM_F and with GLMM_B showed some noticeable
differences for the ORcal and ORdss, not for the ORcal/dss. For GLMM_F, the probabilities (cumulative
disease incidence probabilities) to have an OR lower than one are equal to 0.99 for both treatment
strategies (Figure 5a,b). These results reveal that there is more than 99% to decrease the odds of disease
with calendar and DSS strategies compared to untreated controls. However, according to the GLMM_B
model, these probabilities were lower (about 0.8) (Figure 5d,e). Despite this difference, both models
support that calendar and DSS strategies show high capabilities in reducing odds of disease. For both
models, the probability that ORcal/dss was lower than one is equal to 0.68 which means that odds of
disease might be lower with calendar but with a considerable degree of uncertainty (Figure 5c,f).
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(d) GLMM_B
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Figure 5. Predictive distribution of odds ratio for calendar-based strategy against untreated control
computed with (a) GLMM_F and (d) GLMM_B. Predictive distribution of odds ratio for DSS-based
strategy against the untreated control computed with (b) GLMM_F and, (e) GLMM_B. Predictive
distribution of odds ratio for calendar-based strategy against DSS-based strategy computed with
(c) GLMM_F and, (f) GLMM_B. The solid black line indicates the % percentile which matches with an
odds ratio lower than 1.

4. Discussion

In the present study, four statistical models were assessed to evaluate the sensitivity of a
meta-analysis aimed to compare the efficacy of DSSs to the standard calendar-based fungicide strategies
for the control of fungal diseases in crop plants. Statistical modelling was set comparing “fixed-effects”
and “random-effects” models in the framework of GLMs with frequentist and Bayesian inferential
methods. Our results showed that the different treatment effect measures considered (disease incidence,
OR, and IR) are highly sensitive to the integration of random-effects which may lead to different
conclusions. These differences between “fixed-effects” and “random-effects” models were reproduced
in both inferential methods.

Our assessments based on AIC or DIC scores and the graphical analysis of discrepancies between
observed and estimated values confirmed that the dataset was better described assuming variable
treatment effects among the experiments. Conceptually, the inclusion of random treatment effects was
in line with the intrinsic nature of the data, which were gathered from experiments carried out by
researchers operating independently. Our analyses showed that variance parameters were higher than
1 (Tables 1 and 2), indicating a substantial heterogeneity among experiments [32,33].

Our results also indicated that the use of “fixed-effects” models may lead to a strong
underestimation of the uncertainty associated with the treatment effects measures considered
(incidence, OR, IR) to summarise treatment efficacies. For both GLMMs, fequentist and Bayesian,
the width of the uncertainty measures (confidence/credible intervals) was larger than in their GLM
counterparts, due to the lack of correlation between sub-experiments observations that it is implicit in
“fixed-effects” specification. Since all sub-experiments within an experiment were evaluated under the
same local conditions, they cannot be considered independent. Thus, models ignoring this correlation
(i.e., “fixed-effects”model), overestimate the number of independent data and thus underestimate the
level of uncertainty as noted by Makowski et al. [5].
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Models with “random-effects” allow deriving predictive distributions, which enable making
more robust conclusions as indicated for the consideration of confidence/credible intervals, but also
by the prediction intervals [33]. This interesting feature was included in our work by the derivation
of the predictive distribution for the OR. For both GLMMs, frequentist and Bayesian, the estimation
of treatment effects measures (disease incidence, OR, and IR) was obtained from the conditional
median/posterior distribution (for Bayesian models) of the random experiment effect in which
between-experiment variability for the different treatments was not considered. Predictive distributions
allow the incorporation of these sources of variability and obtain a more appropriate treatment effect
summary than the average [32]. Consequently, the use of predictions gained relevance in recent
meta-analyses, becoming a standard statistical output due to its utility to assess heterogeneity and
uncertainty of treatment effects in target populations [1,34,35]. According to the predictive distribution
for the OR, both fungicide strategies showed to be equally effective in reducing disease incidence
compared with the untreated control.

Frequentist and Bayesian models for both “fixed-effects” and “random-effects” produced almost
identical results for disease incidence, OR and IR. Our results also highlighted the importance
of properly interpret OR and IR as relative measures. These measures do not have an absolute
interpretation and tend to be insensitive to differences in baseline events, so it could be recommendable
to consider an absolute measure such as incidence estimates to support their interpretation.
According to the previous studies of [5,32,36], our results confirmed that under a weakly informative
prior scenario, frequentist and Bayesian models perform similarly. However, this was not the case
of the predictive distribution for the OR which slightly varied between the two methods, although
they lead to the same conclusions. The problem of finding reasonably good methods for prediction
in both frequentist and Bayesian methods is an open research field, thus it is necessary to check the
performance of prediction methods in practical meta-analysis and to interpret them with caution.

Our results indicated that the both inferential methodologies evaluated had similar practical
advantages, but each of them with its pros and its cons. In general, the Bayesian approach
is conceptually more straightforward and addresses uncertainty in a more comprehensive and
interpretable way. Posterior distributions (parameter or derived quantity) can be characterised in terms
of probability. Thus, a 95% credible interval is simply the central portion of the posterior distribution
that contains the 95% of parameter values. By contrast, frequentist inference does not allow probability
statements about the parameters, the p-value is a measure of evidence against a null hypothesis when
it is assumed to be true. Thus, a 95% confidence interval means that if the same procedure to construct
confidence intervals was repeated many times, then in 95% of the cases the true value will lie within
the interval.

The Bayesian approach also makes easier to extend simple models to more complex
formulations [37]. Currently, there are several software alternatives available such as WinBUGS [38],
JAGS [39], INLA [40], Stan [41], which allow implementing those complex models much easily than
in the frequentist framework. By contrast, the requirement in the Bayesian context of setting a prior
specification for each parameter could be a weakness in the inference process. In some non-informative
prior scenarios, different prior specifications may lead to different posterior distributions affecting
inference robustness [42]. Moreover, in some cases the computational demand of Bayesian models
could be extremely intensive. Thus, as a general recommendation, inferential method choice in
meta-analysis should address and balance all the issues above.

In the context of fungal diseases, DSS strategies allow growers to estimate the risk of disease
and devise more efficient fungicide spray programs, integrating different sources of information
for control decisions including action thresholds [11]. However, currently there is a limited degree
of adoption of DSSs due in part to growers’ aversion to risks and a perceived lack of reliability
of DSSs [13,43]. Building on numerous individual field trials conducted to evaluate DSSs in a
wide range of disease-crop systems, our meta-analysis demonstrates that DSS-based programs are
effective in reducing the incidence of fungal diseases with efficacy comparable to calendar-based
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fungicide programs. Statistical inference comparing the number of fungicide sprays in DSS-based and
calendar-based strategies will be the topic of further research.
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Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike Information Criterion
DIC Deviance Information Criterion
DSS Decision Support System
F&N Tests Fungicide and Nematicide Tests
GLM Generalized Linear Model
GLMM Generalized Linear Mixed Model
IR Incidence Ratio
OR Odds Ratio
SE Standard Error
WOS Web of Science

Appendix A

Table A1. List of papers used in the meta-analysis, source and search string.

Paper Source Search String

Brown-Rytlewski et al. [44] F & N Tests Forecasting
Brown-Rytlewski et al. [45] F & N Tests Forecasting
Brown-Rytlewski et al. [46] F & N Tests Forecasting
Brown-Rytlewski et al. [47] F & N Tests Forecasting
Babadoost [48] F & N Tests Warning
Babadoost [49] F & N Tests Warning
Gleason et al. [50] F & N Tests Warning
Hovius and McDonald [51] F & N Tests Forecasting
McDonald et al. [52] F & N Tests Forecasting
Averre et al. [53] F & N Tests Hard copies
Llorente et al. [54] WOS Other references
Bhatia et al. [55] WOS Other references
Byrne et al. [56] WOS Other references
Montesinos et al. [57] WOS Other references
Peres and Timmer [58] WOS Other references

Wu et al. [59] WOS (crop OR plant) AND disease AND (fungus OR fungi OR fungal OR
fungicide)
AND (forecasting OR warning OR prediction OR predictive)
AND (decision-support OR decision OR support OR treatment OR
model OR system)
AND (weekly OR calendar OR daily) AND (Comparison)

Louws et al. [60] WOS (crop OR plant) AND disease AND (fungus OR fungi OR fungal OR
fungicide)
AND (forecasting OR warning OR prediction OR predictive)
AND (decision-support OR decision OR support OR treatment)
AND (weekly OR calendar OR daily) AND(model OR system)
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Table A1. Cont.

Paper Source Search String

Rasiukevivciute et al. [61] WOS (crop OR plant) AND disease AND (fungus OR fungi OR fungal OR
fungicide)
AND (forecasting OR warning OR prediction OR predictive)
AND (decision-support OR decision OR support OR treatment)
AND(model OR system)

Rosli et al. [62] WOS (crop OR plant) AND (disease) AND (fungal OR fungi OR fun- gus)

AND (forecasting OR warning OR prediction) AND decision-support

Appendix B

Table A2. List of papers used in the meta-analysis. Papers are identified by its corresponding code id.
List of experiments used in the meta-analysis related to its corresponding paper. Experiments are
characterised by an id and its corresponding location, crop type and disease *.

Paper Experiment

Reference Id Location Crop Disease∗

Brown-Rytlewski et al. [44] A1 Ohio,US Wheat Fusarium head blight
Brown-Rytlewski et al. [45] B1 Michigan,US Wheat Fusarium head blight
Brown-Rytlewski et al. [46] C1 Michigan,US Wheat Fusarium head blight
Brown-Rytlewski et al. [47] D1 Michigan,US Wheat Fusarium head blight

Babadoost [48] E1 California,US Apple Sooty blotch complex
E2 California,US Apple Flyspeck

Babadoost [49] F1 California,US Apple Sooty blotch complex
F2 California,US Apple Flyspeck

Gleason et al. [50] G1 Iowa,US Apple Sooty blotch complex
G2 Iowa,US Apple Flyspeck

Hovius and McDonald [51] H1 Ontario,CA Lettuce Downy mildew
H2 Ontario,CA Lettuce Downy mildew

Mcdonald et al. [52] I1 Ontario,CA Lettuce Downy mildew
Averre et al. [53] J1 North Carolina,US Asparagus Cercospora blight

Llorente et al. [54]

K1 Emilia-Romagna,IT Pear Brown spot
K2 Girona,ES Pear Brown spot
K3 Emilia-Romagna,IT Pear Brown spot
K4 Girona,ES Pear Brown spot
K5 Girona,ES Pear Brown spot
K6 Emilia-Romagna,IT Pear Brown spot
K7 Girona,ES Pear Brown spot
K8 Girona,ES Pear Brown spot
K9 Girona,ES Pear Brown spot

K10 Girona,ES Pear Brown spot
K11 Emilia-Romagna,IT Pear Brown spot

Bhatia et al. [55]

L1 Florida,US Mandarin Alternaria brown spot
L2 Florida,US Mandarin Alternaria brown spot
L3 Florida,US Mandarin Alternaria brown spot
L4 Florida,US Mandarin Alternaria brown spot

Byrne et al. [56]

M1 Michigan,US Tomato Anthracnose
M2 Michigan,US Tomato Anthracnose
M3 Indiana,US Tomato Anthracnose
M4 Michigan,US Tomato Anthracnose
M5 Michigan,US Tomato Anthracnose
M6 Indiana,US Tomato Anthracnose
M7 Indiana,US Tomato Anthracnose
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Table A2. Cont.

Paper Experiment

Reference Id Location Crop Disease∗

Montesinos et al. [57] N1 Girona,ES Pear Brown spot
N2 Girona,ES Pear Brown spot

Peres and Timmer [58]
O1 São Paulo,BR Mandarin Alternaria brown spot
O2 São Paulo,BR Mandarin Alternaria brown spot
O3 São Paulo,BR Mandarin Alternaria brown spot

Wu et al. [59]
P1 California,US Lettuce Downy mildew
P2 California,US Lettuce Downy mildew
P3 California,US Lettuce Downy mildew

Louws et al. [60]

Q1 Michigan,US Tomato Early blight
Q2 Michigan,US Tomato Early blight
Q3 Michigan,US Tomato Early blight
Q4 Michigan,US Tomato Anthracnose
Q5 Michigan,US Tomato Anthracnose
Q6 Michigan,US Tomato Anthracnose
Q7 Michigan,US Tomato Rhizoctonia fruit rot
Q8 Michigan,US Tomato Rhizoctonia fruit rot
Q9 Michigan,US Tomato Rhizoctonia fruit rot

Rasiukevivciute et al. [61]

R1 Kaunas,LT Strawberry Gray mold
R2 Kaunas,LT Strawberry Gray mold
R3 Kaunas,LT Strawberry Gray mold
R4 Kaunas,LT Strawberry Gray mold
R5 Kaunas,LT Strawberry Gray mold
R6 Kaunas,LT Strawberry Gray mold

Rosli et al. [62]

S1 Iowa,US Apple Sooty blotch complex /Flyspeck
S2 Iowa,US Apple Sooty blotch complex /Flyspeck
S3 Iowa,US Apple Sooty blotch complex /Flyspeck
S4 Iowa,US Apple Sooty blotch complex /Flyspeck
S5 Iowa,US Apple Sooty blotch complex /Flyspeck
S6 Iowa,US Apple Sooty blotch complex /Flyspeck
S7 Iowa,US Apple Sooty blotch complex /Flyspeck
S8 Iowa,US Apple Sooty blotch complex /Flyspeck

* APS (American Phytopathological Society) Common Names of Plant Diseases. https://www.apsnet.org/
edcenter/resources/commonnames/Pages/default.aspx Accessed 08/03/20.

Table A3. List of papers used in the meta-analysis. Papers are identified by its corresponding reference
and a code id. List of experiments used in the meta-analysis related to its corresponding paper.
Experiments are characterised by an id and the number of sub-experiments for each fungicide strategy
(untreated, calendar and DSS).

Paper Experiment Sub-Experiments

Reference Id Id Untreated Calendar DSS

Brown-Rytlewski et al. [44] A A1 1 1 2
Brown-Rytlewski et al. [45] B B1 1 1 2
Brown-Rytlewski et al. [46] C C1 1 1 2
Brown-Rytlewski et al. [47] D D1 1 1 2

Babadoost [48] E E1 1 2 2
E2 1 2 2

Babadoost [49] F F1 1 2 2
F2 1 2 2

Gleason et al. [50] G G1 1 1 4
G2 1 1 4

Hovius and McDonald [51] H H1 1 1 1
H2 1 1 1

McDonald et al. [52] I I1 1 1 1

https://www.apsnet.org/edcenter/resources/commonnames/Pages/default.aspx
https://www.apsnet.org/edcenter/resources/commonnames/Pages/default.aspx
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Table A3. Cont.

Paper Experiment Sub-Experiments

Reference Id Id Untreated Calendar DSS

Averre et al. [53] J J1 1 1 1

K

K1 1 1 2
K2 1 1 1
K3 1 1 1
K4 1 1 2
K5 1 1 2

Llorente et al. [54] K6 1 1 1
K7 1 1 2
K8 1 1 1
K9 1 1 1
K10 1 1 1
K11 1 1 1

Bhatia et al. [55] L

L1 1 1 3
L2 1 1 3
L3 1 1 3
L4 1 1 3

M

M1 1 3 1
M2 1 3 1
M3 1 3 1

Byrne et al. [56] M4 1 3 1
M5 1 3 1
M6 1 3 1
M7 1 3 1

Montesinos et al. [57] N N1 1 1 3
N2 1 1 2

O
O1 1 1 3

Peres and Timmer [58] O2 1 1 2
O3 1 2 2

P
P1 1 1 1

Wu et al. [59] P2 1 1 2
P3 1 1 2

Q

Q1 1 1 4
Q2 1 1 4
Q3 1 1 5
Q4 1 1 4

Louws et al. [60] Q5 1 1 4
Q6 1 1 5
Q7 1 1 4
Q8 1 1 4
Q9 1 1 5

Rasiukevivciute et al. [61] R

R1 1 1 1
R2 1 1 1
R3 1 1 1
R4 1 1 1
R5 1 1 1
R6 1 1 1

Rosli et al. [62] S

S1 1 1 1
S2 1 1 1
S3 1 1 1
S4 1 1 1
S5 1 1 1
S6 1 1 1
S7 1 1 1
S8 1 1 1

TOTAL 67 86 132
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