G. Abawi, Project Reports 1998 J L Y L Integrated Pest Management, p.14456, 1998.

S. Abel, A. Peters, S. Trinks, H. Schonsky, M. Facklam et al., Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil, Geoderma, vol.202, issue.203, pp.183-191, 2013.

H. Aksoy, V. S. Ozgur-kirca, H. I. Burgan, and D. Kellecioglu, Hydrological and Hydraulic Models for Determination of Flood-Prone and Flood Inundation Areas 373, IAHS-AISH Proc. Reports, pp.137-141, 2016.

J. Bellvert, P. J. Zarco-tejada, J. Girona, and E. Fereres, Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle, Precis. Agric, vol.15, pp.361-376, 2014.

J. A. Berni, P. J. Zarco-tejada, G. Sepulcre-cantó, E. Fereres, and F. Villalobos, Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery, Remote Sens. Environ, vol.113, pp.2380-2388, 2009.

J. A. Berni, P. J. Zarco-tejada, L. Suárez, and E. Fereres, Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle, IEEE Trans. Geosci. Remote Sens, vol.47, pp.722-738, 2009.

L. A. Biederman and W. Stanley-harpole, Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis, Gcb Bioenergy, vol.5, pp.202-214, 2013.

J. G. Clevers, The application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture, Remote Sens. Environ, vol.29, pp.25-37, 1989.

J. G. Clevers, L. Kooistra, and M. M. Van-den-brande, Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop, Remote Sens, vol.9, pp.1-15, 2017.

A. Crane-droesch, S. Abiven, S. Jeffery, and M. S. Torn, Heterogeneous global crop yield response to biochar: a meta-regression analysis, Environ. Res. Lett, vol.8, 2013.

J. M. De-la-rosa, M. Paneque, A. Z. Miller, and H. Knicker, Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days, Sci. Total Environ, vol.499, pp.175-184, 2014.

G. J. Fitzgerald, D. Rodriguez, L. K. Christensen, R. Belford, V. O. Sadras et al., Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments, Precis. Agric, vol.7, pp.233-248, 2006.

J. Gago, C. Douthe, R. E. Coopman, P. P. Gallego, M. Ribas-carbo et al., UAVs challenge to assess water stress for sustainable agriculture, Agric. Water Manag, vol.153, pp.9-19, 2015.

I. F. García-tejero, J. M. Costa, R. Egipto, V. H. Durán-zuazo, R. S. Lima et al., Thermal data to monitor crop-water status in irrigated Mediterranean viticulture, Agric. Water Manag, vol.176, pp.80-90, 2016.

, Tc -Ta) computed from the three thermal acquisitions and in situ yield measurements of roots and leaves for all the 11 experimental pairs (a and b) as well as for only the higher stressed plots (c and d). The blue and red circles represent the reference and biochar plots respectively. The dashed and solid lines represent the linear regression fits considering all the experimental plots and only the higher stressed plots, respectively, Relationship between mean crop water stress index

C. M. Gevaert, Generation of STRS by combining hyperspectral UAV and multispectral satellite and hyperspectral UAV imagery for precision agriculture application, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol.8, pp.3140-3146, 2015.

B. Glaser, J. Lehmann, and W. Zech, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal -a review, Biol. Fertil. Soils, vol.35, pp.219-230, 2002.

T. Grabs, J. Seibert, K. Bishop, and H. Laudon, Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model, J. Hydrol, vol.373, pp.15-23, 2009.

M. Gray, M. G. Johnson, M. I. Dragila, and M. Kleber, Water uptake in biochars: the roles of porosity and hydrophobicity, Biomass Bioenergy, vol.61, pp.196-205, 2014.

D. Güereña, J. Lehmann, K. Hanley, A. Enders, C. Hyland et al., Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system, Plant Soil, vol.365, pp.239-254, 2013.

B. Hardy, J. T. Cornelis, D. Houben, J. Leifeld, R. Lambert et al., Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia. Belgium, Eur. J. Soil Sci, vol.68, pp.80-89, 2017.

B. Hardy, J. Leifeld, H. Knicker, J. E. Dufey, K. Deforce et al., Long term change in chemical properties of preindustrial charcoal particles aged in forest and agricultural temperate soil, Org. Geochem, vol.107, pp.33-45, 2017.

B. Hardy, S. Sleutel, J. E. Dufey, and J. Cornelis, The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management, Front. Environ. Sci, vol.7, pp.1-14, 2019.

M. C. Hernandez-soriano, B. Kerré, P. Goos, B. Hardy, J. Dufey et al., Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal, GCB Bioenergy, vol.8, pp.371-381, 2016.

A. Huete, A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, vol.25, issue.3, pp.295-309, 1988.

S. O. Ihuoma and C. A. Madramootoo, Soil Quality -Determination of Organic and Total Carbon after Dry Combustion, Comput. Electron. Agric, vol.141, pp.267-275, 1995.

, Soil Quality -Determination of Total Nitrogen Content by Dry Combustion, ISO 13878, 1998.

R. D. Jackson, R. J. Reginato, and S. B. Idso, Wheat Canopy Temperature: A Practical Tool, p.13, 1977.

S. Jeffery, F. G. Verheijen, M. Van-der-velde, and A. C. Bastos, A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis, 2011.

, Agric. Ecosyst. Environ, vol.144, pp.175-187

S. Jeffery, M. B. Meinders, C. R. Stoof, T. M. Bezemer, T. F. Van-de-voorde et al., Biochar application does not improve the soil hydrological function of a sandy soil, Geoderma, vol.251, pp.47-54, 2015.

B. Johnson, R. Tateishi, and T. Kobayashi, Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. Remote Sens, vol.4, pp.2619-2634, 2012.

A. M. Kendall, A New Measure of Rank Correlation Published by, on behalf of Biometrika Trust Stable, pp.81-93, 1938.

B. Kerré, B. Willaert, Y. Cornelis, and E. Smolders, Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability, Eur. J. Agron, vol.91, pp.10-15, 2017.

T. K. Kim, T Test as a Parametric Statistic, 2015.

M. Kopecký and ?. ?í?ková, Using topographic wetness index in vegetation ecology: does the algorithm matter?, Appl. Veg. Sci, vol.13, pp.450-459, 2010.

J. Lehmann and S. Joseph, Biochar for environmental management: an introduction, Biochar Environ. Manage.: Sci. Technol, 2015.

J. Lehmann, J. P. Da-silva, C. Steiner, T. Nehls, W. Zech et al., Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments, Plant Soil, vol.249, pp.343-357, 2003.

J. Major, M. Rondon, D. Molina, S. J. Riha, and J. Lehmann, Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol, Plant Soil, vol.333, pp.117-128, 2010.

S. Malghani, G. Gleixner, and S. E. Trumbore, Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions, Soil Biol. Biochem, vol.62, pp.137-146, 2013.

G. Mastrolonardo, C. Calderaro, C. Cocozza, B. Hardy, J. Dufey et al., Mikan and Abrams, 1986. Mechanisms Inhibiting the Forest Development of Historic Charcoal Hearths in Southeastern Pennsylvania, Front. Environ. Sci, vol.7, pp.1-15, 2019.

B. Minasny and A. B. Mcbratney, Limited Effect of Organic Matter on Soil Available Water Capacity, pp.39-47, 2018.

L. Montanarella and E. Lugato, The application of biochar in the EU: challenges and opportunities, vol.3, pp.462-473, 2013.

D. J. Mulla, Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps, Biosyst. Eng, vol.114, pp.358-371, 2013.

T. E. Parece and J. B. Campbell, Adv. Watershed Sci. Assess, 2015.

J. W. Rouse, R. H. Hass, J. A. Schell, D. W. Deering, and J. C. Harlan, , 1974.

H. Schmidt and A. Karnieli, Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: the Makhtesh Ramon Crater (Israel) case study, Int. J. Remote Sens, vol.22, pp.3503-3520, 2001.

A. Schneider, F. Hirsch, A. Bonhage, A. Raab, and T. Raab, Geoderma the soil moisture regime of charcoal-enriched land use legacy sites, Geoderma, vol.366, p.114241, 2020.

C. M. Schwendenmann, Litterfall, Carbon and Nitrogen Cycling in a Southern Hemisphere Conifer Forest Dominated by Kauri (Agathis australis) During Drought, pp.247-262, 2015.

J. Seibert, R. Sørensen, and U. Zinko, On the calculation of the topographic wetness index: evaluation of different methods based on field observations, Hydrol. Earth Syst. Sci, vol.10, pp.101-112, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00301525

A. S. Shapiro and M. B. Wilk, An Analysis of Variance Test for Normality (Complete Samples) 52, on behalf of Biometrika Trust Stable, pp.591-611, 1965.

B. Siegmann, T. Jarmer, H. Lilienthal, N. Richter, T. Selige et al., Comparison of Narrow Band Vegetation Indices and Empirical Models From Hyperspectral Remote Sensing Data for the Assessment of Wheat Nitrogen Concentration, 2012.

J. Simon, A. Diego, P. Marija, B. Ana-catarina, G. Jan-willem-van et al., Biochar boosts tropical but not temperate crop yields, Environ. Res. Lett, vol.12, p.53001, 2017.

S. P. Sohi, E. Krull, E. Lopez-capel, and R. Bol, A review of biochar and its use and function in soil, Advances in Agronomy, pp.5002-5011, 2010.

C. E. Stewart, J. Zheng, J. Botte, and M. F. Cotrufo, Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils, GCB Bioenergy, vol.5, pp.153-164, 2013.

C. Tanriverdi, A. Atilgan, H. Degirmenci, and A. Akyuz, Comparasion of crop water stress index (Cwsi) and water deficit index (Wdi) by using remote sensing, 2017.

. Infrastruct, T. J. Trout, L. F. Johnson, and J. Gartung, Remote sensing of canopy cover in horticultural crops, HortScience, vol.43, pp.333-337, 2008.

D. Trupiano, C. Cocozza, S. Baronti, C. Amendola, F. P. Vaccari et al., The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance, Int. J. Agron, vol.327, pp.235-246, 2010.

T. Xia, W. P. Kustas, M. C. Anderson, J. G. Alfieri, F. Gao et al., Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes, Hydrol. Earth Syst. Sci, vol.20, pp.1523-1545, 2016.

M. Yamato, Y. Okimori, I. F. Wibowo, S. Anshori, and M. Ogawa, Effects of the Application of Charred Bark of Acacia mangium on the Yield of Maize, Cowpea and Peanut, and Soil Chemical Properties in South Sumatra, Indonesia, pp.489-495, 2006.

P. J. Zarco-tejada, V. González-dugo, L. E. Williams, L. Suárez, J. A. Berni et al., A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index, Remote Sens. Environ, vol.138, pp.38-50, 2013.

S. C. Zipper and S. P. Loheide, Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model, 2014.

, Agric. For. Meteorol, vol.197, pp.91-102

R. H. Dehkordi, Int J Appl Earth Obs Geoinformation, vol.91, p.102147, 2020.