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Abstract 

For the rapid and reliable differentiation of clinically-relevant bacterial species, mass spectrometry-

based methods have emerged in recent years as valid alternatives to existing techniques. Mass 

profiles generated by whole-cell Matrix-Assisted Laser Desorption Ionization-Time of Flight mass 

spectrometry have revolutionized microorganism identification and proven their potential for 

proteotyping at the species level. Indeed, the methodology has been widely deployed in clinical 

settings. However, the low resolution and dynamic range of the methodology has limited its capacity 

to distinguish between subspecies. This discrimination capacity is pivotal in cases where certain 

strains display virulence or antibiotic resistance, and for epidemiologic analyses. Moreover, 

sensitivity and specificity are both key parameters when attempting to discriminate between 

microorganisms present in complex multi-pathogenic samples. These two parameters are also 

essential to meet the growing interest in the characterization of microorganisms contained within 

even more complex samples, such as the human microbiome. Tandem mass spectrometry, with its 

high resolution, holds great potential for use in the real-time direct analysis of pathogens at the most 

relevant taxonomic rank in routine clinical practice. This review explores the numerous benefits and 

challenges of implementing advanced proteotyping methods, based on tandem mass spectrometry, 

in clinical laboratories. We provide an overview of the current applications and methodologies, while 

also discussing recent improvements and potential new approaches for typing, as well as their future 

applications. 
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MLST - multilocus sequence typing 

MS/MS - tandem mass spectrometry 

PFGE - pulsed-field gel electrophoresis 

 

 

1. Introduction 

 

1.1 Proteotyping: clarifying the concept.  

Literally, ‘typing by proteins’, proteotyping refers to the use of proteins as distinguishing 

factors for taxonomical purposes. This is a relatively recent concept as, traditionally, taxonomists rely 

on molecular typing methods mostly based on DNA restriction or amplification, e.g. pulsed-field gel 

electrophoresis (PFGE) or multilocus sequence typing (MLST) [1]. Although widely recognized, these 

techniques remain laborious and time-consuming to perform. As mass spectrometry (MS)-based 

proteomics has progressed, conventional biochemical/phenotypic methods have been replaced by 

more cost-effective discriminatory MS-based typing approaches, in particular by whole-cell Matrix-

Assisted Laser Desorption Ionization-Time Of Flight (MALDI-TOF) MS proteotyping. Depending on the 

instrumentation and platforms available, proteotyping can now be achieved by analyzing mass 

patterns from intact proteins (top-down approaches, such as for whole-cell MALDI-TOF) or peptides 

generated from proteins (bottom-up approaches). Numerous innovative approaches have been 

developed especially to discriminate between microorganisms at species/subspecies level. 

 

1.2 Functional proteotyping: gaining insights into pathogen functioning. 

Extending the sensu stricto definition of proteotyping, Karlsson et al. [2] recently suggested 

that insights into the physiological state and functions of microbial populations could be obtained by 

proteotyping microorganisms grown under differing culture conditions (e.g., nutrients, stress). 

Because of the direct link between phenotypic traits and proteome characteristics, this concept 

reconnects molecular information with historical phenotypic taxonomic classification. However, 

functional proteotyping must be distinguished from classical proteomic characterization of a single 

microorganism grown under different conditions to understand its physiological response through 

comparative analysis. Rather, proteotyping should be considered to exclusively describe the use of 

protein data to discriminate between groups of organisms, either in terms of taxonomy or 

functionality. In real terms, these approaches could be applied to type several antibiotic-resistance 

mechanisms or detect the presence of specific toxins and other virulence factors. However, current 

MS-based typing methods, such as whole-cell MALDI-TOF, rely on the mass patterns produced by 

small, abundant and basic proteins, without actually identifying proteins, and thus cannot be used to 

assess functional traits.  

 

1.3 Proteotyping and metaproteomics: are the views distinct? 

Metaproteomics, a term coined more than a decade ago [3], aims to resolve and quantify the 

major active metabolic pathways in complex microbiota, and, thereby, establish genotype-

phenotype relationships. This methodology relies on: metagenomics data, to select the most 

appropriate protein-sequence database; tandem MS (MS/MS), to acquire data on the proteins 

present; and bioinformatics, for data interpretation. Two facets can be distinguished: taxonomical 

characterization of the sample will allow the identification of the main taxa present, based on 

experimental protein data; then the identification and quantification of proteins can be used to 

functionally characterize the main metabolic pathways. Metaproteomics and proteotyping are clearly 

different, as the latter is a technology to establish which organisms are present in any given complex 

biological system, the list of which can then be used to answer larger questions by applying 
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metaproteomics techniques. For comprehensive metaproteomics, rapid and accurate 

characterization of highly complex samples in terms of both taxonomical purpose and functional 

characterization are essential, and the need for large amounts of data becomes obvious. In this 

context, new MS-based approaches are emerging. To glean further information with high accuracy, 

shotgun proteomics characterization with MS/MS measurements is essential. As shotgun proteomics 

provides more information, including the molecular weight of the analytes and their amino acid 

sequence, it outperforms whole-cell MALDI-TOF-based methods and produces meaningful and 

complementary information about functional bacterial traits. In this context, advances in MS 

technology to increase detection sensitivity and dynamic range, make it possible to resolve 

thousands of peptide species that vary widely in abundance within a sample, paving the way for the 

characterization of more complex biological systems. 

 

This review outlines the applications of proteotyping and their usefulness in clinical practice. 

Moreover, current and novel methodologies are reviewed, with particular attention paid to their 

limitations, as well as to the recent improvements favouring applications in routine clinical practice. 

Finally, attractive future proteotyping applications are suggested. 

 

2. Proteotyping: clinical relevance  

By offering all the advantages derived from the use of MS, such as high-speed, low-cost, 

simplicity, and applicability to a wide range of microbes, implementation of proteotyping in routine 

clinical practice has provided great advantages. It contributes to improving patient care by reducing 

time to diagnosis. In addition, being based on less expensive and less expertise-demanding 

methodologies than conventional techniques, it helps to cut the costs of clinical microbiology 

laboratories [4, 5]. Thanks to continuous improvements in the analytical specificity and sensitivity of 

mass spectrometers, numerous proteotyping MS-based methods have been proposed and, at 

present, some are becoming routine procedures, particularly in clinical microbiology.  

Different strains from a given species may have distinct phenotypic behaviours, such as a 

higher capacity to cause invasive disease, to asymptomatically colonize a host, or to present 

resistance to antimicrobials. In this scenario, proteotyping fulfils various purposes, from 

discrimination between epidemic clones with characteristic pathogenicity, to the comparison of 

clinical and environmental isolates to track the spread of specific subgroups and, for example, to 

control nosocomial and cross-infections [6, 7] (Fig 1). The rapidity and increased diagnostic resolution 

of MS-based proteotyping compared to traditional methods have become critical, in particular for 

severe microbial infections, such as sepsis, acute meningitis, etc. In addition, many researchers have 

demonstrated that MS-based approaches can be used to initiate an effective therapy early, and, 

thus, prevent a possible pandemic, for example by rapidly screening influenza virus subtypes [7]. MS-

based strain-typing MS-based has also been described for a few Candida species [8, 9], although 

fungal proteotyping has moved at a slower pace than bacterial and viral typing. This slower pace is 

linked to the inherent biological complexity of fungi, and to the fact that fungal samples are less likely 

than bacteria to release proteins. As a result, sample preparation protocols are often labour-

intensive and, up to now, only low numbers of representative taxa are found in commercially-

available databases [10]. Nonetheless, proteotyping represents an expanding area for many 

laboratories, and there is great potential for its application and for the development of diagnostic 

methods [11]. 

A field of great significance where proteotyping could be applied is the identification of 

virulence and antibiotic-resistance factors for detected bacteria (Fig 1). In fact, in a world where 
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antibiotic-resistance rates are constantly progressing, subspecies-level identification, as well as rapid 

and correct determination of antibiotic-resistance patterns are increasingly needed. In this context, 

in addition to phenotypic diagnostic approaches [12], specific tools for approaches not reliant on 

prior knowledge or inferences are necessary for difficult cases, such as bacterial meningitis, 

respiratory tract pathogens or catheter-related bloodstream infections. Here, the increased 

diagnostic resolution and the shorter time-to-results offered by MS-based proteotyping, compared to 

traditional approaches, are hugely relevant to avoid prolonging empirical, and potentially 

inappropriate, antibacterial therapies [13]. Prior treatments, often relying on broad-spectrum 

antibiotics, can lead to unsuccessful pathogen recovery and, consequently, unavailability of drug 

susceptibility data. Furthermore, overtreatment with successful empirical broad-spectrum 

compounds is, at least partially, linked to the discrepancy between traditional microbiological 

procedures and the clinical need for rapid results [12]. In research laboratories, mass spectrometry 

has already been successfully used to detect antibiotic-resistance mechanisms through several 

approaches based on the analysis of antibiotics and their degradation products or rRNA 

modifications [14, 15]. However, a promising approach for routine testing is bacterial typing based on 

the direct identification of bacterial resistance determinants [13]. Through this approach, 

proteotyping could inform treatment decisions, facilitate assessment of the clinical relevance of 

microbial isolates or directly guide the selection of antimicrobials based on known patterns of 

intrinsic resistance and local susceptibility data. In this scenario, the potential of proteotyping, unlike 

the molecular tests, is not limited by the multiplicity of different resistance genes or newly emerging 

resistance variants [16]. Among the remarkable examples of its application, Josten et al. [17] 

exploited its capacity to sensitively and specifically discriminate between subgroups of nosocomial 

methicillin-resistant Staphylococcus aureus (MRSA) by detecting the small peptide PSM-mec. Similar 

findings were reported by Nagy et al. [18] when typing strains of the anaerobic pathogen Bacteroides 

fragilis. The detection of a specific m/z peak in the spectrum profile correlated with resistance to 

carbapenems, one of the most important groups of antimicrobials used to treat mixed infections. 

Similarly, Fagerquist et al. [19] directly distinguished Escherichia coli O157:H7 subtypes from Shiga 

toxin-producing E. coli by identifying Shiga toxin 2 thanks to its sequence-specific fragment ions. 

However, although proteotyping based on virulence or resistance determinants represents a relevant 

and promising tool to detect virulent isolates and antibiotic resistance, no method has yet been 

validated in clinical trials [4]. For application of these methods in routine clinical practice, 

standardized workflows or databases and software tools must be developed to provide the level of 

reproducibility and reliability required from a diagnostic test. 

The incorporation of proteotyping into clinical routine also represents a step toward the 

advent of personalized medicine (Fig 1). Although still in its infancy, this methodology has 

considerable potential to greatly increase diagnostic accuracy, while reducing time and costs by 

allowing, for example, differentiation between benign colonizers and clinically-relevant findings, or to 

identify multiple species in co-infections. More generally, proteotyping could contribute – by 

providing a holistic view of the patient’s condition – to the development of personalized treatment 

regimens that maximize benefits and minimize adverse effects. Such tailored treatments are 

extremely important, for example, in immunocompromised patients for whom the treatment must 

be precisely selected. In this context, one of the advantages of routinely using MS-based 

proteotyping methods in clinical microbiology laboratories is represented by the possibility that the 

clinical samples can be directly analyzed without the need for culture steps. Successful identification 

of pathogens in the sample itself have already been demonstrated in various settings (e.g., positive 

blood cultures or urine samples following a concentration step) [20], suggesting that further 

development of protocols may allow direct typing and validation of the method for routine 

applications. 
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3. Current methodologies: MALDI typing methods  

To date, routine clinical proteotyping relies on the analysis of protein mass spectra by means 

of whole-cell MALDI-TOF MS analysis. Within the last decade, MALDI-TOF MS has been fully 

integrated into the routine of clinical laboratories where it has revolutionized the identification of 

bacterial species, yeast isolates, filamentous fungi and dermatophytes [21-23]. The information 

acquired during routine analyses to identify isolates could be further exploited, at no additional cost, 

for their typing. This possibility has driven the development of novel approaches and their 

subsequent integration into clinical workflows.  

MALDI-TOF MS is used to identify microorganisms based on mass spectral patterns obtained 

from whole cells following a simple procedure where the sample is mixed with a chemical matrix and 

deposited on a MALDI plate. A characteristic mass spectrum is acquired from the sample and then 

statistically compared to a database of MS patterns/fingerprints that were collected from reference 

samples under exactly the same conditions (Fig. 2). The identity of the microorganism is determined 

based on which set in the database provides the best match with the spectra obtained from the 

sample [11]. In addition, an quality score of the species assignment is calculated. Mass spectral 

patterns used for species-level identification are derived from basic abundant proteins (e.g., mainly 

ribosomal proteins and a few housekeeping proteins such as the HU protein), all of which are 

between 2 to 20 kDa. The abundance of these proteins in the cell is relatively independent of the 

bacterial growth state or external stimuli, but sample conditions should be identical to those used to 

generate the database. Slight variations in the mass of these proteins (e.g., due to amino acid 

substitutions deriving from non-silent mutations in their corresponding genes) in isolates within the 

same species could represent candidate biomarkers for subspecies discrimination [24]. For example, 

Francisella tularensis subspecies tularensis, the agent responsible for tularemia, can be differentiated 

from the other subspecies by two specific MALDI-TOF m/z peaks [25]. 

Despite several works reporting a higher discriminatory power of MALDI-TOF compared to 

conventional techniques, the use of MALDI typing in clinical settings is still in its infancy; until very 

recently, results remained controversial for several bacterial species. Further improvements have 

since been made to the database, mainly by including spectra from the most difficult bacterial cases, 

as was recently illustrated for Brucella [26]. Thus, although Ueda et al. [27] demonstrated that MALDI 

typing could be used for clone-level identification of methicillin-resistant S. aureus with accuracy 

equivalent to PFGE, Purighalla et al. [28], by highlighting differences in clustering for nosocomial 

Klebsiella pneumoniae isolates on the basis of genomic or proteomic signatures, revealed the need 

for further investigation to establish the widespread applicability of MALDI-TOF methods for clonality 

studies across a wider variety of bacteria implicated in nosocomial infections. A similar conclusion 

was drawn by Pinto et al. [29] following typing of Streptococcus pneumoniae isolates. Thus, further 

improvements in the performance of the method are eagerly awaited in the near future.  

Although several successful examples of intraspecific group segregation have been published 

[23, 30], the discriminatory potential of the methodology is not the same for all pathogens [31]. 

Some variability in the limits of taxonomic resolution can probably be ascribed to the evidence that 

resolution is taxon-dependent [32] and often reflects known identification problems related to 

certain genera. Examples of these limits are linked to difficulties in discriminating organisms at the 

species level, as described for Burkholderia mallei / Burkholderia. pseudomallei, and Streptococcus 

mitis / Streptococcus oralis / Streptococcus pneumoniae [33]. Below the species level, MALDI-TOF MS 

has been reported to have low discriminatory power for serotypes of E. coli, biovars of Brucella suis 

and clinically-relevant multidrug resistant Klebsiella pneumoniae clones [34]. To discriminate 

between subspecies, Gekenidis et al. [35] developed a workflow that goes beyond the classical 
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MALDI biotyping. Their high-intensity focused ultrasound-assisted proteomics workflow allows 

greater taxonomic discrimination by extending the mass range and type of potential biomarker 

peptides. A broader mass range (from 15 to 75 kDa) could also increase discrimination power for 

protein biomarkers, as shown by other groups [36-38]. Although in some cases statistical approaches 

could be implemented to improve the discriminative power of MALDI typing methods and identify 

reliable biomarkers [24], additional tools for high-resolution typing are clearly needed.  

Unsuccessful identification of reliable peak biomarkers could also be explained by biological 

(e.g., strain sets) and methodological differences (e.g. technological issues with the mass 

spectrometer and/or the choice of informatics and statistical tools) [39]. For example, Fangous et al. 

[40] applied a classification algorithm based on a dataset of discriminating peaks to successfully type 

Mycobacterium abscessus at the subspecies level. However, their results revealed the need to test a 

larger, worldwide collection to confirm the hypothesis that different biogeographic MS profiles exist 

for a given species. In fact, despite the fact that the proposed protocol was independent of the 

culture method, duration of culture, and the experimenter, none of the specific peaks identified in a 

previous study [41] were detected when the same extraction protocol was used. An effort to assess 

the technical and biological reproducibility of MALDI typing between different centres was reported 

by Oberle et al. [42]. Although their study focused on a small sample size that included only one 

pathogen, the results revealed that technical and biological reproducibility are sufficient to allow 

distinguishing clusters to be detected. However, shared standard operating procedures and 

bioinformatics approaches are required to make the analyses reliable and robust for routine clinical 

applications. Multicentre validation studies, and proposed good practice guidelines [31, 39] are 

among the recent joint efforts that will advance the application of proteotyping in clinical 

laboratories. In addition, construction of dedicated libraries under stringent conditions and the 

development of software to extract and analyze data could allow MALDI typing to reach the 

robustness needed to further implement the method in routine clinical laboratory diagnostics. To 

increase the reliability and the reproducibility of MALDI typing results, Zautner et al. [43] described 

an approach that combines the analysis of variable masses observed during whole-cell MALDI-TOF 

mass spectrometry with ribosomal and whole-genome multilocus sequence typing (MLST) database-

deduced isoform lists. In contrast to classic whole-spectrum clustering approaches, their strategy 

considers only changes in mass assigned to one specific set of allelic isoforms for the same protein. 

The fact that more robust methods rely on peak shifts and integration of genomic/proteomic data 

was also demonstrated by the successful identification of valuable biomarkers using a 

proteogenomic approach. In proteogenomics studies, after sequence-based prediction, potential 

biomarkers are identified by a shotgun proteomics approach before confirming their discriminatory 

power using linear MALDI-TOF MS profiles [44, 45].  

Additional promising results for the implementation of MALDI typing in a clinical setting were 

obtained by applying methods that exploit the rapidly growing availability of microbial genome 

sequences to build synthetic reference spectra. Among these methods, the S10-GERMS-based 

approaches allow proteotyping of bacteria for which genome sequences are not yet decoded, by 

identifying the nucleotide sequence of genes encoding the ribosomal proteins detected by 

MALDI-TOF MS, which are specific to bacterial serotypes or strains [46, 47]. So far, this technique has 

been used to proteotype several clinically-relevant bacteria [48, 49]. As highlighted by the 

experimental work of Ojima-Kato et al. [49] the construction of databases with the theoretical 

masses of mass peaks, combined with development of discrimination software, has considerable 

potential, not only for typing single microorganisms but also for the discrimination, as part of routine 

diagnostic procedures, of closely-related bacterial strains that are mixed together (e.g., intestinal 

flora).  
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The frequent need to deal with polymicrobial samples represents an additional challenge 

when attempting to routinely type directly from clinical samples. To infer the composition of this 

type of sample, a few alternative methods have been proposed. The approach described by Mahé et 

al. [50] relies on a penalized non-negative linear regression framework making use of species-specific 

prototypes. Within certain limitations, the method automatically determines how many and which 

species are present in the sample and provides an estimation of their relative concentrations using a 

single mass spectrum that exploits the same reference database as the one used to identify pure 

cultures in routine clinical diagnosis. However, the physiological states of the different organisms 

present in a complex sample may vary considerably, potentially making this approach inappropriate. 

Multiple studies have assessed the performance of the commercially-available MALDI-TOF 

MS systems for routine use (i.e., the MALDI-TOF MS Biotyper (Bruker Daltonics Inc., Germany) and 

VITEK MS (bioMérieux Inc., France)), and have demonstrated how the accuracy of both systems can 

be further enhanced by expanding the spectral database [51, 52]. Although both instruments apply 

similar principles, the procedure and algorithm used to create their individual reference databases 

are different. As summarized in a recent review by Rahi et al. [52], these differences are reflected in 

the level of accuracy in the identification of the same set of microorganisms. In addition, although 

efforts have been made to overcome the limitations of commercial databases by the creation of in-

house ones, these libraries tend to be associated with specific instruments and sample preparation 

methods, limiting the potential for sharing and processing of data produced by different instruments 

and in different laboratories [53]. The use of a standardized strategy to create error-free and robust 

databases(s) has been proposed by various authors as a means to improve the efficiency of MALDI 

identification and typing. 

 Although most MALDI typing approaches directly use bacteria or whole-cell extracts, further 

improvements in the discriminatory power of the methodology could be provided by the analysis of 

specific extracts [31]. A small number of pioneering works [54, 55] have demonstrated how the use 

of particular bacterial extracts increased the chances of identification of peak biomarkers specific to 

subgroups. However, the required sample preparation is complex and makes application of this 

procedure difficult in a routine clinical laboratory, unless automated sample preparation is 

developed. Recently, to discriminate between clinically-relevant bacterial strains, Fleurbaaij et al. 

[56] proposed a combination of MALDI-TOF MS-based species identification with ultrahigh resolution 

15T MALDI-Fourier transform ion cyclotron resonance (FTICR) MS. The cost of this instrument makes 

it difficult to envision routine applications. However, more affordable higher resolution instruments 

could be proposed in the future, and further investigations will be useful in expanding their proof-of-

principle experiment. To address the shortcomings of analyzing mass patterns for small, abundant 

and basic proteins, without actually identifying the proteins, and at the same time to obtain insights 

into functional traits, Clark et al. [57] recently suggested combining the analysis of mass spectral 

patterns from conserved housekeeping proteins with signatures for specialized metabolites. 

However, their innovative pipeline is currently restricted to pure cultures or binary cell mixtures and 

is limited by the resolution of the instruments used, similar to approaches based on whole-cell 

MALDI-TOF. 

One of the most important limitations of MALDI-TOF MS is its relatively low analytical sensitivity due 

to its low detection performance for high molecular weight molecules. Depending on the treatment 

applied to extract proteins, 105–107 bacterial cells are required for efficient MALDI-TOF detection 

[58]. Thus, identification and typing accuracy is increased when the spectrum is acquired from a 

colony grown on an agar plate or a culture pellet, e.g. after a culture-based amplification step. 

However, although it increases accuracy and reduces sample complexity, culturing bacteria from 

complex mixtures should be expected to favour cultivable microorganisms and could, thereby, limit 

the number of microorganisms identified.  
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4. Novel methodology: tandem MS (MS/MS)-based proteotyping 

In the past few years, the potential for successful use of MS-based proteotyping in a clinical 

setting has been advanced by improvements in the performance of MS instrumentation, especially 

high-resolution tandem mass spectrometry (MS/MS) combined with chromatography. MS/MS 

analysis consists of selecting an ion of interest within the  first MS for fragmentation into smaller 

chemical entities, which are then analyzed by the second MS to derive additional structural 

information. For a peptide, fragmentation by collision with neutral molecules (collision-induced 

dissociation) produces predictable ions, and the amino acid sequence can then be determined from 

the m/z signals recorded in the MS/MS spectrum. The protein/peptide biomarkers are reverse-

identified from their sequence-specific fragment ions by comparison with a database of protein 

sequences. Shotgun proteomics refers to the MS/MS analysis of peptides produced by trypsin 

proteolysis of all proteins extracted from a sample (Fig. 2). MS/MS and shotgun proteomics provide 

new potential for the characterization of microorganisms through extensive analysis of their 

proteins, including taxonomic biomarkers, antibiotic resistance and toxins [2, 11, 59]. 

Shotgun proteomics offers a higher detection sensitivity and a higher dynamic range 

compared to the analysis of intact proteins. Today, thousands of peptides from a sample can be 

resolved and identified during a 60minute MS run performed on the latest high-resolution MS/MS 

systems. However, one of the main challenges for MS/MS-based proteotyping is the analysis of the 

data generated. In addition, as highlighted by Karlsson et al. [2], the identification of discriminative 

peptides that could be used for proteotyping is highly dependent on access to a comprehensive and 

accurately curated database. Various groups have prioritized the development of bioinformatics 

tools based on robust algorithms to classify informative peptide fragments and identify and 

characterize organisms without prior information. For example, Dworzanski et al. [60] proposed a 

proteomics approach based on the use of fractions of shared peptides as an estimator of relatedness 

among closely-related species. A database of 170 fully-sequenced bacterial genomes was used to 

create a matrix of sequence-to-bacterium assignments and to interpret spectra from MS/MS 

experiments. Following this approach, serotypes for B. cereus strains could be successfully 

distinguished [61] without requiring whole-genome sequencing to type strains. As closely-related 

organisms share some peptide sequences, this method is, in principle, applicable to non-genome-

sequenced bacteria. However, limitations do exist (e.g., need for pure cultures) that compromise its 

clinical applicability. A new computational method (TCUP) was recently presented by Boulund et al. 

[62]. By comparing the protein-sequence data generated to references databases, TCUP 

automatically selects peptides suitable for characterization of taxonomic composition and 

identification of expressed antimicrobial resistance genes. The method was also shown capable of 

identifying and estimating the relative abundance of individual species in mixed samples, thereby 

confirming its potential to further extend the use of bottom-up MS/MS in clinical settings. An 

important drawback of these methods is linked to composition of the databases. Searching 

comprehensive databases in order to maximize identification is not only computationally inefficient, 

but also potentially increases the number of false positive identifications. Moreover, the increasing 

number of sequenced genomes makes it more challenging to identify specific peptides at species or 

subspecies levels, since an increased number of peptides will be shared by closely-related 

microorganisms.  

Other alternatives based on MS/MS are possible, as exemplified by the method based on 

unidentified tandem mass spectral libraries proposed by Önder et al. [63], a workflow which is 

peptide identification-free, and thus genome sequence-independent. This method uses a similarity 

cluster algorithm to group MS/MS spectra that may be derived from the same peptide ion and, 
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subsequently, merges them into a unique consensus spectrum to generate MS/MS signal 

fingerprints. Shao et al. [64] used this workflow to successfully differentiate bacteria at the strain 

level. However, although the fingerprints generated are richer in information and, hence, potentially 

more discriminative when differentiating bacterial isolates, the reliability of the method depends on 

the effectiveness of the filtering algorithm to detect and eliminate MS/MS spectra derived from non-

peptides, as well as on the sensitivity and specificity of the clustering algorithm used to distinguish 

spectra from one peptide versus another. Furthermore, this approach has not yet been shown to 

work on complex samples containing at least ten distinct microorganisms. 

Targeted approaches based on the characterization of specific sets of peptides by selected 

reaction monitoring mode (SRM) are among the methods based on MS/MS that have proven to be 

particularly useful for proteotyping and, more generally, for clinical applications. Characterized by a 

high multiplexing capacity, SRM allows the development of assays to quantify proteoform of a given 

protein in a sample, provided the different forms are characterized by a mass shift. In SRM methods, 

pre-selected peptides are quantified by monitoring specific precursor-to-product ion transitions 

using MS/MS [65]. Charretier et al. [66] demonstrated the high multiplexing capabilities of the 

approach by using the most specific peptides to design an SRM method for in-depth characterization 

of S. aureus strains in 60–80 minutes using a single, multiplexed analysis. The method not only 

correctly determined the antibiotic resistance of the strains, it also identified two relevant toxins. 

SRM illustrates the potential clinical applicability of MS/MS in developing personalized patient 

treatments, particularly in the context of the emergence of multidrug resistance and of the current 

dearth of therapeutic options. Notwithstanding, potential pitfalls like the occurrence of false 

positives due to sequence errors, or noise and interference from the sample matrix, or the existence 

of mixed cultures among clinical samples, must be addressed in future developments of targeted 

approaches if we are to see wider clinical application. 

 

5. Limitations  

In terms of instrumentation, successful typing requires high resolution, high mass accuracy, 

high sensitivity, a wide dynamic range and high scan rate [2]. MALDI-TOF MS-based typing methods 

are simple and high throughput, but the quality of the MS profile mass accuracy, data richness and 

reproducibility could be further improved to attain the discriminative power required to reliably 

differentiate between microorganisms at the subspecies level, as required for epidemiological 

surveys. The indubitable advantages of implementing MS/MS-based proteotyping approaches in 

routine clinical practice include their theoretically greater discriminatory capability than methods 

that detect small intact proteins. However, several improvements are still required to overcome 

limitations of the currently available instrumentation and approaches. First, MS/MS-based methods 

are much more demanding in terms of time, effort and expertise required for sample preparation, 

analysis and data processing. These aspects currently represent major constraints preventing the 

implementation of MS/MS-based proteotyping in routine diagnostics. In this context, development 

of user-friendly software to facilitate handling of the acquired data is a priority. Second, the cost of 

high-resolution instruments may restrict their adoption and use. Furthermore, a technical limitation 

of MS/MS-based proteotyping methods is the requirement for a denser and more accurate reference 

database. In fact, to be successful, proteotyping requires comprehensive and accurate whole-

genome sequence databases and a stable taxonomy. The results produced will only be as accurate as 

the databases available, which becomes problematic when we consider the high rates of 

misclassified WGS data observed in public databases [67, 68], or when dealing with new species or 

emerging pathogens, for which data might not be as readily available as for other species. Last but 
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not least, all of the MS/MS methods cited require further simplification, automation, and validation 

before they can be implemented as part of a clinical routine. Specifically, if we are to overcome the 

additional challenge represented by the presence of human biomass such as cells, mucus, and 

proteins, sample preparation must be optimized to allow direct typing of pathogens from clinical 

specimens without culturing. 

 

6. Perspectives 

MALDI-TOF MS proteotyping protocols have been extended and improved in many respects 

over the last decade, and this technology has become a versatile tool that can be useful beyond the 

identification of a bacterial species, e.g. for the characterization of arthropod vectors of infectious 

diseases including ticks and mosquitoes [69].  

Optimized typing strategies (e.g., control and standardization of culture conditions, sample 

preparation procedures, and sample analysis methods) are needed to enhance the reproducibility 

and portability of proteomics data. To reduce the time-to-answer, approaches are increasingly being 

designed to directly process a range of medical specimens (e.g., blood and urine samples) [70]. 

Differential centrifugation, where blood cells are first removed from the sample by low-speed 

centrifugation, was one of the first techniques proposed to analyze microbial mixtures in blood 

cultures [71]. Differential lysis-based methods, involving lysis of blood cells from blood cultures prior 

to extraction of bacterial proteins, have been reported to be faster, simpler, and to offer better 

performance [72]. Inigo et al. [73] proposed a combining a urine screening method, such as flow 

cytometry or automated microscopic urine sediment analysis, with MALDI-TOF MS for reliable 

identification of bacterial strains, especially Gram-negative, from urine samples,   

The differentiation of bacterial, viral and other pathogenic isolates represents only one of the 

promising and clinically-relevant applications of proteotyping. Innovative proteotyping approaches 

are currently being developed to gain insight into host defence responses, to establish potentially 

useful targets for therapeutic intervention, and to identify biomarkers to identify the affected organs 

during a bacterial infection. Along these lines, a promising approach was recently proposed by Lapek 

et al. [74] that demonstrated the potential of their proteomics-based strategy for the identification 

of organ-specific and plasma-trackable markers of Group A Streptococcus (GAS) infection. Advanced, 

culture independent, MS-based typing approaches could represent a valuable tool to assess the 

structure of the microbiome at a specific body site. By typing its components, proteotyping could 

represent a new diagnostic and disease-monitoring strategy that contributes to evaluation of the 

extent of dysbiosis or the co-occurrence of pathogens. In this context, microbiome proteotyping 

could aid medical decision-making regarding selection of antimicrobial agents and management of 

the related disease.  

The importance of proteotypes in deciphering key biological insights has also been pointed 

out in the field of cancer biology and, more generally, the characterization of mammalian cells [75]. 

Guo et al. [76] described a rapid proteotyping approach to reveal cancer biology determinants and 

identified novel drug-response determinants for clinically-relevant chemotherapeutic and targeted 

therapies. In addition, Munteanu and Hopf [77] discussed the adoption of MS-based workflows for 

the classification of mammalian cells highlighting emerging applications for this methodology in 

clinical diagnostics, among other areas. However, in this context the potential of proteotyping and its 

translational clinical applications has yet to be fully exploited. 

 

7. Concluding remarks 
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Over the last decade, MALDI-TOF MS proteotyping became a standard method in clinical 

microbiology laboratories for routine identification of bacterial pathogens. As discussed in this 

review, this approach will continue to be improved, increasing in accuracy and sensitivity. Recent 

developments suggest that clinical proteotyping will experience another dramatic revolution. MS/MS 

of peptides demonstrates excellent sensitivity compared to MALDI-TOF of small intact proteins, and, 

in addition, allows many more discriminative signals to be recorded. This method will probably be 

used in two complementary ways; first, targeted proteomics could be further developed to identify 

the most relevant bacterial groups and their associated antibiotic resistances; alternatively, shotgun 

proteomics could appear soon as a powerful method to identify any kind of bacteria present in 

medical samples, without the need for prior knowledge, while also providing a quick antibiotic-

resistance checklist based on the detected proteins. This final proteotyping method could be 

extremely valuable when analyzing complex samples such as the human microbiota. 
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Figure 1. Advantages of implementing proteotyping in the routine clinical practice. 

 

Figure 2. Current and novel methodologies for mass spectrometry-based pathogen typing. Relevant 

references are indicated in squared brackets. 
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