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Abstract 

Crop fungal diseases threaten food security in the dual context of a growing global population and a warming climate. Leaf rust is one of the most important 

wheat diseases which can result in yield losses of more than 40%. When considering these crucial questions, innovative approaches to crop cultivation are 

clearly required. One essential prerequisite before the development of adaptive strategies to climate change, is to understand and forecast the potential 

impact of this change on fungal diseases, based on the use of modelling approaches. However, numerous epidemiological models are available; they vary 

considerably in terms of their complexity, and are based on hypotheses that oversimplify factors that influence the prediction of epidemics. During this study, 

we implemented six combinations of leaf wetness duration and infection efficiency models to simulate the future evolution of leaf rust of wheat, and compared 

the resulting trends. Daily and seasonal climatic indicators were inferred from the simulated infection efficiencies, from 1950 to 2100, with two contrasted 

Representative Concentration Pathways, RCP 4.5 and RCP 8.5, at three sites representative of traditional French wheat production areas. The inferred 

indicators characterize the intensity and frequency of leaf rust infection, the length and calendar positioning of the longest sequences without infection, and 

the relevant microclimate. Their absolute values varied considerably depending on the model combinations used, even more than between the present and 

future climatic periods or RCP scenarios. However, the same trends were observed in the future, with climate change being a significant explanatory variable 

of the evolution of the six climatic indicators simulated. The results of combining these models showed that the climatic risk of both the frequency and 

intensity of leaf rust infection would increase during the autumn and winter seasons, and a distinct drop should be expected during the summer, enabling a 

longer risk-free period. Some important common trends were thus highlighted, reinforcing confidence in the robustness of the results. These findings should 

be taken into account when designing adaptive strategies that will sustain production under future abiotic stresses while minimizing sanitary risks. 
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Highlights 

1. Six combinations of models offered future trends for leaf rust of wheat  
 

2. Climatic risk indicators assessed the intensity, frequency & duration of leaf rust 
 

3. Future climatic conditions in the autumn and winter would favor leaf rust infection 
 

4. A distinct drop should be expected in the summer enabling a longer risk-free period 
  



1. Introduction 

Today’s challenges of food security - providing qualitative and quantitative products using sustainable agricultural systems- have as corollary the emergence 

of combined practices limiting both stress risk and input use. This agroecological transition in different plant production sectors is questioning research and 

development capacities to anticipate and propose solutions to deal with the consequences of future climatic variations on agroecosystems. From this 

perspective, the impacts of temperature increases and water shortage due to climate change (CC) on crops have been widely studied and many adaptation 

schemes to limiting abiotic factors were designed. By comparison, the impact of CC on reducing biotic factors (such as diseases, weeds and insects) remains 

poorly understood, particularly in the case of fungal diseases and sanitary risks (Boonekamp, 2012; Newbery et al., 2016). Nevertheless, numerous direct 

impacts of CC are expected on pathogens, such as an increased winter survival and a faster pathogen development due to milder winters and warmer springs, 

given moisture requirements are met (West et al., 2012). Thermophilic crop fungi would clearly benefit climate warming (Hulme, 2017) ; it was indeed 

confirmed by modelling the responses of infection or epidemics to climate drivers (Launay et al., 2014; Caubel et al., 2017), but infection risks were also found 

to decrease in a number of European crop pathosystems (Gouache et al., 2010; 2013; Launay et al., 2014). Properly anticipating CC impacts on crop diseases 

is crucial as they currently cause 16% harvest losses, and are therefore already threatening food security (Flood, 2010; Oerke, 2006; Savary et al., 2012).  

In this context, models are mandatory tools to forecast CC impacts on fungal crop diseases; however they are numerous, with a large range in complexity, and 

rely on hypothesis that oversimplify factors influencing epidemics predictions. Models can nevertheless provide trends for the the evolution of disease risks, 

the robustness of which needs to be evaluated. Mostly bioclimatic models are used to predict spatial and temporal occurrence of fungal species as a function 

of climate (Jeschke and Strayer, 2008). Furthermore infection risk is often assumed to be the first potentially limiting step for epidemics under unlimited 

inoculum rates; consequently most bioclimatic models only estimate infection efficiency from wetness duration and air temperature (Magarey et al., 2005). 



This simplified approach applied to leaf rust (Puccinia triticina), a common disease of bread wheat (Triticum aestivum), durum wheat (T. turgidum var. durum) 

and triticale (X triticosecale), for which dispersal episodes and inoculum rates impact little epidemic dynamics. Leaf rust, one of the most important wheat 

diseases in a wide array of climates wherever wheat is grown (Huerta-Espino et al., 2011), causes more than 40% production losses when the disease is severe 

on susceptible cultivars (Khan et al., 2013). Severity of this disease increased in the recent years (Morgounov et al., 2012), while climate change is expected 

to modify its frequency, incidence (Wojtowicz et al., 2017), severity (Junk et al., 2016) and synchronicity with host (Caubel et al., 2017). Indeed, the future 

increase in the frequency of extreme events such as storms should offer better conditions for wheat rust spores which are mobile and can be transported for 

long distances (Rosenzweig et al., 2001). Moreover, milder winters and warmer springs should favor earlier epidemics, shorten latency periods and increase 

infection and sporulation efficiencies, thus causing more infectious cycles (Caubel et al., 2017). However, when assessing the future impact of climate on leaf 

rust development, certain inconsistencies between studies can be highlighted, partly because different methods were used in the studies reviewed by Juroszek 

and von Tiedemann (2013). In particular, different formalisms from various models may lead to quite contrasted simulated results. In the present study, we 

argue that a multimodel ensemble approach, such as currently implemented in meteorology and atmospheric sciences, and already used in crop modeling 

(Wallach et al., 2018), might be relevant to generating robust trends for the future evolution of leaf rust of wheat.   

Assuming that the infection risk remains the main gateway for wheat leaf rust epidemics in the future, we aimed to study the evolution of leaf rust infection 

risk with climate change, implementing various models. Three models of leaf rust infection efficiency were thus coupled with two contrasted models of dew 

duration, a key point in infection prediction. As infection efficiency strongly relies on wetness duration and temperature during dew period, statistical and 

physical modelling approaches were also -implemented to estimate wetness duration; both continuous and class modelling frames were applied to assess the 

resulting infection efficiency. The objectives of this paper are thus to (i) estimate the evolution of the future infection risk for wheat leaf rust and (ii) compare 



the simulated tendencies according to different models of climate change, infection efficiency and leaf wetness durations. The underlying question being: is 

a common trend detected despite cumulated uncertainties in the modeling process? 

2. Materials and methods 

2.1. General description of the protocol (Fig.1) 

Evolution of the climatic risk of infection regarding leaf rust of wheat was evaluated using the Representative Concentration Pathways (RCP) RCP 4.5 and RCP 

8.5, associated with future CO2 emission scenarios, from 1950 to 2100, at three sites representative of traditional French wheat production areas. Two models 

calculating leaf wetness duration were coupled with three models calculating the risk of infection due to leaf wetness duration and temperature. Climatic 

indicators of infection risk were then deduced for the purposes of the study: the number of infectious days throughout a given period, the global risk of 

infection throughout a period as a function of the number of infectious days and the mean infection efficiency during these days, and the length and date of 

the longest sequence without infection during a given period. 

2.2. Climate scenarios covering the recent past and future (1950-2100) 

Present and future climatic conditions (between 1950 and 2100) were performed using the ALADIN-Climat regional climate model nested within the global 

ARPEGE-Climat model (Déqué, 2010). Three periods were simulated: the recent past (“RP”: 1976-2005), near future (“NF”: 2021-2050) and far future (“FF”: 

2070-2099) periods, applying CO2 forcing from the IPCC emission scenario (AR5) (Moss et al., 2010). Two CO2 RCP emission scenarios were used as developed 

by the IPCC (2014). We selected a pathway for the stabilization of radiative forcing by 2100, RCP 4.5, and a scenario of comparatively high greenhouse gas 



emissions, RCP 8.5, projecting a rise in global mean surface temperatures from 1.5°C to 4.8°C accompanied by an average atmospheric CO2 concentration 

ranging from 650 ppm to 1370 ppm by the late-21st century (Van Vuuren et al., 2011). A Quantile-Mapping approach was applied as a statistical downscaling 

method (Déqué, 2007) to the three selected locations in order to assess climate change, climate variability and extreme events at a regional scale. This non-

parametric statistical method consists in calibrating a correction function for simulated variables as a conditional probability of observed data on the same 

variables (Déqué, 2007; Terray et al., 2010). Climate models usually produce an estimate of future daily temperatures, relative humidity and rainfall. Hourly 

values for temperature, rainfall and relative humidity were therefore generated from these daily climatic variables, following the approach described by 

Launay et al. (2014). With respect to air temperature, hourly assessments were obtained using a sinusoidal law with maximum and minimum temperatures 

taken as the temperatures at 14:00 universal time (UT) and sunrise, respectively. Daily precipitation amounts were disaggregated into hourly values using a 

statistical approach based on concepts proposed by Allcroft and Glasbey (2003). The method relies on a Gaussian latent process, which is transformed into a 

precipitation process with a power-exponential function. This transformation function provided an accurate fit for both the body and the heavy tail of the 

precipitation distribution, in two sites representative of the northern France climatic variability (Allard and Bourotte, 2014). Relative humidity was estimated 

from vapor pressure values deduced from hourly air and dew point temperatures. 

2.3. Sites representative of French wheat production areas 

The study was performed on three sites representative of different French climates and covering the northernmost to the southernmost wheat production 

areas : Estrées-Mons and Versailles correspond to the degraded oceanic climate of the North and Central plains respectively, while Bordeaux has a pure 

oceanic climate in the southwest part of the country (Joly et al., 2010). Furthermore, Estrées-Mons, Versailles and Bordeaux offered contrasted conditions 



regarding temperature and surface wetness durations for this study. A climatic situation was considered as a combination of one site (Estrées-Mons, Versailles 

or Bordeaux) with one RCP scenario (4.5 or 8.5). 

2.4. Models 

Simulating surface wetness duration 

Two models and modeling approaches were chosen to simulate leaf wetness duration during this study. First, the MEDHI statistical model (Launay et al., 2014) 

consists of a decision tree based on climatic conditions at current and previous hours, accounting for relative humidity, rain and the previous state of leaf 

wetness duration. It is an hourly model based on several hypotheses: (i) rainfall over 0.5 mm during the current hour leads to wetness, (ii) if no rainfall, wetness 

is conditioned by the relative humidity prevailing during the current hour (compared with given thresholds) and the amount of rain or wetness during the 

previous hour, (iii) wetness also depends on the time of day and relative humidity thresholds, and (iv) the thresholds of relative humidity are calculated by 

optimization to find the best values that increase overall model performance. Second, the physical Plata model is a one-layer mass and energy transfer model 

(Lhomme and Jimenez, 1992; Roche et al., 2008) within a family of physical models devoted to simulate condensation and evaporation of liquid water (Magarey 

et al., 2005; Huber & Gillespie, 1992). The variables required to simulate leaf temperature and wetness are the following: air temperature, relative humidity, 

wind speed, global radiation, rainfall (at a reference level above ground). Parameters of importance to estimate are the cloud cover and long-wave sky 

radiation, the magnitude of which is important during the nocturnal periods.  



Simulating infection efficiency 

Three models were selected to simulate the infection efficiency of brown rust of wheat from leaf wetness duration and air temperature during wetness 

periods. Firstly, two continuous relationships established by de Vallavieille-Pope et al. (1995) and Launay et al. (2014) were implemented. Both models have 

close formalisms, built on surface responses to the temperature and leaf wetness duration. However the model developed by de Vallavieille-Pope and 

colleagues (so-called “Pope model”) is very flexible to parameterize, including parameters without biological meaning, and thus requires considerable 

experimental data to ensure its optimization. On the other hand, the ClimInfeR model is a generic model that is easier to parameterize because it relies on 

biological parameters such as cardinal temperatures, but has a plateau response function to temperature that causes a lack of continuity at each temperature 

threshold.  

In the Pope model the influence of temperature during wetness periods is described using a beta function with minimal and maximal temperatures as the 

parameters (Eq.1). The influence of continuous leaf wetness duration on relative infection efficiency is thus calculated as the product of maximal infection 

and a Richards function of leaf wetness duration (Eq.2) (Fig.1.a).  

𝐼𝐸𝑚𝑎𝑥(𝑇) = 𝑝((𝑇 − 𝑇𝑚𝑖𝑛) (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)⁄ )𝑛((𝑇𝑚𝑎𝑥 − 𝑇) (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)⁄ )𝑚               (1) 

With   𝑝 = (𝑛 +𝑚)𝑛+𝑚 (𝑛𝑛𝑚𝑚)⁄  

𝐼𝐸(𝐿𝑊𝐷, 𝑇) = 𝐼𝐸𝑚𝑎𝑥(𝑇) (1 − 𝑒𝑥𝑝(−𝑏(𝐿𝑊𝐷 − 𝐿𝑊𝐷𝑚𝑖𝑛)))  𝑓𝑜𝑟 𝐿𝑊𝐷 ≥ 𝐿𝑊𝐷𝑚𝑖𝑛      (2) 



where T is the air temperature during the period of leaf wetness LWD, Tmin and Tmax are respectively the minimum and maximum temperatures for infection 

(2.0 and 30.0°C respectively), LWDmin is the minimal dew period necessary for infection and b is the initial infection rate. LWDmin and b varied with 

temperature according to non-linear regressions (LWDmin = 18.74 - 1.58T + 4e-2T2; b = 0.1648 - 1.3269e-2T + 9.1429e-4T2). IE is the relative infection efficiency, 

with values between 0 and 1, LWD is supposed to be continuous (not interrupted), and n and m are adjusted parameters (0.75 and 0.9 respectively).  

In the model developed by Launay and colleagues (“ClimInfeR model”) the influence of temperature during wetness periods is described using a linear-plateau 

function with ascending and descending portions on either side of the optimal plateau (Eq.3). Temperature influences the upper limit of the response to LWD, 

which is approached as the period of wetness is extended, as proposed by Duthie (1997) using a Weibull equation (Eq.4) (Fig.1.b).  

𝐼𝐸𝑚𝑎𝑥(𝑇) =

{
 
 

 
 

0 𝑇 ≤ 𝑇𝑚𝑖𝑛 𝑎𝑛𝑑 𝑇 ≥ 𝑇𝑚𝑎𝑥
1 𝑇𝑜𝑝𝑡1 ≤ 𝑇 ≤ 𝑇𝑜𝑝𝑡2

1

(𝑇𝑜𝑝𝑡1−𝑇𝑚𝑖𝑛)
(𝑇 − 𝑇𝑚𝑖𝑛) 𝑇𝑚𝑖𝑛 < 𝑇 < 𝑇𝑜𝑝𝑡1

1

(𝑇𝑜𝑝𝑡2−𝑇𝑚𝑎𝑥)
(𝑇 − 𝑇𝑚𝑎𝑥) 𝑇𝑜𝑝𝑡2 < 𝑇 < 𝑇𝑚𝑎𝑥 }

 
 

 
 

                  (3) 

𝐼𝐸(𝐿𝑊𝐷, 𝑇) = 𝐼𝐸𝑚𝑎𝑥(𝑇)(1 − 𝑒𝑥𝑝{−[𝐴(𝐿𝑊𝐷 − 𝐿𝑊𝐷0)]
𝐵})                              (4) 

where T is the air temperature during the period of leaf wetness LWD, and Tmin, Topt1, Topt2 and Tmax are the minimum, first optimum, second optimum 

and maximum temperatures for infection (1.86, 14.54, 18.36 and 31.0°C respectively). IEmax(T) is the maximal infection efficiency given the temperature T, 

i.e. the upper asymptote in eq.4, A is the intrinsic rate of increase (0.11°C), LWD0 is the length of delay before the initial response (set to nil, based on the 



assumption that infection efficiency would respond immediately, although very slowly, even for a short LWD), and B locates the inflection point on the 

response axis (here the 3.12 value means that the curve infects when the response is approximately one-half the upper limit).  

Finally, the simple generic infection model developed by Magarey (2005) estimates the wetness duration required to achieve a critical disease threshold at a 

given temperature (Eq.5&6). In the framework of this study, this model (“Magarey model”) was used to determine if, given the daily wetness duration and 

the mean temperature during this wetness period, a day was infectious (infection efficiency higher than a 5% threshold) or not (Fig.1.c).  

𝑓(𝑇) = {(
𝑇𝑚𝑎𝑥−𝑇

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
) (

𝑇−𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
)
(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛) (𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡)⁄

𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥

0 𝑇 < 𝑇𝑚𝑖𝑛 𝑎𝑛𝑑 𝑇 > 𝑇𝑚𝑎𝑥

}      (5) 

𝐿𝑊𝐷(𝑇) = 𝐿𝑊𝐷𝑚𝑖𝑛 𝑓(𝑇) ≤ 𝐿𝑊𝐷𝑚𝑎𝑥⁄                                                                (6) 

where T is the air temperature during the period of leaf wetness LWD required to reach 5% of infection efficiency. f(T) is the temperature response function 

where Tmin, Topt, and Tmax are the minimum, optimum and maximum temperatures for infection (2.6, 25 and 30°C respectively). LWDmin is the minimum 

value of leaf wetness duration required to reach the 5% threshold of infection efficiency at any temperature (5 hours), and LWDmax is a parameter providing 

an upper boundary on the value of LWD(T) (16 hours).  

All the infection model parameters for leaf rust of wheat had been adjusted previously by the authors (de Vallavieille-Pope et al. 1995 for the Pope model, 

Launay et al. 2014 for the ClimInfeR model and Magarey 2005 for the Magarey model).using a statistical comparison of model predictions and observations 

based on the published data from de Vallavieille-Pope et al. (1995). 



Combinations of models 

Six modeling combinations were implemented: the two wetness duration models (Medhi and Plata) were coupled to the three infection models (Pope, 

ClimInfeR and Magarey). Thus the infection models were fed with daily wetness durations and daily mean temperatures during wetness periods. The Pope 

and ClimInfeR models provided daily infection efficiencies, while the Magarey model estimated the infectious nature of each day. The six model combinations 

were run for RCP scenarios 4.5 and 8.5, from 1950 to 2100, concerning the three French sites at Estrées-Mons, Versailles and Bordeaux (Fig.1). 

2.5. Key variables studied 

In order to evaluate the impact of climate change on the evolution of leaf rust of wheat, we considered the following climatic indicators of infection risk: 

• The number of infectious days throughout a period NID and NID5: a day was considered to be “infectious” when the infection efficiency simulated by 

the infection model (Pope, ClimInfeR or Magarey) was not null (NID) or was higher than 5% (NID5). 

• The global risk of infection (GIR) throughout a period was the number of infectious days (NID as previously described) multiplied by the mean infection 

efficiency during these days; this integrative indicator would thus take account of both the frequency and intensity of infection throughout a period. The 

GIR was equivalent to a number of days of fully infection, i.e. with 100% infection efficiency.  

• The length and date of the longest sequence without infection throughout a period, with LS0I being the number of successive days, and DS0I being the 

median date of this sequence during which infection efficiency simulated by the infection model was lower than 5%. 

We then examined which climatic factor - either leaf wetness duration (LWD) or air temperature during the period of wetness T° - is best linked to future 

trends of leaf rust evolutions as predicted by models.  



During this study, infra-annual and sliding periods were considered to calculate the indicators described above. Indeed, previous studies on the impacts of 

climate change on fungal crop diseases indicated the need to analyze the results at a sub-annual or even monthly scale given their intra-annual variability 

(Launay et al., 2014; de Vallavieille-Pope et al., 2018; Salinari et al., 2006; Skelsey et al., 2016). Moreover, in this study we did not consider host phenological 

stages by themselves, even though they are expected to shift with climate change (Bertin, 2008). However, we accounted for this phenomenon by calculating 

our climatic indicators over sliding periods, thus enabling analysis of the gap between infection peaks.  

Two types of period were thus considered to calculate the climatic indicators NID5, GIR, LS0I, DS0I, LWD and T. Firstly, NID5 and GIR were calculated throughout 

30-day sliding periods: these values at a given date were therefore calculated over a 30-day period around this median date. Secondly, all the climatic indicators 

were calculated over four seasons: their autumn value was calculated between October 15 and January 14, the winter value between January 15 and April 14, 

the spring value between April 15 and July 14 and the summer value between July 15 and October 14. The first three periods corresponded to the wheat crop 

cycle while the summer period corresponded to the fallow crop period, thus helping to highlight adaptive rules to deal with the risk of wheat rust. The NID5 

seasonal value was the cumulated number of days with at least 5% infection efficiency, while the GIR seasonal value was calculated as the cumulated number 

of infectious days (infection efficiency not null) throughout the season, multiplied by the average infection efficiency during these days, so that it was 

equivalent to the cumulated number of days of full infection (100% infection efficiency). The seasonal values of LS0I and DS0I were respectively the longest 

number of successive days and the median date of this sequence during which infection efficiency was lower than 5%. 



2.6. Statistical analysis and plots  

Our objective was proposed to explain variations of the NID5, GIR, LS0I, DS0I, LWD and T climatic indicators as a function of natural spatial variations in climate, 

the discrepancies between the model formalisms used to calculate these climatic indicators, and climate change. We used linear models (for the LWD and T 

indicators) and generalized linear models (for all other climatic indicators), with the site location (Estrées-Mons, Versailles or Bordeaux), combinations of 

models (the Medhi and Plata leaf wetness duration models combined with the Pope, ClimInfeR and Magarey infection models) and the climatic period (recent 

past period “RP”: 1976-2005, near future period “NF”: 2021-2050 and far future period “FF”: 2070-2099) as explanatory variables. Interaction terms were also 

included.  

With respect to LWD and T, normality and homoscedasticity assumptions for the linear fitted models were verified using the D’Agostino and Bartlett tests, 

respectively (R package moments, Komsta and Novomestky, 2015). When significant differences were observed between climatic periods, multiple 

comparisons of means were performed using Tukey’s honestly significant difference (HSD) procedure.  

On the other hand, the NID5, GIR, LS0I and DS0I indicators were log10-transformed to meet normality assumptions and we assumed a Poisson error structure 

when fitting the associated generalized linear models.  We used post hoc tests to investigate pairwise differences between climatic periods using least-squares 

means (the lsmeans function of lsmeans R package, Lenth 2016). All analyses were performed using the R statistical platform, version 3.5.0 (R Core Team, 

2018).  

To improve visualization of the impacts of the models and CC on infection efficiency, absolute or relative values for the indicators NID5 (number of infectious 

days with infection efficiency > 5%), GIR (infection efficiency x number of infectious days), LS0I and DS0I (length and date of the longest sequence without 

infection) were used. In the last case, relative values of the V variable were calculated as the V/Vmax ratio where Vmax is the maximum value of V provided 



by the same combination of models over the same season, except for temperature for which the relative value was calculated as the (T-Tmin)/(Tmin-Tmax) 

ratio, with Tmin and Tmax being the minimum and maximum temperature values, respectively 

3. Results 

We first presented the mean annual variations in predicted values of NID5, GIR and LWD as well as their evolution over the year. Then we analyzed statistically 

their variations according to the season, using either GLM or LM in the case of NID5 and GIR, or LWD respectively. In this part, infection efficiency and LWD 

models were combined to evaluate whether, given the models’ uncertainties cumulated, a same tendency in response to CC was found. We then focused on 

the date and length of periods without infection, in particular the fallow period in summer related to the future inoculum pressure. Finally, we identified the 

main climatic factors explaining these evolutions in seasonally trends.  

3.1. Overall evolution over the year of the frequency and intensity of the climatic infection risk from 1950 to 2100 

The absolute values of the NID5 and GIR climatic indicators calculated over 30-day sliding periods varied considerably depending on the model combinations 

used, even more than between the present and future periods or between RCP scenarios. However, the same trends could be observed in the future, 

whichever the models were used, and were more severe under RCP 8.5 than with the RCP 4.5 scenario. 

The absolute values for climatic indicators vary considerably between different model combinations  



On the annual scale, the NID5 (numbers of infectious days with an infection efficiency > 5%) mean value for all climatic situations (the three French sites and 

two RCP scenarios), was assessed much more lower with the Magarey model than with Pope, which in turn was also more optimistic than ClimInfeR (NID5 

higher) with mean values of around 3.7 for Magarey, 11.7 for Pope and 14.1 days for ClimInfeR. Moreover, when comparing the NID5 simulations according 

to models of leaf wetness duration, Medhi produced lower NID5 estimates than Plata, with mean values of around 9.0 and 10.6 days for the Medhi and Plata 

models respectively. As for the GIR indicator (global risk of infection), differences between the simulations by different models still remained meaningful but 

to a lesser extent; the Magarey model was excluded because it could not calculate GIR values. The GIR annual mean values obtained showed 1.4 days of full 

infection more with Pope (mean around 5.5 days) than with ClimInfeR (mean around 6.9 days). As for NID5, lower GIR values were found with the Medhi 

model of wetness duration than with Plata (mean values of around 5.7 and 6.6 days of full infection, respectively). Finally, NID5 forecasts could be four times 

higher depending on the models used and their combinations, while GIR values varied by around 10% with different model combinations. More serious risks 

were simulated using the Pope and ClimInfeR infection models and Plata wetness duration model.  

Figure 2 shows an example of the demonstrative climatic situation at the Versailles site under the RCP 8.5 scenario (other similar situations are not shown). 

The daily NID5 (a) or GIR (b) moving values from 1950 to 2100 (x-axis), from January 1 to December 31 (y-axis), are thus shown with figures indicated from 

low values (blue) to high values (red). In this specific climatic situation, NID5 values (Fig. 2a) as simulated by the Magarey model remained between 0 and 15 

days most of the year (on the y-axis) throughout the 1950-2100 period (x-axis), while the NID5 values simulated by ClimInfeR often exceeded 15 days. 

Differences between the estimates generated by Medhi and Plata appeared to be less discriminating than between infection models. However, the Plata 

model produced higher estimates of leaf wetness durations (Appendix A, Table e), resulting in greater infection efficiencies than with Medhi for a given 

infection model. On Fig.2b, the GIR values simulated by ClimInfeR were on average higher than those simulated by the Pope model. Furthermore, GIR values 



appeared to be strongly dependent of NID5 values (Fig.2a), suggesting that GIR variability is more dependent on the number of infectious days than on 

infection efficiency.   

The same trends may be observed in the future, whichever models are used. 

Whichever models were used to calculate NID5 and GIR, the trends observed were the same: future climate conditions extended the mid-year period without 

infection (summer), while increasing the infection frequency during autumn and winter (from December to March). Whatever the site and the RCP scenario, 

and as shown regarding the demonstrative situation of the Versailles site and the RCP 8.5 scenario on Fig.2a&b, the same temporal shift was observed, with 

hot spots of both NID5 and GIR occurring sooner in the wheat crop cycle in autumn and winter (between DOY 330 and 60 the year after) and ceasing sooner 

in spring, so that summer periods with little or no infection grew consistently longer in the future (around DOY 200, i.e. mid-July). The results that follow in 

this paper are therefore split by seasonal periods (autumn, winter, spring and summer).  

3.2. Evolution of the frequency and intensity of the climatic infection risk in future seasons 

The seasonal climatic indicators NID5 and GIR displayed similar trends in the future, with climate change being one of the factors significantly explaining their 

evolution, alongside the combination of models used to calculate them and the site (Table 1).  

During the autumn and winter, NID5 and GIR could be expected to increase from the NF whatever the RCP scenario (Table 2) or site (Appendix A in 

Supplementary Materials, Table a). They would continue to increase in the FF, especially during the winter, under both RCP scenarios, while GIR would stagnate 

in the FF during the autumn under RCP scenario 4.5 (Table 2 and Appendix A, Table b). From mid-October to mid-April (autumn and winter periods as defined 



above) the total number of days with more than 5% of infection efficiency NID5 may increase by about 9 to 20 days between the recent past and far future, 

depending on the site (Appendix A, Table a). At the same time, and during the same calendar period, the total equivalent number of days with full infection 

GIR should increase from 9 to 16 days, revealing that an increase in both the frequency and intensity of leaf rust infection during the first part of the wheat 

crop cycle could be feared in the future because of climate change.  

During the spring, NID5 and GIR could be expected to increase in the near future under both RCP scenarios, and then decrease in the far future (Table 2), 

leading to a situation similar to that in the recent past under RCP scenario 4.5, and to a less risky climatic situation in the far future under RCP scenario 8.5 

(with 2 to 6 fewer infectious days, Appendix A, Tables a and b).  

During the summer, the NID5 and GIR should decrease in the far future whatever the site and RCP scenario, and even in the near future under RCP scenario 

8.5 (Table 2). During the fallow crop period, between mid-July and mid-October, the cumulated period favorable to infection (NID5) could thus decrease by 

about one month under the most pessimistic scenario, RCP 8.5. 

Finally, the climatic risk of infection would not evolve in the same way at different sites: in the south (Bordeaux), the number of NID5 infectious days in the 

autumn and winter would increase less than in the northern part of the country (Versailles, and even more Estrées-Mons), while during the summer the 

number of days equivalent to GIR full infection would decrease to a greater extent (Appendix A, Tables a and b).  

To illustrate these general trends, the mean seasonal values for the NID5 and GIR indicators over the four seasons in the near and far future were compared 

to the recent past (Fig.3) at the intermediate site in Versailles and under the most meaningful scenario RCP 8.5. 



3.3. Evolution of the length and date of periods without infection 

The length of autumn and winter periods without infection LS0I could be expected to decrease significantly, both in the near future in autumn under both 

RCP scenarios, as in winter for the RCP scenario 8.5 only (Table 2). The longest sequences of successive days without infection would thus be shortened by 

about 1 to 9 days during the first part of the wheat crop cycle, depending on the site and RCP scenario. The length of spring periods without infection would 

only increase under scenario RCP8.5 in the far future. However, summer periods without infection would significantly increase by between 6 and 12 days, in 

the near future, whatever the site and scenario (Appendix A, Table c). 

The median DS0I dates of winter periods without infection would be advanced in the near future and postponed in the far future, while spring periods without 

infection should be postponed in the far future, under both RCP scenarios (Table 2). In the far future, this delay would reach one week in winter and two 

weeks in spring under scenario RCP 8.5 (Appendix A, Table d). No general and significant trend could be highlighted regarding the autumn and summer periods, 

while marked heterogeneity might be observed between sites and RCP scenarios.  

To illustrate these general trends, the mean seasonal values for the LS0I and DS0I indicators over the four seasons in the near and far future were compared 

with the recent past (Fig.4) at the intermediate site in Versailles and under the most meaningful scenario, RCP 8.5. 

3.4. Evolutions affecting temperature and wetness duration may explain all these simulated trends 

Temperatures during wetness periods are expected to increase significantly (Table 3) from the near future whatever the season and RCP scenario, and to 

stagnate in autumn in the far future under scenario RCP 4.5, while they should continue to increase during other seasons under both scenarios (Table 4). Leaf 



wetness duration should decrease significantly (Table 3) in the far future in all seasons according to scenario RCP 8.5, and only in autumn and summer under 

scenario RCP 4.5. Warming in the autumn and winter would be the main driver of higher values for GIR indicators, as shown in Fig.5a and Fig.5b, which shows 

GIR evolutions from the recent past to the far future versus changes to mean temperatures during wetness periods, over different sites and RCP scenarios. 

This also explains the reduction in the length of LS0I periods without infection, particularly in winter (Fig.5c). Conversely, shorter leaf wetness durations in 

THE spring and summer would explain both the lower GIR values (Fig.5d and Fig.5e) and shorter periods without infection (Fig. 5f).  

4. Discussion 

During this study, our aim was to estimate changes to the climatic risk of infection with respect to leaf rust of wheat using different model combinations and 

modelling approaches. Our hypothesis was that despite the different models implemented, the impacts of climate change on wheat disease would be similar. 

Our findings revealed that the absolute values of the simulated climatic indicators varied considerably depending on the model combinations employed, even 

more than between present and future periods or RCP scenarios. However, the same trends were observed for the future, with climate change being a 

significant explanatory variable for evolutions of the six climatic indicators we simulated. These indicators characterized the intensity and frequency of leaf 

rust infection, the length and calendar positioning of the longest sequences without infection, and the leaf wetness duration and air temperature during 

wetness periods. This multimodel ensemble approach is common in the literature on meteorology and atmospheric sciences, and has already been used in 

crop modelling, particularly to compare crop model performance when assessing yield under various abiotic stresses (Wallach et al., 2018). But to our 

knowledge this is the first time that this approach has been implemented with respect to crop health. Although only a few models were involved in this study, 

they were markedly different and based on statistical or physical formalisms, continuous or threshold response functions. This partly explains the broad range 



of simulated values obtained for the six climatic indicators. In our case it was therefore not relevant to use the mean value of simulations from different model 

combinations as a predictor (Martre et al., 2015). However, this combined approach did produce some homogeneous trends regarding the future evolution 

of leaf rust of wheat, thus reinforcing confidence in the robustness of these results.   

We were able to show that both the frequency and intensity of leaf rust infection would increase in France during the first part of the wheat crop cycle, 

whatever the RCP scenario. The number of infectious days between mid-October and mid-April would therefore increase by almost 1 to 3 weeks, depending 

on the site and RCP scenario. By contrast, the climatic risk of infection should stagnate or diminish in the far future during the spring and summer periods, 

while a temporary rise in the frequency of infection might occur in the spring in the near future. During the fallow period between mid-July and mid-October, 

the reduction in the cumulated period favorable to infection could reach up to one month. Moreover, evolutions in the southern part of France would differ 

from those in the north, with the frequency and intensity of infection increasing to a lesser extent in autumn and winter, and decreasing to a greater extent 

in the summer. This could be related to the warmer climate in southern France, with autumn and winter temperatures already closer to the optimum infection 

temperature than in the north, and summer temperatures reaching the maximum temperature for infection in the far future.    

These findings confirm and reinforce previous findings which forecast a greater and earlier climatic risk of infection during the winter (Junk et al., 2016; Launay 

et al., 2017). Moreover, we analyzed the seasonality of the disease risk, and were thus able to reveal contrasted trends during the year, with a significant and 

general increase in the climatic risk during the cold (but milder) autumn and winter seasons, and a distinct drop during summer. Both tendencies could be 

explained by warmer autumns and winters and dryer summers. In addition, we also considered periods without an infection risk in terms of their length and 

date. As the length of the longest sequences of days without infection obviously evolved contrary to the frequency of infection risk, the date of such “safe” 



periods was shown to be delayed until the end of spring, shifting from mid-May to early-June. When implementing the six combinations of leaf wetness 

duration and infection efficiency models, we noted marked differences between surface response models on the one hand (Pope and ClimInfeR) and the 

Magarey threshold model on the other. This could be explained by the infection values of less than 5% simulated by the Magarey model for temperatures 

below 16°C and leaf wetness durations shorter than 16 hours (Fig.1), while both the Pope and ClimInfeR models simulated higher infection efficiencies for the 

same range of temperatures and wetness durations. A significant number of days were thus considered to be non-infectious by the Magarey model, as shown 

in Fig. 6. Even if the same experimental data were used to calibrate the three models (de Vallavieille-Pope et al., 1995), the predicted risk of infection differed 

between the models for a wide (and common) range of temperatures and wetness durations. As previously noted for yellow rust of wheat, Puccinia striiformis 

f.sp. tritici (de Vallavieille-Pope et al., 2018), the parameterization of response functions relative to infection efficiencies could be improved for low (or even 

moderate) temperatures, thanks to additional experimental data.  

Certain areas of uncertainty still need to be investigated. Rainfall forecast are crucial when estimating leaf wetness duration, but they remain very unreliable 

and climate models may produce markedly different predictions. In the summer, the ALADIN-Climat regional climate model we used predicted an average 

reduction of 0.38 mm.day-1 in France between [1976-2005] and [2071-2100] under the RCP 8.5 scenario while the WRF (Weather Research and Forecasting) 

model proposed by the US National Center for Atmospheric Research predicted an overall increase of the same scope (+0.32mm.day-1) (Jouzel et al., 2014). 

However, the two regional climate models Aladin-Climat and WRF agreed on a slight increase in average precipitation in summer and winter by 2050, and an 

increase in winter precipitation by the end of the century. The two models thus simulated small changes in the percentages of extreme precipitation, and 

these results were within the low range of the European multi-model set (Jouzel et al., 2014). 



Recent studies have demonstrated the adaptive response of pathogens to temperature achieved by their intra-specific diversity (de Vallavieille-Pope et al., 

2018; Mariette et al., 2016). This acclimation of pathogens to temperature, especially for those with a broad geographical distribution and re-emerging 

worldwide, suggests that we must take account of these patterns of local adaptation to climate in order to update the parameterization of our infection 

models. In this way, the invasive capacity and epidemic potential of leaf rust of wheat would be better explained and predicted in the future. 

Finally, if the seasonality of the infection risk shifts, host phenology may also move because of a warming climate, causing changes to host-pathogen 

synchronism (Caubel et al., 2017). At the same time, crop adaptation strategies to climate change (mainly concerning abiotic stresses alone) will result in new 

agricultural patterns, challenging our ability to identify the levers for adaptation that will sustain production under future abiotic stresses while minimizing 

sanitary risks (Juroszek and von Teidemann, 2015; Hulme, 2017). In this context, it will be necessary to adopt a systemic approach that takes account of both 

the direct and indirect impacts of climate change (through host phenology and cropping system adaptations) on the evolution of crop disease. The 

methodology we developed during this study could constitute such a tool, providing useful information for stakeholders looking for warning signals and 

agronomic levers to manage crop health. For instance, in the case of our leaf rust of wheat pathosystem, the indicators simulated suggested that survival of 

the pathogen might be endangered during the fallow period. To take advantage of this climatic opportunity, farmers could grow crops such as legumes that 

compete with grass weeds and cereal volunteers, and could potentially provide other ecological services (Vrignon-Bregnas et al., 2018). Similarly, more 

favorable conditions for infection in the autumn and winter were demonstrated with a certain degree of confidence, thanks to the implementation of several 

models. Account could be taken of these findings when considering sowing dates in the context of adaptation strategies so as to avoid later heat and drought 

stress during the grain filling stage. Our climatic indicators of infection risk completed with climatic indicators relying on other epidemic phases such as survival 

or latency, would therefore be relevant in multicriteria analyses to evaluate the performance of adaptive strategies (Ravier et al., 2015). 



 

5. Conclusion 

By implementing six combinations of models, our study was able to offer general trends for the future evolution of the risk of leaf rust infection in the context 

of climate change. Despite the differences between the absolute infection risk values thus simulated, some important common trends were highlighted, thus 

reinforcing confidence in the robustness of the results: the climatic risk regarding both the frequency and intensity of leaf rust infection would increase in 

France during the autumn and winter seasons, and a distinct drop should be expected during the summer, enabling a longer risk-free period. Survival of the 

pathogen could thus be endangered during the fallow period, while more favorable conditions for infection in the autumn and winter will need to be 

addressed. The methodology we developed during this study, and the results we obtained on leaf rust of wheat, offer new opportunities for farmers and 

stakeholders to identify levers for adaptation that will sustain production under future abiotic stresses while minimizing sanitary risks. 
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Table 1. Type II results of analyses of climatic indicators of leaf rust of wheat: generalized linear models to test the effect of natural spatial variations 

in the climate (“Site” effect), discrepancies between the model formalisms used to calculate the climatic indicators (“Models” effect), and the 

climatic period (“Climate change” effect), under the future scenarios RCP 4.5 and 8.5. Significant effects are shown in bold. Details of the effects 

of different climatic periods are shown in Table 2. 

 

c
2 df Pr(>c2) c

2 df Pr(>c2) c
2 df Pr(>c2) c

2 df Pr(>c2) c
2 df Pr(>c2) c

2 df Pr(>c2) c
2 df Pr(>c2) c

2 df Pr(>c2)

NID5

Models 7227.6 5 <0.0001 8277.2 5 <0.0001 10627.6 5 <0.0001 11345.4 5 <0.0001 22354.5 5 <0.0001 20687.7 5 <0.0001 13109.2 5 <0.0001 11047.8 5 <0.0001

Climate change (CC) 342.8 2 <0.0001 337.1 2 <0.0001 732.4 2 <0.0001 828.3 2 <0.0001 34.7 2 <0.0001 413.8 2 <0.0001 588.6 2 <0.0001 1772.7 2 <0.0001

Site 414.2 2 <0.0001 273.4 2 <0.0001 1640.5 2 <0.0001 1387.4 2 <0.0001 475.8 2 <0.0001 511.0 2 <0.0001 366.1 2 <0.0001 493.1 2 <0.0001

Models  x CC 29.7 10 0.0010 124.0 10 <0.0001 32.2 10 0.0004 57.6 10 <0.0001 40.1 10 <0.0001 99.3 10 <0.0001 35.1 10 0.0001 191.4 10 <0.0001

Models x Site 34.9 10 0.0001 32.6 10 0.0003 65.0 10 <0.0001 59.9 10 <0.0001 60.7 10 <0.0001 104.7 10 <0.0001 218.9 10 <0.0001 274.5 10 <0.0001

CC x Site 32.3 4 <0.0001 102.7 4 <0.0001 91.5 4 <0.0001 88.1 4 <0.0001 21.0 4 <0.0001 62.4 4 <0.0001 14.8 4 <0.0001 54.4 4 <0.0001

Models x CC x Site 2.0 20 1 3.0 20 1.0000 7.9 20 0.9925 11.6 20 0.9299 14.0 20 0.8291 17.4 20 0.6275 12.0 20 0.9170 25.8 20 0.1729

GIR

Models 475.8 3 <0.0001 532.8 3 <0.0001 879.1 3 <0.0001 954.8 3 <0.0001 286.5 3 <0.0001 250.5 3 <0.0001 129.9 3 <0.0001 116.2 3 <0.0001

Climate change (CC) 333.2 2 <0.0001 752.4 2 <0.0001 366.1 2 <0.0001 562.4 2 <0.0001 25.5 2 <0.0001 321.7 2 <0.0001 228.7 2 <0.0001 828.3 2 <0.0001

Site 581.5 2 <0.0001 440.0 2 <0.0001 979.0 2 <0.0001 902.0 2 <0.0001 337.4 2 <0.0001 346.2 2 <0.0001 220.3 2 <0.0001 245.8 2 <0.0001

Models  x CC 1.8 6 0.9356 1.2 6 0.9788 2.7 6 0.8425 7.0 6 0.3245 9.4 6 0.1514 16.5 6 0.0111 4.8 6 0.5691 15.9 6 0.0144

Models x Site 3.2 6 0.7829 3.5 6 0.7381 28.2 6 <0.0001 31.9 6 <0.0001 21.3 6 0.0016 27.4 6 0.0001 21.9 6 0.0013 21.8 6 0.0013

CC x Site 10.1 4 0.0384 46.0 4 <0.0001 17.5 4 0.0016 17.8 4 0.0014 19.9 4 0.0005 30.7 4 <0.0001 10.8 4 0.0293 24.6 4 <0.0001

Models x CC x Site 0.2 12 1.0000 0.6 12 1.0000 0.7 12 1.0000 0.8 12 1.0000 1.8 12 0.9997 2.1 12 0.9992 0.6 12 1.0000 0.9 12 1.0000

LS0I

Models 1400.3 5 <0.0001 1567.1 5 <0.0001 6128.6 5 <0.0001 6596.2 5 <0.0001 14816.0 5 <0.0001 13343.2 5 <0.0001 6708.9 5 <0.0001 6039.3 5 <0.0001

Climate change (CC) 243.9 2 <0.0001 188.6 2 <0.0001 392.3 2 <0.0001 196.2 2 <0.0001 2.3 2 <0.0001 95.5 2 <0.0001 555.4 2 <0.0001 916.0 2 <0.0001

Site 210.0 2 <0.0001 123.9 2 <0.0001 710.6 2 <0.0001 446.8 2 <0.0001 70.6 2 <0.0001 57.5 2 <0.0001 362.9 2 <0.0001 310.7 2 <0.0001

Models  x CC 12.8 10 0.2374 78.9 10 <0.0001 181.0 10 <0.0001 277.0 10 <0.0001 21.4 10 0.0188 167.3 10 <0.0001 256.1 10 <0.0001 572.6 10 <0.0001

Models x Site 38.3 10 <0.0001 67.1 10 <0.0001 228.2 10 <0.0001 169.3 10 <0.0001 148.9 10 <0.0001 141.6 10 <0.0001 154.9 10 <0.0001 300.9 10 <0.0001

CC x Site 60.1 4 <0.0001 85.7 4 <0.0001 20.6 4 0.0004 132.4 4 <0.0001 30.8 4 <0.0001 7.2 4 0.1252 20.7 4 0.0004 28.3 4 <0.0001

Models x CC x Site 9.8 20 0.9715 9.6 20 0.9743 22.7 20 0.3040 51.2 20 0.0002 56.6 20 <0.0001 87.4 20 <0.0001 49.1 20 0.0003 79.8 20 <0.0001

DS0I

Models 7851.3 5 <0.0001 9716.7 5 <0.0001 952.5 5 <0.0001 905.0 5 <0.0001 100.4 5 <0.0001 140.7 5 <0.0001 13.9 5 0.0161 16.1 5 0.0065

Climate change (CC) 4.2 2 0.1235 18.0 2 0.0001 297.7 2 <0.0001 277.7 2 <0.0001 123.0 2 <0.0001 698.1 2 <0.0001 8.2 2 0.0162 5.8 2 0.0537

Site 19.0 2 <0.0001 135.1 2 <0.0001 74.7 2 <0.0001 94.7 2 <0.0001 24.6 2 <0.0001 8.4 2 0.0153 11.5 2 0.0032 10.4 2 0.0054

Models  x CC 104.7 10 <0.0001 335.8 10 <0.0001 62.2 10 <0.0001 107.1 10 <0.0001 147.7 10 <0.0001 303.5 10 <0.0001 11.1 10 0.3508 9.9 10 0.4497

Models x Site 74.2 10 <0.0001 512.9 10 <0.0001 31.4 10 0.0005 65.1 10 <0.0001 18.5 10 0.0473 21.5 10 0.0179 2.5 10 0.9902 13.5 10 0.1982

CC x Site 104.2 4 <0.0001 43.7 4 <0.0001 9.1 4 0.0584 24.3 4 <0.0001 15.0 4 0.0047 22.6 4 0.0002 7.8 4 0.0975 21.4 4 0.0003

Models x CC x Site 343.6 20 <0.0001 284.6 20 <0.0001 83.1 20 <0.0001 69.1 20 <0.0001 61.1 20 <0.0001 53.9 20 <0.0001 8.4 20 0.9893 9.8 20 0.9721

RCP 4.5 RCP 8.5

Autumn Winter

RCP 4.5 RCP 8.5

Spring

RCP 4.5 RCP 8.5

Summer

RCP 4.5 RCP 8.5



Notes: Climatic indicators are defined as follows: NID5 is the cumulated number of infectious days (infection efficiency higher than 5%) throughout autumn, winter, spring or 

summer; GIR is the average global risk of infection calculated as the number of infectious days (NID5) multiplied by the mean infection efficiency during these days; LS0I is 

the cumulated number of successive days, and DS0I is the median date of this sequence during which the infection efficiency simulated by the infection model is lower than 

5%. 



Table 2. Pairwise comparison of the seasonal effects of climatic periods (recent past period 

“RP”: 1976-2005; near future period “NF”: 2021-2050 and far future period “FF”: 2070-2099) 

on climatic indicators for leaf rust of wheat under scenarios RCP 4.5 and 8.5.  

 

Climatic periods

Estimate SE df T ratio P Estimate SE df T ratio P

NID5

Autumn RP vs.  NF -0.19 0.01 Inf -17.59 <0.0001 -0.12 0.01 Inf -11.26 <0.0001

RP vs.  FF -0.11 0.01 Inf -10.37 <0.0001 -0.15 0.01 Inf -13.30 <0.0001

NF vs.  FF 0.08 0.01 Inf 7.16 <0.0001 -0.02 0.01 Inf -2.13 0.0843

Winter RP vs.  NF -0.13 0.02 Inf -7.30 <0.0001 -0.15 0.02 Inf -8.77 <0.0001

RP vs.  FF -0.34 0.02 Inf -20.43 <0.0001 -0.34 0.02 Inf -20.72 <0.0001

NF vs.  FF -0.21 0.02 Inf -13.01 <0.0001 -0.19 0.02 Inf -11.88 <0.0001

Spring RP vs.  NF -0.09 0.02 Inf -5.71 <0.0001 -0.13 0.02 Inf -8.61 <0.0001

RP vs.  FF -0.03 0.02 Inf -1.60 0.2448 0.05 0.02 Inf 2.88 0.0110

NF vs.  FF 0.06 0.02 Inf 4.21 <0.0001 0.18 0.02 Inf 11.94 <0.0001

Summer RP vs.  NF 0.02 0.01 Inf 1.65 0.2230 0.08 0.01 Inf 5.61 <0.0001

RP vs.  FF 0.23 0.02 Inf 15.22 <0.0001 0.43 0.02 Inf 27.18 <0.0001

NF vs.  FF 0.21 0.02 Inf 13.62 <0.0001 0.34 0.02 Inf 21.59 <0.0001

GIR

Autumn RP vs.  NF -0.30 0.02 Inf -16.89 <0.0001 -0.24 0.02 Inf -13.81 <0.0001

RP vs.  FF -0.26 0.02 Inf -14.65 <0.0001 -0.46 0.02 Inf -27.40 <0.0001

NF vs.  FF 0.04 0.02 Inf 2.28 0.0583 -0.22 0.02 Inf -13.92 <0.0001

Winter RP vs.  NF -0.22 0.03 Inf -7.92 <0.0001 -0.21 0.03 Inf -7.64 <0.0001

RP vs.  FF -0.48 0.03 Inf -18.33 <0.0001 -0.57 0.03 Inf -22.28 <0.0001

NF vs.  FF -0.26 0.02 Inf -10.61 <0.0001 -0.36 0.02 Inf -14.99 <0.0001

Spring RP vs.  NF -0.07 0.02 Inf -4.51 <0.0001 -0.12 0.02 Inf -7.89 <0.0001

RP vs.  FF -0.01 0.02 Inf -0.32 0.9436 0.16 0.02 Inf 10.09 <0.0001

NF vs.  FF 0.06 0.02 Inf 4.19 <0.0001 0.28 0.02 Inf 17.92 <0.0001

Summer RP vs.  NF -0.01 0.02 Inf -0.37 0.9282 0.05 0.02 Inf 2.83 0.0129

RP vs.  FF 0.22 0.02 Inf 12.90 <0.0001 0.48 0.02 Inf 26.11 <0.0001

NF vs.  FF 0.23 0.02 Inf 13.26 <0.0001 0.44 0.02 Inf 23.39 <0.0001

LS0I

Autumn RP vs.  NF 0.23 0.02 Inf 14.70 <0.0001 0.19 0.02 Inf 11.95 <0.0001

RP vs.  FF 0.07 0.02 Inf 4.79 <0.0001 0.19 0.02 Inf 11.92 <0.0001

NF vs.  FF -0.16 0.02 Inf -9.96 <0.0001 0.00 0.02 Inf 0.01 1.0000

Winter RP vs.  NF 0.04 0.01 Inf 3.42 0.0018 0.17 0.01 Inf 13.60 <0.0001

RP vs.  FF 0.26 0.01 Inf 20.42 <0.0001 0.18 0.01 Inf 14.49 <0.0001

NF vs.  FF 0.22 0.01 Inf 17.06 <0.0001 0.01 0.01 Inf 0.97 0.5978

Spring RP vs.  NF 0.00 0.01 Inf -0.10 0.9942 0.04 0.01 Inf 2.49 0.0338

RP vs.  FF -0.03 0.01 Inf -2.18 0.0745 -0.12 0.01 Inf -8.81 <0.0001

NF vs.  FF -0.03 0.01 Inf -2.09 0.0922 -0.16 0.01 Inf -11.38 <0.0001

Summer RP vs.  NF -0.09 0.01 Inf -7.53 <0.0001 -0.09 0.01 Inf -7.30 <0.0001

RP vs.  FF -0.30 0.01 Inf -25.56 <0.0001 -0.38 0.01 Inf -32.89 <0.0001

NF vs.  FF -0.21 0.01 Inf -18.22 <0.0001 -0.29 0.01 Inf -25.81 <0.0001

DS0I

Autumn RP vs.  NF -0.01 0.00 Inf -3.15 0.0046 0.02 0.00 Inf 4.81 <0.0001

RP vs.  FF -0.01 0.00 Inf -1.64 0.2279 0.00 0.00 Inf 1.18 0.4628

NF vs.  FF 0.01 0.00 Inf 1.51 0.2850 -0.01 0.00 Inf -3.63 0.0008

Winter RP vs.  NF 0.10 0.01 Inf 12.76 <0.0001 0.02 0.01 Inf 3.03 0.0069

RP vs.  FF -0.03 0.01 Inf -4.24 <0.0001 -0.10 0.01 Inf -13.00 <0.0001

NF vs.  FF -0.13 0.01 Inf -16.98 <0.0001 -0.12 0.01 Inf -16.01 <0.0001

Spring RP vs.  NF -0.01 0.01 Inf -1.83 0.1593 -0.01 0.01 Inf -1.39 0.3461

RP vs.  FF -0.05 0.01 Inf -10.32 <0.0001 -0.12 0.01 Inf -23.10 <0.0001

NF vs.  FF -0.04 0.01 Inf -8.49 <0.0001 -0.11 0.01 Inf -21.72 <0.0001

Summer RP vs.  NF 0.00 0.00 Inf 0.50 0.8704 0.01 0.00 Inf 2.25 0.0626

RP vs.  FF 0.01 0.00 Inf 2.69 0.0195 0.01 0.00 Inf 1.84 0.1575

NF vs.  FF 0.01 0.00 Inf 2.19 0.0731 0.00 0.00 Inf -0.42 0.9091

RCP 4.5 RCP 8.5



 

Table 3. Type II results of analyses of the microclimate: linear models of leaf wetness duration (LWD) and air temperature during the period of 

wetness (T) as a function of natural spatial variations in the climate (“Site” effect), discrepancies between the LWD model formalisms used to 

calculate LWD (“Models” effect), and the climatic periods (“Climatic change” effect), under future scenarios RCP 4.5 and 8.5. Significant effects 

are shown in bold. Details of the effects of different climatic periods are shown in Table 4. 

 

 

  

F df Pr(>F) F df Pr(>F) F df Pr(>F) F df Pr(>F) F df Pr(>F) F df Pr(>F) F df Pr(>F) F df Pr(>F)

LWD

LWD model 269.04 1 <0.0001 269.54 1 <0.0001 574.61 1 <0.0001 514.55 1 <0.0001 0.38 1 0.5356 0.86 1 0.3533 2.36 1 0.1254 2.83 1 0.0930

Climate change (CC) 14.85 2 <0.0001 35.57 2 <0.0001 0.54 2 0.5836 20.30 2 <0.0001 6.08 2 0.0025 46.82 2 <0.0001 30.56 2 <0.0001 94.06 2 <0.0001

Site 7.06 2 0.0009 12.17 2 <0.0001 14.52 2 <0.0001 5.49 2 0.0044 26.83 2 <0.0001 26.57 2 <0.0001 13.89 2 <0.0001 15.87 2 <0.0001

LWD model x CC 0.11 2 0.9003 1.59 2 0.2041 1.38 2 0.2514 3.20 2 0.0417 0.09 2 0.9140 0.10 2 0.9067 0.04 2 0.9652 0.17 2 0.8411

LWD model x Site 0.02 2 0.9813 0.06 2 0.9381 0.87 2 0.4181 0.85 2 0.4268 0.32 2 0.7264 0.67 2 0.5105 0.15 2 0.8602 0.10 2 0.9092

CC x Site 0.14 4 0.9668 0.68 4 0.6048 1.99 4 0.0947 0.35 4 0.8425 0.21 4 0.9312 0.42 4 0.7964 0.16 4 0.9577 0.55 4 0.7001

LWD model x CC x Site 0.01 4 0.9997 0.09 4 0.9844 0.09 4 0.9860 0.06 4 0.9935 0.04 4 0.9962 0.03 4 0.9982 0.00 4 1.0000 0.01 4 0.9998

T

LWD model 269.04 1 <0.0001 269.54 1 <0.0001 574.61 1 <0.0001 514.55 1 <0.0001 0.38 1 0.5356 0.86 1 0.3533 2.36 1 0.1254 2.83 1 0.0930

Climate change (CC) 14.85 2 <0.0001 35.57 2 <0.0001 0.54 2 0.5836 20.30 2 <0.0001 6.08 2 0.0025 46.82 2 <0.0001 30.56 2 <0.0001 94.06 2 <0.0001

Site 7.06 2 0.0009 12.17 2 <0.0001 14.52 2 <0.0001 5.49 2 0.0044 26.83 2 <0.0001 26.57 2 <0.0001 13.89 2 <0.0001 15.87 2 <0.0001

LWD model x CC 0.11 2 0.9003 1.59 2 0.2041 1.38 2 0.2514 3.20 2 0.0417 0.09 2 0.9140 0.10 2 0.9067 0.04 2 0.9652 0.17 2 0.8411

LWD model x Site 0.02 2 0.9813 0.06 2 0.9381 0.87 2 0.4181 0.85 2 0.4268 0.32 2 0.7264 0.67 2 0.5105 0.15 2 0.8602 0.10 2 0.9092

CC x Site 0.14 4 0.9668 0.68 4 0.6048 1.99 4 0.0947 0.35 4 0.8425 0.21 4 0.9312 0.42 4 0.7964 0.16 4 0.9577 0.55 4 0.7001

LWD model x CC x Site 0.01 4 0.9997 0.09 4 0.9844 0.09 4 0.9860 0.06 4 0.9935 0.04 4 0.9962 0.03 4 0.9982 0.00 4 1.0000 0.01 4 0.9998

RCP 4.5 RCP 8.5

Autumn Winter

RCP 4.5 RCP 8.5

Spring

RCP 4.5 RCP 8.5

Summer

RCP 4.5 RCP 8.5



Table 4: Pairwise comparison of the seasonal effects of climatic periods (recent past period “RP”: 1976-2005; near future period “NF”: 2021-2050 

and far future period “FF”: 2070-2099) on leaf wetness duration and air temperature during the period of wetness under scenarios RCP 4.5 and 8.5.  

 

  

Climatic periods

diff P adj diff P adj diff P adj diff P adj

Autumn RP vs.  NF -0.25 0.2262 0.15 0.5902 -1.48 <0.0001 -1.40 <0.0001

RP vs.  FF 0.55 0.0008 1.16 <0.0001 -1.66 <0.0001 -3.33 <0.0001

NF vs.  FF 0.79 <0.0001 1.01 <0.0001 -0.18 0.3803 -1.93 <0.0001

Winter RP vs.  NF -0.03 0.9597 0.01 0.9941 -1.00 <0.0001 -0.92 <0.0001

RP vs.  FF 0.08 0.7452 0.64 <0.0001 -2.14 <0.0001 -2.80 <0.0001

NF vs.  FF 0.10 0.5746 0.63 <0.0001 -1.13 <0.0001 -1.88 <0.0001

Spring RP vs.  NF 0.05 0.9718 -0.18 0.6526 -0.75 <0.0001 -0.91 <0.0001

RP vs.  FF 0.65 0.0053 1.57 <0.0001 -1.53 <0.0001 -2.50 <0.0001

NF vs.  FF 0.61 0.0109 1.75 <0.0001 -0.78 <0.0001 -1.59 <0.0001

Summer RP vs.  NF 0.35 0.1939 0.62 0.0036 -0.99 <0.0001 -1.15 <0.0001

RP vs.  FF 1.50 <0.0001 2.51 <0.0001 -1.99 <0.0001 -3.56 <0.0001

NF vs.  FF 1.15 <0.0001 1.89 <0.0001 -1.01 <0.0001 -2.41 <0.0001

Leaf wetness duration (LWD) Temperature during leaf wetness duration (T)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5



Figure 1: Description of the protocol for the in silico study. The surface responses of the relative infection efficiency of leaf rust of wheat to leaf 

wetness duration and temperature during wetness periods are shown for the Pope model (de Vallavieille-Pope et al., 1995) (a), and the ClimInfeR 

model (Launay et al., 2014) (b). The wetness required to reach 5% infection efficiency for leaf rust of wheat at different temperatures is shown for 

the Magarey model (Magarey, 2005) (c). 



 



 

 

  



Figure 2: Number of days with an infection efficiency higher than 5% throughout a 30-day sliding period (NID5) (a) and global risk of infection 

throughout a 30-day sliding period (GIR) (b), simulated by the six combinations of models coupling the two wetness duration models Medhi and 

Plata with the three infection models Pope, ClimInfeR and Magarey. Moving values for NID5 (a) and GIR (b) are shown from 1950 to 2100 (x-

axis), from January 1st to December 31 (y-axis), and shown from low values (blue) to high values (red). Results are shown for the climatic situation 

at the Versailles site under the RCP 8.5 scenario. 

 



 

  



Figure 3: Number of days with infection efficiency higher than 5% NID5 (a, c, e and g) and a global risk of infection GIR (b, d, f, h) over the four 

seasons (autumn, winter, spring and summer) in the near and far future compared to the recent past, at Versailles under scenario RCP 8.5. NID5 

values were calculated by the six modeling combinations coupling the two wetness duration models Medhi and Plata with the three infection 

models Pope, ClimInfeR and Magarey, while GIR values were calculated by the four modeling combinations coupling the Medhi and Plata models 

with Pope and ClimInfeR. Values are sums (NID5) and means (GIR) ± S.E.M (crosses). 

 

  



Figure 4: Maximum length (number of days) of LS0I periods without infection over the four seasons (autumn (a), winter (b), spring (c) and summer 

(d)) in the near and far future compared to the recent past at Versailles under scenario RCP 8.5. LS0I values were calculated by the six modeling 

combinations coupling the two wetness duration models Medhi and Plata with the three infection models Pope, ClimInfeR and Magarey. Values 

are sums ± S.E.M (crosses). 

 



  



Figure 5: Compared evolutions of the relative global risk of infection GIR and maximum length of periods without infection LS0I, with relative 

leaf wetness durations LWD and temperature during wetness periods over the four seasons (autumn, winter, spring and summer), in the near and 

far future (NF and FF, respectively) at the Bordeaux, Mons and Versailles sites and under RCP scenarios 4.5 and 8.5.  

 



 

  



Figure 6: Surface responses of the relative infection efficiency of leaf rust of wheat as simulated by the Pope model (top left) and ClimInfeR model 

(bottom left), and the same surface responses when pairs of (temperature, leaf wetness duration) values were subtracted, where the Magarey model 

simulated an infection efficiency < 5% (right). 

 

 

  



Appendix A. Mean seasonal values of the NID5, GIR, LS0I, DS0I, LWD and T climatic indicators. 

Values are given for RCP scenarios 4.5 and 8.5 at the Bordeaux, Estrées-Mons and Versailles sites, for climatic periods in the recent past 

“RP” (1976-2005), near future “NF” (2021-2050) and far future “FF” (2070-2099) and for all combinations of models. 

a) Mean seasonal NID5 values: cumulated number of days with at least 5% of infection efficiency 



 

b) Mean seasonal GIR values: equivalent to the cumulated number of days of full infection (100% infection efficiency)  

RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF

Autumn Medhi Pope 37 44 41 26 34 33 31 37 36 36 42 44 26 33 41 31 34 39

Medhi ClimInfeR 47 53 50 35 45 44 39 47 46 47 52 52 35 44 51 39 46 49

Medhi Magarey 18 21 17 15 19 16 17 21 18 18 17 16 15 17 17 17 18 16

Plata Pope 48 55 52 35 45 43 40 47 47 48 53 54 35 43 50 41 47 49

Plata ClimInfeR 55 62 60 41 53 51 47 55 56 55 61 61 42 52 58 48 54 58

Plata Magarey 25 29 25 20 25 22 23 28 25 27 27 23 19 22 22 24 26 23

38 44 41 29 37 35 33 39 38 39 42 42 29 35 40 33 38 39

Winter Medhi Pope 20 25 28 11 14 18 13 16 21 20 24 29 10 14 19 13 17 22

Medhi ClimInfeR 34 40 43 20 25 32 23 26 33 34 39 42 20 26 34 23 28 35

Medhi Magarey 7 7 7 4 4 6 6 5 6 7 6 7 4 4 5 5 6 6

Plata Pope 31 37 41 15 18 25 18 21 29 31 36 43 15 19 27 20 24 30

Plata ClimInfeR 44 49 55 24 29 40 28 32 41 44 50 55 24 32 42 29 37 45

Plata Magarey 12 13 13 6 7 9 9 9 12 13 12 14 7 7 9 9 11 11

24 28 31 13 16 22 16 18 24 25 28 32 13 17 23 16 20 25

Spring Medhi Pope 46 47 42 42 44 44 36 38 36 46 46 39 42 47 40 36 40 31

Medhi ClimInfeR 51 50 45 52 53 52 43 43 40 51 49 39 52 57 47 43 45 34

Medhi Magarey 7 9 8 7 7 7 6 7 6 7 8 9 6 8 8 6 8 6

Plata Pope 49 50 46 43 47 47 36 39 37 49 50 42 43 50 42 37 42 30

Plata ClimInfeR 55 54 49 56 58 56 44 45 42 55 54 42 56 62 49 45 48 34

Plata Magarey 6 8 8 5 7 7 4 5 5 7 8 9 4 7 7 5 7 5

36 36 33 34 36 35 28 30 28 36 36 30 34 38 32 28 32 23

Summer Medhi Pope 39 37 31 39 40 32 33 32 24 39 37 24 40 38 26 33 29 18

Medhi ClimInfeR 40 37 29 46 44 34 36 33 25 39 35 22 45 42 25 35 30 17

Medhi Magarey 10 10 10 7 7 7 8 8 7 10 10 12 7 7 6 8 7 6

Plata Pope 42 41 34 43 43 35 36 35 26 43 41 27 43 42 28 36 32 19

Plata ClimInfeR 42 41 32 48 46 36 39 36 27 43 39 24 49 46 28 39 33 18

Plata Magarey 10 12 11 7 7 5 8 7 6 11 11 12 7 7 5 9 7 6

31 30 24 32 31 25 27 25 19 31 29 20 32 30 20 27 23 14

Season Combination of 

models

RCP 4.5 scenario RCP 8.5 scenario

Bordeaux Estrées-Mons Versailles Bordeaux Estrées-Mons Versailles



 

 

  

RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF

Autumn Medhi Pope 17 22 20 10 15 14 13 17 16 16 20 24 10 14 19 13 16 20

Medhi ClimInfeR 21 26 25 13 18 18 16 21 20 21 25 29 13 18 25 15 20 25

Plata Pope 22 28 26 13 19 18 16 22 21 22 27 30 13 18 24 16 21 25

Plata ClimInfeR 26 33 31 16 22 22 19 25 25 26 31 36 16 22 29 19 25 30

21 27 26 13 19 18 16 21 21 21 26 30 13 18 24 16 20 25

Winter Medhi Pope 7 9 11 3 4 6 4 5 7 7 9 12 3 4 7 4 5 8

Medhi ClimInfeR 13 16 18 7 9 11 8 10 12 13 15 19 7 9 12 8 10 14

Plata Pope 10 13 16 4 5 7 5 7 10 11 13 18 4 5 8 6 7 11

Plata ClimInfeR 16 20 23 8 10 14 9 11 15 17 20 25 8 10 15 10 12 17

12 15 17 5 7 9 7 8 11 12 14 18 5 7 11 7 9 12

Spring Medhi Pope 23 25 22 21 22 22 18 19 18 23 24 21 21 24 19 18 21 15

Medhi ClimInfeR 27 29 25 27 28 27 22 23 21 28 28 22 27 30 23 22 25 17

Plata Pope 25 27 24 20 23 24 17 19 18 26 28 23 20 25 21 17 21 14

Plata ClimInfeR 30 31 27 28 30 30 22 23 22 31 32 24 28 33 25 22 26 17

26 28 24 24 26 26 20 21 20 27 28 22 24 28 22 20 23 16

Summer Medhi Pope 22 21 17 19 20 17 17 17 13 22 21 14 19 19 14 17 15 10

Medhi ClimInfeR 23 22 17 23 24 19 20 19 14 23 21 13 23 23 14 20 17 10

Plata Pope 24 25 20 20 22 18 18 18 14 25 24 17 20 21 15 19 17 11

Plata ClimInfeR 26 26 20 25 26 21 22 21 16 26 25 15 25 26 17 22 20 11

24 24 19 22 23 19 19 19 14 24 23 15 22 22 15 19 18 11

Combination of 

models

Season RCP 4.5 scenario RCP 8.5 scenario

Bordeaux Estrées-Mons Versailles Bordeaux Estrées-Mons Versailles



c) Mean seasonal LS0I values: number of days of the longest sequence during which infection efficiency is lower than 5%. 

 

 

  

RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF

Autumn Medhi Pope 15 12 15 21 16 18 19 15 15 15 14 13 21 17 14 20 14 13

Medhi ClimInfeR 12 10 13 18 14 16 16 12 14 12 11 11 18 14 13 16 12 12

Medhi Magarey 23 20 25 28 20 26 27 22 24 23 24 26 27 22 23 26 22 24

Plata Pope 12 10 14 18 14 15 16 12 13 12 11 12 19 14 13 16 12 12

Plata ClimInfeR 11 9 11 16 13 14 15 11 12 11 10 10 17 13 12 15 12 11

Plata Magarey 16 15 20 22 17 20 21 17 18 16 18 20 23 18 19 20 16 19

15 13 16 21 16 18 19 15 16 15 14 15 21 16 16 19 14 15

Winter Medhi Pope 23 22 18 34 31 23 31 28 23 23 21 21 34 26 27 32 26 24

Medhi ClimInfeR 17 17 13 27 24 17 22 22 16 16 14 15 28 20 17 23 19 16

Medhi Magarey 44 44 43 50 52 45 43 47 44 41 44 49 47 49 51 47 44 43

Plata Pope 16 16 14 31 27 20 27 25 18 16 15 17 29 22 21 26 20 19

Plata ClimInfeR 12 12 8 25 21 14 21 19 13 12 11 11 26 17 13 22 15 12

Plata Magarey 32 35 30 43 44 38 39 38 33 29 32 37 41 36 39 40 31 36

24 24 21 35 33 26 30 30 25 23 23 25 34 28 28 32 26 25

Spring Medhi Pope 13 15 14 18 17 17 18 17 17 12 14 15 17 16 16 17 17 17

Medhi ClimInfeR 9 12 14 13 12 12 14 14 17 9 12 15 13 11 15 13 13 17

Medhi Magarey 47 44 45 45 43 44 46 45 43 49 40 41 42 41 42 44 38 39

Plata Pope 11 13 13 18 15 16 18 16 18 12 14 14 17 13 16 18 16 19

Plata ClimInfeR 9 11 11 12 10 10 13 13 15 9 11 15 12 9 15 13 12 18

Plata Magarey 46 50 49 50 51 52 53 49 48 47 44 47 51 49 57 46 47 52

22 24 24 26 24 25 27 26 26 23 23 25 25 23 27 25 24 27

Summer Medhi Pope 17 20 24 18 18 25 22 24 30 17 19 30 18 18 28 22 23 33

Medhi ClimInfeR 17 21 26 17 19 25 21 25 32 18 21 34 17 18 28 22 24 36

Medhi Magarey 40 37 42 46 45 43 43 42 51 42 40 41 47 43 50 41 50 43

Plata Pope 16 19 24 18 19 26 22 23 35 16 17 29 17 19 27 21 25 37

Plata ClimInfeR 16 21 26 17 19 26 21 24 35 16 19 32 16 19 28 21 27 39

Plata Magarey 45 42 45 50 55 57 47 55 59 44 42 40 52 53 59 47 55 59

25 27 31 28 29 34 29 32 40 25 26 35 28 28 36 29 34 41

Season Combination of 

models

RCP 4.5 scenario RCP 8.5 scenario

Bordeaux Estrées-Mons Versailles Bordeaux Estrées-Mons Versailles



d) Mean seasonal DS0I values: median date of the longest sequence during which infection efficiency is lower than 5% (DOY). 

 

 

  

RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF

Autumn Medhi Pope 343 348 344 347 345 344 347 338 339 347 345 329 348 345 343 342 344 332

Medhi ClimInfeR 280 263 272 238 247 265 243 287 248 271 239 303 228 240 241 243 216 251

Medhi Magarey 340 332 336 343 337 336 346 341 334 343 341 322 348 345 333 350 341 329

Plata Pope 348 346 351 346 343 342 347 338 347 351 347 339 348 346 348 348 349 338

Plata ClimInfeR 250 252 285 250 259 263 250 298 237 260 262 317 237 240 243 252 239 233

Plata Magarey 338 339 345 347 334 338 339 338 335 335 340 329 342 332 336 339 339 327

316 313 322 312 311 315 312 323 307 318 312 323 308 308 307 312 305 302

Winter Medhi Pope 65 56 63 62 52 65 67 53 68 60 61 65 58 66 64 65 63 63

Medhi ClimInfeR 57 53 64 62 50 59 63 52 65 58 54 70 53 52 61 62 53 64

Medhi Magarey 76 70 72 64 58 71 69 64 73 71 71 75 63 64 71 67 68 71

Plata Pope 68 58 66 62 58 62 66 62 70 67 65 78 63 66 72 65 60 72

Plata ClimInfeR 59 51 63 55 53 57 56 57 59 55 54 73 55 46 58 59 54 66

Plata Magarey 80 74 78 70 68 78 72 75 77 80 78 80 67 73 76 72 70 78

67 60 68 62 57 65 66 61 69 65 64 73 60 61 67 65 61 69

Spring Medhi Pope 126 133 139 128 128 136 128 130 145 122 131 149 127 132 154 131 128 154

Medhi ClimInfeR 137 137 146 131 132 146 129 145 152 138 139 157 128 137 163 134 138 161

Medhi Magarey 143 134 135 134 139 129 134 133 134 140 131 133 135 130 135 136 137 140

Plata Pope 122 134 139 129 127 136 132 128 145 124 132 151 130 135 151 130 124 157

Plata ClimInfeR 136 140 144 132 135 141 133 137 153 137 136 151 131 136 161 135 139 166

Plata Magarey 136 134 134 140 136 135 145 136 138 141 137 140 137 136 135 138 134 140

133 135 140 132 133 137 133 135 144 134 134 147 131 134 150 134 133 153

Summer Medhi Pope 233 234 230 241 236 230 233 237 230 232 234 234 241 233 230 231 230 227

Medhi ClimInfeR 233 231 227 236 234 229 230 230 227 232 233 234 239 228 231 231 229 230

Medhi Magarey 228 234 234 237 237 231 235 232 234 228 234 231 238 237 239 234 231 237

Plata Pope 231 229 230 237 233 231 233 232 227 231 233 234 239 227 228 234 228 228

Plata ClimInfeR 231 229 231 233 232 231 228 229 227 231 229 234 235 230 228 225 227 228

Plata Magarey 227 229 235 234 231 232 231 230 231 229 231 230 234 229 230 230 231 230

231 231 231 236 234 230 231 232 229 230 232 233 238 231 231 231 229 230

Season Combination of 

models

RCP 4.5 scenario RCP 8.5 scenario

Bordeaux Estrées-Mons Versailles Bordeaux Estrées-Mons Versailles



e) Mean seasonal LWD values: average leaf wetness duration (hours) 

 

 

f) Mean seasonal T values: average air temperature during wetness periods (°C). 

 

RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF

Autumn Medhi 9.7 10.1 9.2 10.3 10.6 9.9 10.1 10.4 9.6 9.7 9.5 8.7 10.3 10.3 9.6 10.1 10.0 9.1

Plata 11.8 12.1 11.2 12.3 12.5 11.8 12.2 12.3 11.6 12.0 11.7 10.3 12.3 12.3 11.4 12.4 12.0 10.9

10.7 11.1 10.2 11.3 11.5 10.8 11.2 11.4 10.6 10.8 10.6 9.5 11.3 11.3 10.5 11.3 11.0 10.0

Winter Medhi 7.2 7.5 7.3 7.2 7.1 7.3 6.8 6.8 7.0 7.2 7.2 6.8 7.2 7.1 6.8 6.9 7.0 6.5

Plata 9.5 9.9 9.2 9.3 9.0 9.1 9.0 8.8 8.8 9.7 9.6 8.8 9.4 9.2 8.5 9.2 9.3 8.2

8.4 8.7 8.2 8.3 8.1 8.2 7.9 7.8 7.9 8.5 8.4 7.8 8.3 8.1 7.6 8.0 8.2 7.4

Spring Medhi 6.5 6.4 5.6 7.2 7.1 6.6 5.9 5.8 5.1 6.5 6.3 4.9 7.2 7.4 5.7 5.9 6.1 4.3

Plata 6.7 6.6 5.8 7.2 7.4 6.9 5.7 5.7 5.2 6.9 6.8 5.1 7.2 7.7 5.9 5.8 6.2 4.2

6.6 6.5 5.7 7.2 7.2 6.8 5.8 5.7 5.1 6.7 6.5 5.0 7.2 7.6 5.8 5.8 6.1 4.2

Summer Medhi 5.2 4.9 3.9 6.0 5.7 4.4 5.0 4.5 3.5 5.2 4.7 3.1 6.0 5.5 3.4 5.0 4.2 2.4

Plata 5.5 5.3 4.2 6.2 5.9 4.6 5.2 4.7 3.6 5.6 5.1 3.3 6.2 5.8 3.5 5.3 4.5 2.5

5.4 5.1 4.0 6.1 5.8 4.5 5.1 4.6 3.5 5.4 4.9 3.2 6.1 5.6 3.5 5.2 4.3 2.5

Season Combination of 

models

RCP 4.5 scenario RCP 8.5 scenario

Bordeaux Estrées-Mons Versailles Bordeaux Estrées-Mons Versailles

RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF RP NF FF

Autumn Medhi 6.4 7.9 8.1 4.2 5.7 5.8 4.9 6.4 6.5 6.3 7.8 9.7 4.1 5.7 7.6 4.9 6.3 8.2

Plata 6.6 8.0 8.3 4.2 5.6 5.9 5.0 6.4 6.6 6.6 7.9 9.9 4.2 5.6 7.5 5.0 6.3 8.2

6.5 8.0 8.2 4.2 5.6 5.9 4.9 6.4 6.5 6.5 7.9 9.8 4.2 5.6 7.6 4.9 6.3 8.2

Winter Medhi 5.7 6.6 7.6 3.2 4.3 5.5 3.9 5.0 6.0 5.6 6.5 8.3 3.2 4.2 6.2 3.9 4.9 6.7

Plata 5.9 6.8 7.9 3.2 4.2 5.5 3.9 4.8 6.1 5.9 6.8 8.5 3.2 4.2 6.2 3.9 4.9 6.8

5.8 6.7 7.7 3.2 4.3 5.5 3.9 4.9 6.1 5.8 6.7 8.4 3.2 4.2 6.2 3.9 4.9 6.7

Spring Medhi 13.0 13.8 14.5 10.8 11.5 12.4 11.9 12.7 13.4 12.9 13.8 15.9 10.8 11.7 13.3 11.8 12.7 14.4

Plata 12.7 13.5 14.2 10.5 11.3 12.1 11.4 12.0 12.8 12.8 13.6 15.4 10.5 11.5 12.7 11.4 12.3 13.5

12.8 13.6 14.4 10.6 11.4 12.3 11.6 12.4 13.1 12.9 13.7 15.6 10.7 11.6 13.0 11.6 12.5 13.9

Summer Medhi 14.9 15.8 17.0 12.3 13.3 14.4 13.2 14.2 15.4 14.9 16.1 18.8 12.2 13.4 16.0 13.2 14.4 17.2

Plata 14.7 15.5 16.4 11.9 12.9 13.7 12.7 13.7 14.6 14.8 15.8 18.1 11.9 13.0 15.0 12.7 13.7 15.9

14.8 15.7 16.7 12.1 13.1 14.1 12.9 14.0 15.0 14.8 16.0 18.5 12.1 13.2 15.5 13.0 14.1 16.5

Season Combination of 

models

RCP 4.5 scenario RCP 8.5 scenario

Bordeaux Estrées-Mons Versailles Bordeaux Estrées-Mons Versailles
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Appendix B. Representation of the fourteen trials performed during the 1990-2015 period 1 
and three French climate patterns. 2 
 3 
Distribution of cumulated rainfall (mm) and temperatures (°C) from January 1st to March 31 (a) 4 
and from April 1st to June 30 (b) in pure oceanic (OCEA), Mediterranean (MEDI) and 5 
southwestern (SOWE) climatic conditions in France from 1990 to 2015. The fourteen trials used 6 
for the calibration and evaluation dataset are identified by numbers (see Table 2). 7 

 8 

 9 
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