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The identification of genes of agronomic interest in bread wheat (Triticum aestivum L.) is
hampered by its allopolyploid nature (2n = 6x = 42; AABBDD) and its very large genome,
which is largely covered by transposable elements. However, owing to this complex
structure, aneuploid stocks can be developed in which fragments or entire chromosomes
are missing, sometimes resulting in visible phenotypes that help in the cloning of affected
genes. In this study, the 2C gametocidal chromosome from Aegilops cylindrica was used
to develop a set of 113 deletion lines for chromosome 3D in the reference cultivar Chinese
Spring. Eighty-four markers were used to show that the deletions evenly covered
chromosome 3D and ranged from 6.5 to 357 Mb. Cytogenetic analyses confirmed that
the physical size of the deletions correlated well with the known molecular size deduced
from the reference sequence. This new genetic stock will be useful for positional cloning of
genes on chromosome 3D, especially for Ph2 affecting homoeologous pairing in
bread wheat.

Keywords: wheat, deletion line, homoeologous pairing, Ph2, gametocidal
INTRODUCTION

Bread wheat (Triticum aestivum L.) is one of the most important cultivated crops. It emerged
through two distinct hybridization events between three diploid species, resulting in its
allohexaploid nature. The genetic material consists of three closely related subgenomes, namely
A, B, and D (Huang et al., 2002), which generate the genomic plasticity necessary for bread wheat to
grow under a wide range of climatic conditions. Moreover, bread wheat tolerates the creation of
aneuploid lines, such as nullisomic, substitution, deletion, and many other types. However, the three
sets of homoeologous chromosomes create a vulnerability to incorrect chromosome pairing during
meiosis, possibly resulting in aberrant gametes. Therefore, to maintain the pairing behavior during
meiosis, a system developed in wheat that is enforced genetically by pairing homoeologues (Ph)
genes. In this control, the most effective genes are Ph1 and Ph2. Ph1 is on the 5B chromosome and
has a major influence on homoeologous chromosome pairing (Riley and Chapman, 1958; Sears and
Okamoto, 1958). Ph2 is on the short arm of chromosome 3D (Mello-Sampayo, 1971) and has less of
an effect compared with Ph1. Despite some attempts at positional cloning (Sutton et al., 2003), Ph2
has not been formally identified to date. Other genes contribute to the control of homoeologous
pairing but have only minor influence, such as Ph3, which is on the short arm of chromosome 3A
and is possibly a homoeologous variant of Ph2 (Driscoll, 1972; Mello-Sampayo and Canas, 1973).
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Genes are usually maintained in a population by benefiting
their hosts or alternatively, by high linkage to such a gene (a
phenomenon called linkage-drag). However, there are exceptions
to this rule, such as transposable elements, B chromosomes, and
gametocidal genes/chromosomes. These genetic units use
various “selfish” behaviors to either preserve their existence in
the population or to increase their number. The gametocidal
genes or chromosomes secure their inheritance to progeny
through induction of genomic aberrations and consequent
total or partial sterility in gametes lacking them. In wheat, this
phenomenon is observed in substitution and addition lines with
alien chromosomes from the genus Aegilops. The backcrossing of
hybrids to wheat between the two species does not remove
certain chromosomes of Aegilops from the genome of progeny
(Endo and Tsunewaki, 1975; Maan, 1975), and chromosomal
aberrations are observed in some gametes of such hybrids (Finch
et al., 1984). Gametocidal chromosomes originate from the
Aegilops genomes C, S, and M, and the magnitude of their
effect in wheat varies with the type of gametocidal
chromosome and the genotype of the wheat background.
Whereas some chromosomes cause complete sterility of
gametes that lack them (e.g., 2Slo, 2Ssh, T2B-2Ssp.au, 4Slo, 4Ssh,
and 4Ssh#2); others generate only semi-lethal changes and make
it possible to transfer the aberrations to progeny (Endo, 1990;
Endo, 2007).

The 2C gametocidal chromosome from Aegilops cylindrica
has been introduced to the T. aestivum ‘Chinese Spring’
background and is being exploited to create mostly terminal
deletions of wheat chromosomes. Hereafter, this procedure will
be called the “2C gametocidal system” (Endo and Gill, 1996).
Tsujimoto (1993) showed that telomeric regions are quickly
rebuilt after chromosome breakage and that chromosome
stability allows this system to be used as a genetic tool. Endo
and Gill (1996) produced 436 deletion lines across all
chromosomes using this approach, with subsequent
establishment of deletion chromosomes in homozygous/
hemizygous constitutions. This resource has been a powerful
tool in mapping the position of various genes and markers
(Sourdille et al., 2004).

The 2C gametocidal system can be used to create a series of
aberrations in any chromosome of wheat. However, the
judicious use of existing aneuploid stocks can increase the
efficiency and ease in selecting aberrations targeting specific
chromosomes. If the monosomic addition line 2C is crossed as
male to a nulli-tetrasomic line lacking the targeted chromosome,
the recovered aberrations will be monosomic and hence easily
detectable by PCR-based techniques. The selection of disomic/
homozygous aberrations is performed following self-pollination
of the plants carrying the aberrations, but the presence of the
additional copy of a homoeologue inherited from the nulli-
tetrasomic may complicate the transmission patterns of the
targeted chromosome.

In this study, the 2C gametocidal system was used to develop
a set of deletion lines for chromosome 3D in wheat to map the
position of the Ph2 gene. This gene was previously mapped using
a ph2a mutant carrying a terminal deletion on chromosome 3D
Frontiers in Plant Science | www.frontiersin.org 2
that was estimated to be approximately 80 Mb (Sutton
et al., 2003).
MATERIALS AND METHODS

Plant Material and Crosses
The deletion lines were derived from crosses between the
monosomic addition line of chromosome 2C from A. cylindrica
in the hexaploid wheat cultivar Chinese Spring (CS) background
(6x = 2n = 43; AABBDD + 2C′) used as male and the hexaploid
CS wheat nulli-tetrasomic lines lacking chromosome 3D with
tetrasomic constitution either for chromosome 3A or 3B (6x =
2n = 42; AABBDD − 3D″ + 3A″/3B″) used as female (Figure 1).
The 2C gametocidal chromosome induces chromosomal
breakages in gametes where it is not transferred, resulting
FIGURE 1 | Crossing scheme used to develop deletion lines. The crossing
was performed between nulli-tetrasomic plants lacking chromosome 3D with
an extra chromosome pair 3A or 3B (female) and a monosomic addition line
with an extra 2C chromosome from Aegilops cylindrica (male), with both on
the ‘Chinese Spring' wheat background. The progeny contained a damaged
set of chromosomes from the male parent and a healthy set lacking the 3D
chromosome from the female parent.
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mostly in terminal deletions. The crosses with nulli-tetrasomic
lines lacking a pair of 3D chromosomes ensure that a potentially
aberrant 3D chromosome from the 2C addition-line parent will be
in the progeny in a monosomic state and that a deletion will not be
masked by an entire 3D chromosome from the female parent. The
plants were cultivated in growth chambers under the following
conditions: a 16/8 h light/dark photoperiod, temperatures of 20 °C
during the day and 16 °C at night, and 60% humidity.

Identification of Plants With Deletion on
the 3D Chromosome
The seeds acquired from the crosses were germinated in pots and
cultivated for 2 weeks. Thereafter, DNA was isolated from a part
of a young leaf by using a magnetic beads protocol (Sbeadx mini
plant kit, LGC, Teddington, United Kingdom). The DNA was
used to identify the deletion lines in the F1 generation. Molecular
markers were designed for the distal ends of both arms of
chromosome 3D, with a marker located in the centromeric
area as a control for chromosome presence; primer details are
shown in Table 1. The PCR was performed in 20 µl (1× PCR
buffer, 1.5 mM MgCl, 200 µM dNTPs, 1 µM primers, 20 ng of
DNA, 0.4 U/20 µl Taq DNA polymerase) under the following
conditions: initial denaturation at 95 °C for 10 min; 35 cycles of
denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, and
elongation at 72 °C for 50 s; followed by a final extension at 72 °C
for 10 min. The PCR was scored for the presence/absence of a
specific product on 1.2% agarose gel. The plants carrying a
deletion on chromosome 3D (lacking either or both 3DS and
3DL-specific PCR products) were replanted into larger pots and
cultivated under the following conditions: a 16/8 h light/dark
photoperiod, temperatures of 20 °C during the day and 16 °C at
night, and 60% humidity. Plants were grown until seed harvest.

Characterization of Sizes of Deletions
The deletion lines of chromosome 3D were characterized using a
set of STS molecular markers covering the entire chromosome.
In addition to the deletion lines, the X-ray-induced deletion
mutant ph2a (Sears, 1950) was also characterized. Eighty-four
was the final number of markers (Supplementary Table 1), of
which 58 were on the short arm and 26 were on the long arm of
the chromosome. The characterization was performed using
presence/absence scoring and agarose gel electrophoresis
separation as described above.

The primers for analysis were designed using the reference
sequence of the wheat genome (IWGSC, 2018). The sequence
was masked for annotated repetitive sequences. The loci for
Frontiers in Plant Science | www.frontiersin.org 3
primer design were selected to cover the chromosome as evenly
as possible with the priority in the distal 125 Mb of the short arm
of chromosome 3D. The regions not masked with repeats (10–30
kb) were aligned using BLASTn against reference sequences of
chromosomes 3A and 3B, and the corresponding regions were
compared to depict the 3D-specific polymorphisms. Those
polymorphisms were used to design 3D-specific primers
(Supplementary Table 1). The primers were tested on T.
aestivum ‘Chinese Spring’ as the positive control, a nulli-
tetrasomic line lacking chromosome 3D as the negative
control, and water as the blank.

Identification of Deletion Lines With the 3D
Chromosome in a Disomic State
Each deletion line was self-pollinated to increase seed stocks and
to induce a disomic constitution of the 3D chromosome carrying
a deletion. The upcoming generation comprised nullisomics,
monosomics, and disomics for the analyzed chromosome.
Therefore, screening with molecular markers was necessary to
select the stable lines carrying the 3D chromosome with deletion
in disomic constitution. First, the entire population was screened
using the PCR marker on the centromere of the 3D chromosome
(see above) to eliminate all nullisomics. The plants carrying the
3D chromosome were selected for droplet digital PCR (ddPCR)
analysis. The ddPCR analysis was performed using ddPCR™
Supermix for Probes (no dUTP) (Bio-Rad, Hercules, USA)
according to manufacturer's instructions with a 60 °C
annealing/extension phase. The reference and target primers
and TaqMan® probes (Thermo Fisher Scientific, Waltham,
USA) used for chromosomes 4A (disomic in all lines) and 3D
are listed in the Table 2.

Fluorescent in Situ Hybridization of
Selected Lines
Selected lines carrying a deletion on the 3D chromosome were
characterized cytogenetically using fluorescent in situ
hybridization (FISH). Mitotic metaphase chromosomes were
obtained from synchronized root tip meristems (Vrána et al.,
2012). Synchronized roots were fixed in 90% ice-cold acetic acid
for 10 min and then washed three times with 70% ethanol and
stored at −20 °C in 70% ethanol. Chromosome preparations
using the drop technique were performed according to Danilova
et al. (2012). The individual chromosomes in the wheat
karyotype were identified using the combination of two FISH
probes: (GAA)n microsatellite (FITC) and Afa repeat (Cy3)
(Pedersen and Langridge, 1997; see Supplementary Figure 1).
The probes were labeled via PCR, and FISH was performed
under the conditions described in Kubaláková et al. (2003). The
signals were observed using a Zeiss Axio Imager Z2 fluorescent
microscope (Carl Zeiss, Jena, Germany) equipped with a CCD
camera. At least five copies of the 3D chromosome per line were
characterized by measurement of the deleted arm and whole
chromosome length by using MicroImage software version 4.0
(Olympus, Shinjuku, Japan). The deletion size on chromosome
3D was estimated on the basis of the fragment length value (Endo
and Gill, 1996).
TABLE 1 | Sequences and localization of primers used for identification of lines
carrying a deletion on the short arm, long arm, or both arms of chromosome 3D.

Oligo ID Sequence 5′–3′ Localization

3D_0.3Mb_F TTAGTGGATCGAGGATTGTG distal 3DS
3D_0.3Mb_R TCGGTGACTAGTGTGTTTCTG
3D_610.2Mb_F GCAACAGAAGAAGAAAATACTGCT distal 3DL
3D_610.2Mb_R GTGCATCATATCTATGGTCTATC
3D_253.4Mb_F TATGCGTTTGGAGTAGTTCTTGT 3D centromere
3D_253.4Mb_R CTCATCTCAGGCTGTCTAATTAA
January 2020 | Volume 10 | Article 1756
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RESULTS

From the F1 generation, 6169 seeds formed by crosses between
the monosomic addition line of chromosome 2C from A.
cylindrica and the nulli-tetrasomic lines (6x = 2n = 42;
AABBDD − 3D″ + 3A″/3B″) were analyzed. The plants
carrying a deletion on chromosome 3D were detected using
STS markers designed for the terminal ends of 3D chromosomal
arms. In tota l , 113 delet ion l ines were developed
(Supplementary Table 2). All identified plants in the F1
generation carried a 3D chromosome with a deletion in
monosomic constitution. More precisely, 43 (39.13%) of the
lines carried a deletion on 3DS, 68 (60.87%) carried a deletion on
3DL, and two lines carried a deletion on both arms (for the
schematic layout, see Supplementary Figures 2, 3, and 4). These
numbers corresponded to the length–arm ratio of 0.393
(240 Mb) for the short arm and 0.607 (370 Mb) for the long
arm (IWGSC, 2018).

A set of self-pollinations established a disomic constitution of
deleted chromosomes in individual lines. The number of 3D
copies was analyzed using a ddPCR protocol with specific
primers and the TaqMan probe system comparing the number
of events on the analyzed chromosome (3D) with that on the
reference chromosome (4A). The disomic constitution of
deletion chromosomes was successfully established in 102 of
the 113 lines.

The whole set of deletion lines was characterized using 84 STS
molecular markers evenly distributed along the entire 3D
chromosome (Supplementary Table 1). The size of the
deletions ranged from 6.5 to 357 Mb, and the size of the
deletion bins (the region between two adjacent deletion
breakpoints) ranged from 0.15 to 50 Mb. Some deletions
seemed to have the same breakpoint; however, this was most
likely caused by insufficient resolution of molecular markers in
that particular region. The length of chromosome arm deletions
and the number of missing genes in individual lines, as well as
the differences in missing genes among the lines, are summarized
in Supplementary Table 2.

The deletion lines of chromosome 3D were produced to map
the position of the Ph2 gene that was localized on this
chromosome by Mello-Sampayo (1971). The position of this
gene was further delimited using an X-ray-induced deletion
Frontiers in Plant Science | www.frontiersin.org 4
mutant ph2a (Sears, 1982), and therefore, this mutant was
included in the analysis as a control. The size of the deletion in
the ph2a mutant was previously estimated to affect
approximately 80 Mb in the terminal part of the 3DS using
synteny with the rice chromosome (Sutton et al., 2003).
However, the screening by molecular markers showed this
deletion to be larger by approximately 40 Mb, because the
breakage point was between 120 and 125 Mb.

FISH analysis of selected deletion lines representing various
lengths of deletions was performed to cytogenetically
characterize the material (Figure 2). The 3D chromosome was
identified using the Afa repeat family (Pedersen and Langridge,
1997). Among the 32 selected deletion lines, 12 had the breakage
on the 3DS and 20 had the breakage on the 3DL. In all cases, the
size of deletion determined by molecular markers was confirmed
by cytogenetic observation.
DISCUSSION

The deletion lines were produced using the gametocidal system
described by Endo and Gill (1996). The 2C gametocidal
chromosome causes terminal chromosomal deletions in the
gametes that lack it. However, these aberrations are usually not
lethal because of the compensation by the other two
homoeologous chromosomes. Thus, deletions can be
transferred into progeny (Endo, 1988). Endo and Gill (1996)
derived 436 plants via this system and characterized the deletions
cytogenetically using a C-banding protocol. Of the 436 plants, 12
of them carried a deletion on chromosome 3D. In this study, 113
novel deletion lines for chromosome 3D were generated,
increasing substantially the number of chromosome 3D
deletion lines that are available for use in various applications.

Because the deletion lines were primarily produced to map
the Ph2 gene, the marker resolution was highest on the short arm
of chromosome 3D. The 58 markers divided the short arm into
segments ranging from 100 kb to a maximum of 29 Mb in the
centromeric area. Owing to the high marker resolution, only a
single or a few deletion breakpoints were assigned in each
segment (Supplementray Table 2). The short arm of
chromosome 3D comprises 1,949 annotated genes (IWGSC,
2018), and in this study, the estimated number of genes
deleted in individual lines was 194–1,927, with the number of
genes in each deletion bin ranging from 7 to 276. By contrast, the
resolution achieved with 26 markers on the long arm of the
chromosome was lower than that on the short arm, with
segments ranging from 3 to 50 Mb. The long arm of
chromosome 3D carries 3,369 genes (IWGSC, 2018), and the
number of genes deleted in individual lines ranged from 306 to
3,351, with each deletion bin comprising between 76 and 468
genes (see Supplementray Table 2). The resolution of deletion
bins in the area of the Ph2 gene (distal 125 Mb of the short arm)
ranged between 1.5 and 12 Mb, with an average of 6 Mb, limiting
the number of potential candidate genes to between 7 and 276.

To produce single chromosome deletion lines via the 2C
gametocidal system, a cross is performed with one parent a nulli-
TABLE 2 | Sequences of primers and probes used for determination of 3D
chromosome number in the ddPCR assay. The TaqMan (taq) probes were either
labelled by FAM (4A chromosome; used as a reference) or VIC (3D chromosome;
target).

Oligo ID Sequence and modifications 5'–3' Amplicon
length [bp]

Ta-4A_F ATTTTGGGTCCTTGTTGTTATC 181
Ta-4A_R ACACGCATGAAGTGTATAATGC

Ta-4A_taq FAM-AAGAACTTCACACACGAACTCGGA-QSY

Ta-3D_F CTCATCTCAGGCTGTCTAATTAA 167
Ta-3D_R CATAGATCCCTCCTTGAAGGA

Ta-3D_taq VIC-CCTCACTCAAGCACCACATCG-QSY
January 2020 | Volume 10 | Article 1756
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tetrasomic line lacking a chromosome of interest. The resulting
progeny carry the deleted chromosome of interest in a
monosomic constitution. Because the gametes produced by the
progeny may or may not contain the deleted chromosome, the
lines are unstable for direct use, making it unreliable material for
seed stock enlargement, crossing, or physical gene mapping.
Therefore, self-pollination of this material is recommended to
accumulate the deleted chromosome in a disomic constitution.
The self-pollination of a plant carrying a chromosome in the
monosomic state can produce nullisomic, monosomic, or
disomic progeny for the respective chromosome. However, the
proportion of transmission to progeny of such a chromosome is
shifted by various irregularities in univalent behavior in meiosis.
In Nicotiana tabacum, the univalent elimination of different
monosomic chromosomes occurs at the same frequency,
fluctuating around 75% (Olmo, 1935). In wheat, however, the
univalent elimination seems to have greater variability,
depending on which chromosome is in a monosomic state
(Morrison and Unrau, 1952; Tsunewaki and Heyne, 1960). In
the material in this study, nullisomics occurred more frequently
than expected in progeny of monosomic deletion lines. Univalent
behavior during meiosis can explain the unexpected proportions
of nullisomics, monosomics, and disomics in progeny. Because
univalents lag behind the bivalents while being pulled to the
poles at anaphase I, they are therefore excluded from newly
formed nuclei and are preserved in the cytoplasm as micronuclei
(Sears, 1950; Tsunewaki and Heyne, 1960).

In this study, the 2C gametocidal system was used to
develop novel deletion lines for chromosome 3D in common
Frontiers in Plant Science | www.frontiersin.org 5
wheat (Endo and Gill, 1996). The deleted chromosome
was successfully fixed in disomic constitution in most of the
material to ensure the stable inheritance of the chromosome of
interest, which greatly improves further use of the deletion
lines. The new material will be useful to clone genes of
agronomic interest, such as Ph2 , a gene involved in
homoeologous pairing in bread wheat (Mello-Sampayo, 1971).
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