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Abstract

We investigate the benefit of operating the chemostat model with periodic controls for biological water decontamination. We
address a first problem of minimizing the average output concentration of pollution under a constraint of the total quantity
of water treated over the period, and a second one of maximizing this quantity under a constraint on the average output
concentration. We first give conditions on the growth characteristics of micro-organisms for which an improvement is possible,
compared to steady-state. We then give the global optimal periodic control strategies for the first problem and show a duality
between the two problems, which allows to obtain the solutions of the second problem from the first one. Results are illustrated
on Monod, Haldane, Hill and Contois kinetics.
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1 Introduction

In the past decades, periodic operations of biological or
chemical processes have been investigated to improve
their performances [3,1,16,15]. Several contributions
have identified situations for which a periodic solution
improves an objective, such as the productivity, com-
pared to steady state [19,1,14,10]. In the present work,
we revisit this problem for the chemostat model in a
waste-water treatment (WWT) context. Let us begin
by recalling the equations of the model (see e.g. [11])) ṡ = − 1

Y µ(s, x)x+ F
V (sin − s),

ẋ = µ(s, x)x− F
V x,

(1)

which represent the time evolution of the concentrations
of substrate s and biomass b in a tank of volume V . The
reactor is fed with an input flow rate F of substrate with
concentration sin and drawn off with the same rate (V
remains then constant). Y is the conversion rate and
µ(·) the growth function of the micro-organisms (that
depends on x or not). The removal rate D = F/V is the

? Preliminary results were presented at IFAC MATHMOD
2018 meeting [4]. Corresponding author: F.-Z. Tani.

control variable. Continuous WWT are generally oper-
ated over a large time horizon (months or years) and so-
lutions sought among steady states. One can easily check
that non-trivial equilibriums of system (1) are given by
(s, x,D) = (s̄, Y (sin − s̄), D̄) such that

D̄ = µ(s̄, Y (sin − s̄)). (2)

In practice, one faces two kinds of situations:

1. A water quantity Q̄ has to be treated on a time
interval of length T . This imposes D̄ = Q̄/(V T )
and thus s̄ at steady state, from equation (2).

2. A set-point s = s̄ is imposed. This sets D̄ at steady-
state from equation (2), and thus the treated quan-
tity Q̄ = D̄V T during a time interval of length T .

However, the measurement of concentration s in water
released in the environment is usually averaged over a
certain time interval, fixed by governmental rules 1 . In
this work, we study periodic solutions that can do a bet-
ter job than steady state, that is to say an average s
lower than s̄ under the constraint on Q in case 1, and a
treated quantity larger than Q̄ under the constraint on s

1 see for instance the European 2008/105/EC Directive.
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in case 2. The literature on periodic control already pro-
vides tools to answer such questions, in particular the
π-criterion [6]. However, up to our knowledge, all the
existing approaches consider local conditions and sinu-
soidal or wave controls, apart the recent work [5] which
is based on the Pontryagin’s Maximum Principle (PMP)
and convexity. Here, we do make any restrictions on the
class of controls and we moreover determine the optimal
ones. For any T -periodic integrable function ξ(·), let us
denote its average by

〈ξ〉T :=
1

T

∫ t+T

t

ξ(τ)dτ,

Consider the optimal control problems for the two cases

Problem 1 Given T > 0 and D̄ > 0, solve

inf
D(·)

{
〈s〉T ; s(0) = s(T ), 〈D〉T = D̄

}
(3)

Problem 2 Given T > 0 and s̄ > 0, solve

sup
D(·)
{〈D〉T ; s(0) = s(T ), 〈s〉T = s̄} . (4)

where D(·) is sought among measurable control taking
values in [D−, D+] with 0 ≤ D− < D+, and (s(·), x(·))
is a periodic solution of (1). Note that the objective here
is not to optimize T , differently to [19,1,14,10]. Prelim-
inary work with a conjecture on the optimal control,
verified numerically, has been presented in [4]. We show
here how to apply the results from [5] on Pb. 1 and ex-
tend them for Pb. 2 to prove the global optimal solu-
tions. Indeed, it turns out that the first problem is easier
to study, and that the two problems are ”dual” in the
sense that the value of the constraint on 〈D〉T in Pb. 1 is
the objective of Pb. 2 under a constraint on 〈s〉T whose
value is the criterion of the Pb. 1. We prove a duality
that allows to deduce the solutions of Pb. 2 from Pb. 1.
The paper is organized as follows. After some prelimi-
naries in Sec. 2, we investigate in Sec. 3 the existence of
periodic solutions improving the steady state, depend-
ing on the characteristics of the growth function. Our
results are stronger than π-criterion in the sense that we
consider global solutions. Then, when an improvement
is possible, we determine in Sec. 4 the optimal controls
and show the duality between Pb. 1 and Pb. 2. Finally,
Sec. 5 illustrates the application of the results with sev-
eral growth functions of the literature.

2 Assumptions and preliminaries

Let z = Y (sin − s)− x. One gets ż = −Dz from (1). A
periodic solution has thus to satisfy z = 0 with s(·) in
[0, sin] solution of

ṡ = (D−ν(s))(sin−s) with ν(s) := µ(s, Y (sin−s)) (5)

A0. The function ν is Lipschitz on [0, sin], non-negative
and null only at 0.

We shall say that a solution s(·) of (5) with control D(·)
is admissible for Pb. 1, resp. Pb. 2 if it is periodic and
verifies 〈D〉T = D̄, resp. 〈s〉T = s̄.

A1. The pair (s̄, D̄) belongs to (0, sin)× (D−, D+) with

s̄ := inf{s ; ν(s) > D̄} (6)

Remark 1 If the equation ν(s) = D̄ admits several
roots, the desired steady-state s̄ is the lowest one as the ob-
jective of WWT is to reduce the pollution. Then ν is nec-
essarily increasing in a neighborhood of s̄, which implies
that s̄ is a locally stable equilibrium of (5) for D = D̄.

We distinguish three kinds of assumptions that cover the
well known functions of the literature: Monod, Haldane,
Hill functions which depend on s and the Contois one
which is density dependent (i.e. depends on s and x).

A2a. ν is concave or there exists ν̄ concave non-
decreasing such that ν̄ ≥ ν on (0, sin) with ν̄(s̄) = ν(s̄).

The Monod’s function [12] is concave and satisfies A2a:

ν(s) = µ(s) =
µmaxs

Ks + s

ν

The Haldane’s function [2] is non monotonic:

ν(s) = µ(s) =
µms

Ks + s+ s2/KI

ŝ = arg max ν =
√
KsKi

ν̄

ν

ŝ

and concave only on [0, ŝ]. Under A1, one has s̄ < ŝ and
A2a is verified with

ν̄(s) =

{
ν(s), s < ŝ∗
ν(ŝ), s ≥ ŝ

A2b. ν is strictly convex on (0, sin).

The Contois’s function [9] depends on x and satisfies
A2b when Y > 1

K :
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ν(s) = µ(s, Y (sin − s))
=

µmaxs

KY (sin − s) + s

ν

A2c. ν is locally strictly convex about s̄.

The Hill function [13] is increasing:

ν(s) = µ(s) =
µmaxs

n

Kn
s + sn

(n > 0)

sc = Ks

(
n−1
n+1

)1/n

s⋆sc

ν̄

ν

and convex for s < sc. A2c is thus fulfilled for s̄ < sc.
A2a is satisfies for s̄ > s?, where s? is the abscissa whose
tangent to the graph of ν passes through 0, considering
the function

ν̄(s) =

{
µ′(s∗)s, s < s∗

µ(s), s ≥ s∗
with s∗ = sc(1 + n)

1
n

Periodic solutions of (5) satisfy the following properties.

Lemma 1 Let s(·) be a T -periodic solution of (5) on
(0, sin) with control D(·). One has the properties.

(i) 〈D〉T = 〈ν(s)〉T .
(ii) If 〈s〉T ≤ s̄, 〈D〉T ≥ D̄ and ν is increasing on

s([0, T ]), there exists t ∈ [0, T ] such that s(t) = s̄.

PROOF. (i) The map t 7→ ln(sin − s(t)) is T -periodic
and with (5) one obtains 〈D〉T = 〈ν(s)〉T .
(ii) Moreover (5) and ν(s̄) = D̄ give

∫ T

0

[ν(s(t))− ν(s̄)] ≥ 0. (7)

Then, s(t) < s̄ for any t ∈ [0, T ] gives a contradiction
with (7) when ν is increasing over s([0, T ]). 2

3 Conditions for improvements

The first point is to show the existence of non-constant
admissible solutions.

Lemma 2 There exits non-constant admissible s(·) for
Pb. 1 and 2. Moreover ‖s− s̄‖∞ can be arbitrary small.

PROOF. Let v(·) be a T -periodic measurable bounded
function with 〈v〉T = 0, non null almost everywhere.
Let Dε(·) := D̄ + εv(·), which takes values in [D−, D+]
for ε > 0 small enough, and verifies 〈Dε〉T = D̄. Let
θ(s0, ε) := s(T,Dε, s0)−s0, where s(t,D, s0) denotes the
solution of (5) at time t with s(0) = s0 and control D(·).
By continuous dependency of s(T,Dε, s0) w.r.t. (s0, ε), θ
is continuous. As ν is increasing in any sufficiently small
neighborhood (s−0 , s

+
0 ) of s̄ (Rem. 1)), one has θ(s−0 , 0) >

0, θ(s+
0 , 0) < 0 and thus θ(s−0 , ε) > 0, θ(s+

0 , ε) < 0 for ε
sufficiently small. By the Mean value Theorem, we de-
duce the existence of s̃0 ∈ (s−0 , s

+
0 ) such that θ(s̃0, ε) = 0,

that is, the existence of a non-constant T -periodic so-
lution s̃ := s(·, Dε, s̃0) with 〈Dε〉T = D̄. Finally, Gron-
wall’s Lemma gives the existence of a constant C > 0
such that ||s̃− s̄||∞ ≤ Cε.
Let y ∈ C1(R,R) be a non null T -periodic function such
that 〈y〉T = 0. For ε small enough, t 7→ sε(t) := s̄+εy(t)
takes values in (0, sin) and satisfies ||sε − s̄||∞ < ‖y‖∞ε
as well as 〈sε〉T = s̄. Note that sε(·) is solution of (5) for

the control Dε(t) := ṡε(t)
sin−sε(t) + ν(sε(t)). One then has

|Dε(t)−D̄| ≤ F (t, ε) := ε
∣∣∣ ẏ(t)
sin−s̄−εy(t)

∣∣∣+εL|y(t)|, where

L is the Lipschitz constant of ν. As F tends to 0 when ε
tends to 0, uniformly in t, we conclude that Dε is admis-
sible for ε small enough, and thus sε is a non-constant
periodic solution with 〈sε〉T = s̄ and ||sε − s̄||∞ <
‖y‖∞ε. 2

Proposition 3

(i) Under A2a, any non-constant admissible solution
for Pb. 1 or 2 verifies 〈s〉T > s̄ or 〈D〉T < D̄.

(ii) Under A2b, any non-constant admissible solution
for Pb. 1 or 2 verifies 〈s〉T < s̄ or 〈D〉T > D̄.

(iii) Under A2c, there exists admissible solution for Pb. 1
or 2 that verifies 〈s〉T < s̄ or 〈D〉T > D̄, with ν
strictly convex increasing on s([0, T ]).

PROOF. (i) Under A2a, Jensen’s inequality 2 ap-
plied to the concave function ν̄ gives 〈ν̄(s)〉T < ν̄(〈s〉T )
for non-constant s(·), and since ν̄ ≥ ν, one obtains
〈ν(s)〉T < ν̄(〈s〉T ). In Pb. 1, one has ν̄(s̄) = ν(s̄) =
D̄ = 〈D〉T = 〈ν(s)〉T (cf Lem. 1). One then obtains
ν̄(s̄) < ν̄(〈s〉T ) from which we deduce the inequal-
ity s̄ < 〈s〉T , since ν̄ is non decreasing. In Pb. 2,
one has ν̄(〈s〉T ) = ν̄(s̄) = ν(s̄) = D̄, and thus
〈D〉T = 〈ν(s)〉T < D̄.
(iii) Under A2c, a non-constant admissible s(·) can be
chosen in such a way that ν is strictly convex increasing
over s([0, T ]) (cf Rem. 1 and Lem. 2). Jensen’s inequal-
ity then gives 〈ν(s)〉T > ν(〈s〉T ). In Pb. 1, one has
ν(s̄) = D̄ = 〈D〉T > ν(〈s〉T ) and since ν is increasing
over s([0, T ]), we deduce that the inequality s̄ > 〈s〉T is
verified. In Pb. 2, one has 〈D〉T > ν(〈s〉T ) = ν(s̄) = D̄.

2 Let φ be a convex function on R. The Jensen’s inequality∫
B
φ(ξ(λ))dλ) ≥ φ(

∫
B
ξ(λ)dλ) holds for any function ξ inte-

grable with a measure λ on a set B. The inequality is strict
if φ is strictly convex and ξ not constant almost everywhere.
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(ii) Finally, under A2b, ν is increasing over (0, sin) and
the former inequalities are then satisfied for any non-
constant periodic solution with values in (0, sin). 2

Let us come back to the four growth functions given in
Section 3. Prop. 3 shows that for Pb. 1 and 2 one has

(1) no improvement over steady-state for Monod or
Haldane cases,

(2) a systematic improvement with non-constant solu-
tion for the Contois case when Y > 1/K,

(3) possible improvement over steady-state for the Hill
case when s̄ < sc, but not possible when s̄ ≥ s?.

4 Optimal improvements

Accordingly to Prop. 3, we consider here assumption
A2b or A2c and look for non-constant optimal solutions
on an interval where ν is strictly convex and increasing.
Indeed, Pb. 1 falls into the class of scalar optimal peri-
odic control with integral constraint on the control:

ẋ = f(x) + ug(x), x ∈ R, u(·) ∈ [−1, 1]

inf
u∈U
〈`(x)〉T s.t. x(0) = x(T ) and 〈u〉T = ū

(8)

for which recent results are available. In [5] it is proved
that under some convexity hypotheses, optimal solu-
tions are bang-bang and we show in the Appendix how
it applies to Pb. 1. Without loss of generality, we con-
sider solutions with s(0) = s̄ according to Lem. 1. For
0 < t1 < t2 < T , we define the bang-bang control:

D̂T (t) :=


D+, 0 ≤ t < t1,

D−, t1 ≤ t < t2,

D+, t2 ≤ t < T,

(9)

and posit sM = s(t1), sm = s(t2). The periodicity con-
straint s(T ) = s(0) can be written as∫ sM

sm

η(s)ds = T, (10)

where the function η : (0, sin)→ R is defined as

η(s) :=
1

(D+ − ν(s))(sin − s)
− 1

(D− − ν(s))(sin − s)
,

and the constraint 〈D̂〉T = D̄, similarly by∫ sM

sm

η(s)ν(s)ds = D̄T. (11)

The results [5] applied to Pb. 1 give the following char-
acterization of the optimality of (9) (see Appendix).

Proposition 4 There exists a unique pair (sm, sM ) with
0 < sm < s̄ < sM < sin satisfying (10)-(11) and the

control D̂T (·) with t1 := inf{t > 0, s(t) = sM}, t2 :=
inf{t > t1, s(t) = sm} is optimal for Pb. 1

(i) for any T > 0 if ν is convex increasing on (0, sin),

(ii) for T > 0 not too large if ν is only locally convex
increasing about s̄.

Note that Pb. 2 is not in the form of (8). Indeed, the
Hamiltonian of Pb. 2 is different from the one of Pb. 1
and the adjoint equations of the PMP have a different
structure, which does not allow to easily adapt the proofs
of [5] to this problem. However, we show a duality be-
tween Pb. 1 and 2. For this purpose, we introduce the
value functions with inequality constraints

VT (D̄) := min
D(·)

{
〈s〉T ; s(0) = s(T ), 〈D〉T ≥ D̄

}
(12)

WT (s̄) := max
D(·)
{〈D〉T ; s(0) = s(T ), 〈s〉T ≤ s̄} (13)

that we define onD := {D̄ ; ∃s̄ s.t.(s̄, D̄) fulfills A1} and
S := {s̄ ; ∃D̄ s.t.(s̄, D̄) fulfills A1}, respectively (stan-
dard results of the theory of optimal control [8] guaran-
tee that optimal solutions exist for both problems).

Lemma 5 For any T > 0, VT is increasing on D and is
the value function of Pb. 1.

PROOF. We first show that the constraint on 〈D〉T is
necessarily saturated. Suppose that an optimal control
D(·) satisfies 〈D〉T > D̄, and denote by s(·) its associ-
ated T -periodic solution. Let E := {t ∈ [0, T ] ; D(t) >
D̄} which is necessarily such that meas(E) > 0. Set

γ := min

( 〈D〉T − D̄
meas(E)

, D̄ −D−
)
> 0,

and define a control D̃ on [0, T ] as

D̃(t) :=

{
D(t)− γ if t ∈ E,
D(t) if t /∈ E.

which takes values in [D−, D+]. In addition, one has

D̄ ≤ 〈D̃〉T < 〈D〉T . Let s̃(·, s0) be the unique solution

of (5) associated with D̃(·) and such that s̃(0, s0) = s0.
One has s̃(T, 0) > 0 because s̃(·, 0) is non-negative and

〈D̃〉T > 0 implies that s̃(·, 0) cannot be identically null

on [0, T ]. Moreover, one has D̃(t) ≤ D(t) for t ≥ 0 and

since meas{t ∈ [0, T ]; D̃(t) < D(t)} = meas(E) > 0,
we deduce that s̃(T, s̄) < s̄ (by comparison of solutions
of scalar differential equations, see e.g. [18]). Thanks
to the Mean Value Theorem applied to the continu-
ous function s0 7→ s̃(T, s0) − s0, one deduces the exis-
tence of s̃0 ∈ (0, s̄) such that s̃(T, s̃0) = s̃0. The solu-
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tion s̃(·, s̃0) (associated to D̃(·)) is T -periodic and ver-
ifies s̃(t, s̃0) < s(t) for any t ∈ [0, T ] (by comparison
of solutions). Therefore, one gets 〈s̃(·, s̃0)〉T < 〈s〉T and
we can conclude that D(·) is not optimal for (12) with

〈D〉T > D̄ (since 〈D̃〉T < 〈D〉T ). Hence, the inequality
constraint in (12) must be saturated.
Take now D̄1, D̄2 ∈ D with D̄1 < D̄2. Since an optimal
solution of (12) necessarily saturates the inequality con-
straint, an optimal pair (D2(·), s2(·)) for VT (D̄2) is sub-
optimal for VT (D̄1) (since 〈D2〉T = D̄2 ≥ D̄1), which
implies VT (D̄2) = 〈s2〉T ≥ VT (D̄1). 2

Proposition 6 For any s̄ ∈ S and T > 0 that satisfy
conditions of Prop. 4, one has the duality

WT (s̄) = max{D̄ ∈ D; VT (D̄) = s̄} = V −1
T (s̄) (14)

and WT is the value function of Pb. 2.

PROOF. Assume first that ν is convex increasing on
(0, sin) and let us show that VT is continuous on D for
any T > 0. According to Prop. 4, for any D̄ ∈ D, there
exists a unique pair (sm, sM ) ∈ (0, sin)2 satisfying (10)-
(11), that is,

F (sm, sM , D̄) :=

[ ∫ sM
sm

η(s)ds− T∫ sM
sm

η(s)ν(s)ds− D̄T

]
= 0

Moreover, the Jacobian matrix of F w.r.t. (sm, sM )[
−η(sm) η(sM )

−η(sm)ν(sm) η(sM )ν(sM )

]

is non singular. By the Implicit Function Theorem, sm
and sM are C1 functions of D̄, and D̂T (·) is then contin-
uous in L1 w.r.t. D̄. Recall that the map D(·) 7→ s(·, D)
is continuous from L1 into C0 (see e.g. Th. 4.2 in [7]), so

that D̄ 7→ s(·, D̂T ) is continuous, and thus VT as well.
Since ν is increasing, S is an interval, invariant by dy-
namics (5). Let [s̄−, s̄+] = clo S and D̄± = ν(s̄±). Since
VT is continuous and increasing (Lem. 5), Prop. 4 gives
limD̄∈D,D̄→D̄± VT (D̄) = s̄±. VT is thus invertible on S
with V −1

T (I) = D. Take s̄ ∈ S and D† := V −1
T (s̄). Let

D(·) be an optimal control for Pb. 1 with 〈D〉T = D†,
which generates a solution s(·) with s(T ) = s(0) and
〈s〉T = s̄. The control D(·) is then sub-optimal for Pb. 2,
i.e. WT (s̄) ≥ 〈D〉T = D†. Suppose now that there ex-

ists an optimal control D̃(·) for Pb. 2 with 〈D̃〉T > D†,
and let s̃(·) be the associated solution satisfying the
constraint 〈s̃〉T ≤ s̄. Since VT is increasing, one gets

VT (〈D̃〉T ) > VT (D†). However, by definition of VT , one

has VT (〈D̃〉T ) ≤ 〈s̃〉T ≤ s̄, leading to a contradiction.
We conclude that one has necessarily WT (s̄) = D†. As
VT is increasing, an optimal solution for (4) has to sat-
urate the constraint 〈s〉T ≤ s̄, and thus WT is the value

function for Pb. 2.
If ν is convex increasing only over a sub-interval I ⊂
(0, sin) with s̄ ∈ I, consider any increasing convex func-
tion ν̄ which coincides with ν on I. Denote by V̄T , W̄T

the corresponding value functions. One then has

W̄T (s̄) = max{D̄ ; V̄T (D̄) = s̄} = V̄ −1
T (s̄).

For T small enough, VT and V̄T coincide in a neighbor-
hood of s̄, and WT , W̄T as well in a neighborhood of
D̄ = ν(s̄). Thus, V −1

T (s̄) is non empty and as VT is in-

creasing, V −1
T (s̄) is unique, equal to V̄ −1

T (s̄) and one has

also max{D̄ ; VT (D̄) = s̄} = V −1
T (s̄). Finally, (14) is ful-

filled for T not too large. 2

Finally, the constraint 〈s〉T = s̄ can be expressed for the
controls (9) similarly as done in (11) with∫ sM

sm

s η(s)ds = s̄ T. (15)

The duality given in Prop. 6 gives then an optimality
result for Pb. 2 from Prop. 4.

Proposition 7 There exists a unique pair (sm, sM ) with
0 < sm < s̄ < sM < sin satisfying (10)-(15), and

D̂T (·) with t1 := inf{t > 0, s(t) = sM}, t2 := inf{t >
t1, s(t) = sm} is an optimal control for Pb. 2

(i) for any T > 0 if ν is convex increasing on (0, sin),

(i) for T > 0 not too large, if ν is only locally convex
increasing about s̄.

Finally, Prop. 4 and 7 show that the optimal controls are
piecewise constant and not smooth signals. In practice,
this means that if one chooses D− = 0, the bioprocess
has to operated as a succession of batch and chemostat
modes. Moreover, the optimal switching can be obtained
as feedback (and not as open loop), by solving the system
(10)-(11) or (10)-(15). In the next section, we show how
to compute it on concrete examples.

5 Numerical illustrations

We have already proved in Sec. 3 that no improvement
is possible with Monod and Haldane functions: steady
state s = s̄ with D = D̄ is thus optimal for Pb. 1 and
2. We focus now on Contois and Hill cases. Let us show
how we have proceeded to determine numerically the
optimal synthesis. For Pb. 1, the constraint 〈D〉T = D̄
applied to the bang-bang control (9) imposes a relation
between the switching times t1, t2

t2 = t2(t1) := t1 + T
D+ − D̄
D+ −D−

. (16)
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As we know from Prop. 4 that t1 is unique for satis-
fying the periodicity constraint s(T ) = s(0) (and that
one can impose s(0) = s̄ without loss of generality),
it can be determined as the unique zero of the map
t1 7→ st1,t2(t1)(T ) − s̄ on (0, T ), where st1,t2(·) is solu-

tion of (5) with D̂T (·) and s(0) = s̄. We have used a
dichotomy method, which gives a better accuracy than
using general optimal control solver such as Bocop. For
Pb. 2, the constraint 〈s〉T = s̄ cannot be written as easily
as (16). We have then used the duality result (Prop. 6) by
inverting the function VT to determine the optimal value
〈D〉T and then the optimal synthesis. Indeed, for a given
value s̄, as we know that optimal 〈D〉T > D̄ = ν(s̄), we
look for value D such that VT (D) = s̄ only for D > ν(s̄).

For the Contois’s case, we have used the parameters

µmax K Y sin D− D+

2h−1 5 1 8mg/l 0.02h−1 1.95h−1

Fig. 1 depicts an optimal solution and Fig. 2 the optimal
cost which is decreasing w.r.t. T , as it is indeed proved
in ref [5]. We have also computed the values functions
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Fig. 1. Optimal solution of Pb. 1 with D̄ = 0.5h−1 and
T = 15h (steady-state solution in dashed line)
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〈ŝ〉T

Fig. 2. Optimal cost of Pb. 1 with D̄ = 0.5h−1 function of T

(12), (13) for Pb. 1 and 2 for two different T (Fig. 3).
Note that we have represented the graphs of the func-
tions ν and ν−1 which represent the values of the cri-
terions at steady-state solution. Finally, we have com-
puted the relative gains compared to the steady-state
solution (s̄− VT (D̄))/s̄, (WT (s̄)− D̄)/D̄ for each prob-
lem (Fig. 4). Such diagrams can help the practitioners
to decide, depending on the characteristics of the ap-
plication (nominal flow rate, maximal period on which
average water quality can be considered), if a periodic
operation is worth the be operated.
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T1 = 15h and T2 = 50h
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For the Hill’s case, we have used the parameters

µmax Ks n Y sin D− D+

5h−1 3mg/l 3 1 6mg/l 0.05h−1 4.5h−1

and conducted similar computations of optimal solutions
as long as T is such that the bang-bang solution belongs
to the domain where ν is convex (see Fig. 5). For larger
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Fig. 5. Optimal solution of Pb. 1 with D̄ = 0.89h−1 and
T = 0.3h. The upper dashed line on the left delimits the
domain where ν is convex

values of T , Prop. 4(ii) and Prop. 7(ii) cannot guarantee

the optimality of the control D̂T (·). Nevertheless, we

observe on Fig. 6-left that its cost, denoted ĴT , keeps
improving with T up to T̄ , the minimum of T 7→ ĴT .
For T > T̄ , we propose a bang-bang strategy with 2k or
2(k + 1) switches, where k := E[T/T̄ ] > 1, as follows

D̃T (t) :=

{
D̂T̄ (t− iT̄ ), t ∈ [iT̄ , (i+ 1)T̄ ), i = 0, k − 1,

D̂τ (t− kT̄ ), t ∈ [kT̄ , T ) if τ = T − kT̄ > 0,
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whose cost is equal to

J̃T :=
kT̄ ĴT̄ + τ Ĵτ

T
(where τ = T − kT̄ ).

(see Fig. 6-left). It is clear that J̃T = ĴT̄ when T = kT̄
(which is thus better than steady-state). Moreover, one

has Ĵτ < s̄ (as τ < T̄ and ĴT < s̄ for T ∈ (0, T̄ ]).

We conclude that J̃T < s̄ for any T > 0 (since it is

a convex combination of ĴT̄ and Ĵτ ). Fig. 6-right gives
the relative gain of this strategy, the ”zigzaging” effect
being due to the non-monotonicity of J̃T for T > T̄ .
Finally, similarly to Fig. 3, we plot on Fig. 7 the graphs
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Fig. 6. Costs ĴT , J̃T for D̄ = 0.89h−1 (left) and iso-value of

the relative gain for the D̃(·) strategy (right)

of the function ṼT : D̄ 7→ J̃T and its ”dual” function
W̃T : s̄ 7→ max{D̄ ; Ṽ (D̄) = s̄}.
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Fig. 7. Graphs of ṼT (left) and W̃T (right) with T1 = 2h and
T2 = 50h

6 Conclusion

This work reveals the role played by the convexity
of the growth function to obtain improvements with
non-constant periodic controls, which allows to distin-
guish three possibilities: impossibility of improvement
(Monod’s or Haldane’s kinetics), conditional improve-
ment (Hill’s kinetics) or systematic improvement (Con-
tois’s kinetics with KY > 1). Thanks to a duality, we
show that for both problems: minimizing the average
output concentration under integral constraint on the
control, or maximizing the integral of the control under
constraint on the average output concentration, bang-
bang controls are optimal among all periodic solutions,
and we characterize the two optimal switching times.
This approach provides to practitioners the maximal

improvement that can be expected when playing with
periodic operations. Note also that measuring the per-
formances of periodic controls can be a way to discrimi-
nate between several growth models, as proposed in the
conference paper [17]. Further extensions of this work
could consider multiple species (species coexistence in
the chemostat being generically not possible at steady-
state) or biogas production as an additional criterion.
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Appendix

Ref. [5] deals with general problems of the form (8) on
an invariant interval I = (a, b) such that
H1. g is positive on I, f(a)−g(a) = 0 and f(b)+g(b) = 0
H2. f − g < 0 and f + g > 0 on I
Under the following hypotheses
H. There exists x̄ ∈ I such that ψ(x̄) = ū where the
function ψ := −f/g, with (ψ(x) − ψ(x̄)(x − x̄) > 0 for
any x ∈ I \ {x̄}.
H3. ` is increasing on I and γ := ψ ◦ `−1 is strictly con-
vex increasing on `(I).
it is proved that for any T > 0 the optimal solutions
of (8) are bang-bang with exactly two commutations
at points xm < x̄ < xM that are uniquely defined
(Prop. 3.2 and Th. 3.6).

For our Pb. 1, we take for I the largest open interval
containing s̄ that is invariant for (5) with controls in
[D−, D+] and posit u := αD + β ∈ [−1, 1] with

α :=
2

D+ −D−
, β := −D+ +D−

D+ −D−

We define for s ∈ I:

f(s) := (−ν(s)− β/α)(sin − s) ; g(s) := (sin − s)/α,
`(s) := s ; ψ(s) := αν(s)− β,

Clearly, H1 and H2 are satisfied. Under A2b, ψ is in-
creasing convex and H, H3 are thus fulfilled. We then
obtain the optimality of the bang-bang control (9) which
has exactly two commutations, and its uniqueness, as
stated in Prop. 4 (i). Ref. [5] also relaxes hypotheses H,
H3 and states that if it is fulfilled only locally about x̄,
then the same conclusions hold provide that T > 0 is not
too large (Th. 4.1). This gives the result (ii) of Prop. 4.
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applications. Annales de l’Institut Pasteur, 79:390–410, 1950.

[13] H. Moser. The dynamics of bacterial populations maintained
in the chemostat. Carnegie Institution of Washington
Publication, 1958.

[14] S. Parulekar. Analysis of forced periodic operations of
continuous bioprocesses: single input variations. Chemical
Engineering Science, 3(55):2481–2502, 1998.

[15] L. Ruan and X.D. Chen. Comparison of several
periodic operations of a continuous fermentation process.
Biotechnology Progress, 12(2):286–288, 1996.

[16] P.L. Silveston and R.R. Hudgins. Periodic Operation of
Chemical Reactors. Butterworth-Heinemann, 2013.

[17] F. Tani, A. Rapaport, and T. Bayen. Periodic controls for
discriminating density dependent growth in the chemostat.
In IEEE 58th Conference on Decision and Control (CDC),
pages 4735–4740, Nice, France, 2019.

[18] W. Walter. Ordinary Differential Equations. Springer, 1998.

[19] N. Watanabe, K. Onogi, and M. Matsubara. Periodic control
of continuous stirred tank reactors-I: The pi criterion and
its applications to isothermal cases. Chemical Engineering
Science, 36(5):809–818, 1981.

8


