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Abstract 23 

Mid-infrared reflectance spectroscopy (MIRS, 4000–400 cm-1) is being considered to 24 

provide accurate estimations of soil properties, including soil organic carbon (SOC) and 25 
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soil inorganic carbon (SIC) contents. This approach has mainly been demonstrated by 26 

using datasets originating from the same area A, with similar geopedological conditions, to 27 

build, validate and test prediction models. The objective of this study was to analyse how 28 

MIRS performs when applied to predict SOC and SIC contents, from a calibration 29 

database collected over a region A, to predict over a region B, where A and B have no 30 

common area and different soil and climate conditions. This study used a French MIRS 31 

soil dataset including 2178 topsoil samples to calibrate SIC and SOC prediction models 32 

with partial least squares regression (PLSR), and a Tunisian MIRS topsoil dataset 33 

including 96 soil samples to test them. Our results showed that when using the French 34 

MIRS soil database, i) the SOC and SIC of French validation samples were successfully 35 

predicted using global models (R²val = 0.88 and 0.98, respectively), ii) the SIC of Tunisian 36 

samples was also predicted successfully both using a global model and using a selection 37 

of spectral neighbours from the French calibration database (R²test of 0.96 for both), iii) the 38 

SOC of Tunisian samples was predicted moderately by global model (R²test of 0.64) and a 39 

transformation by natural logarithm of the calibration SOC values significantly improved 40 

the SOC prediction of Tunisian samples (R²test of 0.97), and iv) a transformation by natural 41 

logarithm of SOC values provided more benefit than a selection of spectral neighbours 42 

from the French calibration database for predicting Tunisian SOC values. Therefore, in the 43 

future, MIRS might replace conventional physico-chemical analysis techniques, or at least 44 

be considered as an alternative technique, especially when optimally exhaustive 45 

calibration databases will become available. 46 

 47 

1. Introduction 48 

Soil is the largest reservoir of continental carbon and participates in the global carbon 49 

cycle (Jacobson et al., 2000; Scharlemann et al., 2014). Soil emits carbon dioxide (CO2) 50 

through autotrophic and heterotrophic respiration and acts as a sink of atmospheric CO2 51 
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through photosynthesis; then, organic decomposition products are integrated into the soil 52 

as organic matter, which is composed of approximately 50% to 58% of carbon (Gregorich 53 

et al., 1994; Pribyl, 2010). Moreover, soil organic carbon (SOC) has a long-acknowledged 54 

and key role in soil physical, chemical and biological fertility (Reeves, 1997). Thus, 55 

understanding the dynamics of soil carbon is a major issue for soil fertility and for climate 56 

change mitigation. 57 

Soil carbon is not only found in organic form. At the global scale, approximately one-58 

third of the total soil carbon is inorganic (soil inorganic carbon, SIC) (Batjes, 1996), and 59 

calcareous soils cover more than 30% of the earth's land surface (Chen and Barak, 1982; 60 

Romanyà and Rovira, 2011). SIC is mainly in the form of calcium carbonate (CaCO3), and 61 

high SIC contents are often localised in dry areas where SOC stocks are low. In these 62 

soils, SIC levels can be 2 to 10 times higher than SOC levels (Bernoux and Chevallier, 63 

2014). SIC is made of primary minerals derived from the fragmentation of carbonate 64 

bedrock (lithogenic carbonates) or secondary minerals from inorganic carbon precipitation 65 

in soil pores or around roots (pedogenic carbonates). Pedogenic carbonates have various 66 

forms—nodules, lamellae or crystals—and have varying solubility. 67 

Several analytical methods have been developed to quantify SIC and SOC contents in 68 

soils, but they are tedious and/or costly. In particular, SOC determination in carbonated 69 

soils often requires hazardous reagents. SIC content has usually been measured by 70 

calcimetry (ISO, 1995b) but can also be measured by dry combustion with a CNH 71 

elemental analyser equipped with a specific module (CO3-C module) after phosphoric acid 72 

dissolution of the SIC (Mc Crea, 1950; Hannam et al. 2016). Quantifying SOC in 73 

calcareous soils has either been carried out directly, by wet oxidation (Walkley and Black, 74 

1934) or dry combustion after removing SIC by acid pretreatment (Harris et al., 2001), or 75 

indirectly, by subtracting the SIC, measured by calcimetry, from the total carbon content 76 

determined by dry combustion. Due to indirect determination, incomplete oxidation and the 77 
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use of hazardous reactants with both of these methods, alternative methods based on the 78 

thermal lability of SIC and SOC have also been tested (Wang et al., 2012; Apesteguia et 79 

al., 2018). 80 

For one to two decades, visible near-infrared (Vis-NIR, 400–2500 nm) and mid-81 

infrared reflectance spectroscopy (MIRS, 4000–400 cm-1), which measures diffuse 82 

reflectance, have been proposed as alternative methods to these physico-chemical 83 

analytical methods (e.g., Viscarra Rossel et al., 2006; Cécillon et al., 2008; Bellon-Maurel 84 

and McBratney, 2011). MIRS is based on the study of absorption bands corresponding to 85 

fundamental molecular vibrations, and NIRS is based on the study of absorption bands 86 

corresponding to overtones and combinations of fundamental vibrations (Williams and 87 

Norris, 1987). Several studies highlighting the potential of Vis-NIR and/or MIRS for 88 

predicting various soil attributes, including SIC and SOC, have been listed by Viscarra 89 

Rossel et al. (2006) and then by Soriano-Disla et al (2014). 90 

In the MIR range, carbonates may be identified by strong and numerous absorption 91 

bands, for instance, bands at approximately 820-750 cm−1, 1800 cm−1, 2520 cm−1 and 92 

2900-2990 cm−1 (e.g., Tatzber et al., 2007; Du and Zhou, 2009, Comstock et al., 2019). In 93 

the NIR range, carbonates may be identified by peaks at 2341 and 2480 nm (Lagacherie 94 

et al., 2008; Barthès et al., 2016). In the MIR range, organic carbon may also be identified 95 

by numerous absorption peaks, for instance, peaks at approximately 2920 and 1230 cm-1 96 

(Grinand et al., 2012). In the NIR range, organic carbon may be identified by absorption 97 

peaks at approximately 1910 nm (Viscarra Rossel et al., 2006; Viscarra Rossel and 98 

Webster, 2012) and 2050–2150 nm (Workman and Weyer, 2008). Finally, MIRS has 99 

generally been reported to provide more accurate performance in terms of SOC and SIC 100 

predictions compared to NIRS (e.g., McCarty et al., 2002; Reeves, 2010; Bellon-Maurel & 101 

McBratney, 2011; Clairotte et al., 2016). Nevertheless, better NIRS than MIRS predictions 102 

of SOC have been reported in tropical and Mediterranean regions due to the overlap of 103 
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absorption regions related to metal oxides and organic compounds (Rabenarivo et al., 104 

2013; Barthès et al., 2016). 105 

Following the emergence of infrared spectroscopy technologies for soil 106 

characterisation, soil spectral libraries covering extensive areas have recently been 107 

developed for estimating soil properties, especially SOC; most libraries are in the Vis-NIR 108 

range at the national scale (e.g., in Australia, Viscarra Rossel and Webster, 2012; in 109 

Denmark, Knadel et al., 2012; in France, Gogé et al., 2014; in China, Shi et al., 2015), 110 

continental scale (in Europe, Stevens et al., 2013) and even global scale (Brown et al., 111 

2006; Viscarra Rossel et al., 2016), but libraries also exist in the MIR range (e.g., in 112 

France, Grinand et al., 2012, and Clairotte et al., 2016; in the US, Wijewardane et al., 113 

2018, Comstosck et al., 2019 and Dangal et al., 2019). All these libraries use spectra 114 

collected using dried and ground samples in laboratory conditions. 115 

Most of the studies dealing with large soil spectral databases (national or 116 

continental) have aimed to calibrate prediction models with samples from a region A to 117 

predict the properties of soil samples from the same region A. Therefore, the soil and 118 

climate conditions are similar between the calibration and validation databases. McCarty et 119 

al. (2002) calibrated SOC and SIC prediction models by using two-thirds of 257 soil 120 

samples collected from 14 geographically diverse locations over eight states in the west 121 

central US and validated the models by using the remaining one-third of soil samples, 122 

obtaining good accuracy and low bias. Stevens et al. (2013) used the LUCAS database, 123 

which includes samples from 23 member states of the European Union, to predict SOC. In 124 

their study, each calibration dataset and associated validation dataset was composed of 125 

samples from a similar soil type (organic or mineral) and land use (cropland, grassland or 126 

woodland), and the most spectrally representative samples were selected as calibration 127 

samples. Shi et al. (2015) used a Chinese database, which included samples from 20 128 

provinces, to predict SOC. In their study, the calibration dataset was selected to minimise 129 
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both the spectral distance and geographical distance to each validation sample, which also 130 

belonged to the database (region A). Clairotte et al. (2016) successfully calibrated 131 

prediction models by using subsets of the French national database and then tested these 132 

models on a test subset (10% of this French database, either spectrally representative or 133 

not; samples were not selected based on their pedo-climatic context). 134 

Some studies have focused on potential and limitation analysis of prediction models 135 

calibrated with a large database composed of samples collected over a region A to predict 136 

properties for soil samples collected from a small region b within A. McCarty et al. 137 

(2002) calibrated SOC and SIC prediction models by using 257 soil samples collected 138 

from 14 geographically diverse locations over 8 states in the west central US and obtained 139 

biased predictions when their models were applied to 16 independent soil samples 140 

collected in another state (Nebraska) that was also in the west central US. Gogé et al. 141 

(2014) calibrated local prediction models from the French national database, collected 142 

over 550 000 km² (region A), to predict soil properties in soil samples collected from a 143 

small French area of 24 km² (Occitanie region, south of France; this region b was included 144 

in A but under-represented). Additionally, Comstosck et al. (2019) calibrated prediction 145 

models by using a US national database (region A) to predict carbonate in soil samples 146 

collected from two states (New York and Iowa, regions b) that were poorly represented in 147 

the US database. 148 

Finally, to the best of our knowledge, few studies have focused on potential and 149 

limitation analysis of prediction models calibrated with a large database composed of 150 

samples collected over a region A to predict properties for soil samples collected over a 151 

region B, where A and B have no common area and hence have potential differences in 152 

soil and climatic conditions. Only Jauss et al. (2017) and Ahmed et al. (2017) used MIR 153 

spectroscopy as a routine method for predicting pyrogenic carbon and for predicting Total 154 
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Carbon and SOC, respectively, on United States soils (region B), from a soil spectral 155 

database of Australia (region A).  156 

The objective of this study was to analyse how MIRS may be used to predict SOC 157 

and SIC contents when using a national database collected over a region A to predict 158 

values for soil samples collected over a region B, where A and B have no common area 159 

and have different soil and climate conditions. This study used a French MIRS soil dataset 160 

(region A) including 2178 topsoil samples collected from an area of 550 000 km² (French 161 

metropolitan territory, composed of temperate and Mediterranean soils) to calibrate SIC 162 

and SOC prediction models. These models were tested on a Tunisian MIRS soil dataset 163 

(region B), including 96 soil samples collected from an area of approximately 80 000 km² 164 

(northern half of Tunisia, mainly Mediterranean and arid soils). 165 

 166 

2. Materials and methods 167 

  168 

 2.1. Soil datasets 169 

2.1.1. The French national soil collection 170 

The national soil collection provided by the French national soil quality monitoring network 171 

(RMQS; Arrouays et al., 2002) and called DB_RMQS was used in this study to calibrate 172 

the SIC and SOC models. This RMQS collection is composed of 2178 soil samples 173 

representing all main soil types encountered over the sampled 552 000 km² of the French 174 

metropolitan territory (Corsica included): Cambisols, Calcosols, Luvisols, Leptosols, 175 

Andosols, Albeluvisols, Podzosols, etc. (IUSS Working Group WRB, 2014). The latitude of 176 

sample sites ranges from 41 to 51°N, and their longitude ranges from 5.0°W to 9.5°E. The 177 

sampling design was based on a square grid with 16-km spacing. At the centre of each 178 

square, 25 individual core samples were taken from 0 to 30 cm depth using an unaligned 179 
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sampling design within a 20 × 20 m area. Core samples were bulked to obtain a composite 180 

sample for each site (Arrouays et al., 2002). 181 

 182 

2.1.2.  The Tunisian soil samples 183 

Ninety-six soil samples were used as the test set, called DB_Tunisia. These samples were 184 

collected from 45 localities, covering approximately 80 000 km² (from 35 to 37°N and 08 to 185 

11°E), with the aim of representing the main soil types and land uses of the northern half of 186 

Tunisia. This was done based on previous studies carried out at the Tunis El Manar 187 

University, without particular design. Field samples within the same locality were 188 

kilometres apart and under different land uses. Soil samples were collected at 0-10 cm 189 

using a spade, and the sampling campaign was carried out within a few months in late 190 

2010. This Tunisian set was previously studied in Barthès et al. (2016). 191 

 192 

 2.2. Laboratory Analysis  193 

2.2.1. Physico-chemical analyses 194 

The 2178 RMQS samples were air dried, 2-mm sieved and then finely ground (< 0.25 mm) 195 

using mortar and pestle. The SIC content of the RMQS samples was calculated as 0.12 196 

times the soil calcium carbonate content, which was determined using these finely ground 197 

(< 0.25 mm) air-dried samples using a Bernard calcimeter according to the standard 198 

procedure ISO 10693 (ISO, 1995a). The carbonate content was calculated after calibration 199 

with a pure calcium carbonate standard and was expressed as the equivalent calcium 200 

carbonate content. The SIC content of the RMQS samples (DB_RMQS_SIC) ranged from 201 

0 to 103.9 g kg−1, averaged 6.4 g kg−1, and had a median of 0 g kg-1 and a skewness value 202 

close to 3.1 (Table 1). 203 

Then, the SOC content of the RMQS samples was calculated as the difference 204 

between the total carbon (TC) and inorganic carbon contents. The TC content was 205 
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determined by dry combustion with an elemental analyser (Thermo Fisher Scientific CHN 206 

NA2000, Waltham, MA, US) using approximately 25–30-mg aliquots of finely ground 207 

(< 0.25 mm) air-dried soil samples that were sealed into tin capsules, according to the 208 

standard procedure ISO 10694 (ISO, 1995b). The SOC content of the RMQS samples 209 

(DB_RMQS_SOC) ranged from 0.6 to 411.3 g kg−1, averaged 25.8 g kg−1, and had a 210 

median of 19.6 g kg-1 and a skewness value close to 4.9 (Table 1). 211 

 212 

[Table 1] 213 

 214 

 215 

The 96 Tunisian soil samples were also air-dried, sieved to 2 mm and then finely ground 216 

(< 0.2 mm) using mortar and pestle. The SOC content of the Tunisian samples was 217 

analysed by dry combustion after decarbonisation using chlorhydric acid, following the 218 

standard procedure ISO 10694 (1995b), with the same elemental analyser as that used for 219 

RMQS samples but using silver capsules. Soils were decarbonated prior to SOC 220 

determination: 10 mL of water were added to 1 g of soil and 0.5 M HCl solution was then 221 

dripped onto the sample until there was no more effervescence; then the samples were 222 

washed in water until pH reached 7. The SOC concentration was then determined on 223 

finely ground 25–30 mg aliquots by dry combustion using an elemental analyser (Thermo 224 

Fisher Scientific CHN NA2000, Waltham, MA, USA). The SOC content of the Tunisian 225 

samples (DB_Tunisia_SOC) ranged from 2.0 to 121.0 g kg−1, averaged 20.1 g kg−1, and 226 

had a median of 14.6 g kg-1 and a skewness value close to 3 (Table 1). 227 

The soil inorganic carbon content of the Tunisian samples was calculated as the 228 

difference between the TC (determined by dry combustion using the same CHN analyser 229 

as that used for the RMQS samples) and SOC contents. The SIC content of the Tunisian 230 
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samples (DB_Tunisia_SIC) ranged from 0.0 to 92.9 g kg−1, averaged 43.3 g kg−1, and had 231 

a skewness value close to -0.2 (Table 1). 232 

As the SIC contents of the RMQS and Tunisian samples were analysed by two 233 

different methods, 29 test samples from the Tunisian set (i.e., 30% of the set) were re-234 

analysed following the same method as that used for the RMQS samples (i.e., directly, by 235 

calcimetry; ISO, 1995a). The Pearson correlation coefficient (R), root mean square error 236 

(RMSE) and bias between the SIC values determined by both approaches (calcimetry vs. 237 

difference between TC and SOC) were 0.997, 2.4 g kg−1 and 1.1 g kg−1, respectively 238 

(Figure 1). The values of SIC calculated by both approaches could thus be considered 239 

equivalent. 240 

 241 

[Figure 1] 242 

 243 

 244 

2.2.2. Mid-infrared spectroscopy 245 

Mid-infrared spectroscopic analysis was performed following the same procedure for both 246 

spectral libraries. First, air-dried, 2-mm sieved, and 0.2-mm ground samples were oven-247 

dried at 40°C for twelve hours. Reflectance spectra were acquired using a Fourier 248 

transform Nicolet 6700 spectrophotometer (Thermo Fischer Scientific, Madison, WI, US) in 249 

the MIR region. Reflectance was acquired at 934 wavenumbers between 4000 and 250 

400 cm−1 with a 3.86 cm−1 spectral resolution. This spectrophotometer is equipped with a 251 

silicon carbide source, a Michelson interferometer as a dispersive element, and a 252 

deuterated triglycine sulfate detector. Soil samples were placed in a 17-well plate. The soil 253 

surface was flattened with the flat section of a glass cylinder, and samples were then 254 

scanned using an auto-sampler (soil surface area scanned: ca. 10 mm²). Each spectrum 255 

resulted from 32 co-added scans, and the body of the plate (next to the wells) was used as 256 
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a reference standard and scanned once per plate (i.e., every 17 samples). Twenty 257 

wavenumbers were removed due to frequent noise in the spectrum, so MIR spectra in the 258 

range from 4000 to 478 cm−1, with 914 wavenumbers, were used. 259 

 260 

2.3 PLSR model calibration 261 

All procedures were performed using R software (R Core Team, 2012), and both the ade4 262 

(Dray and Dufour, 2007) and pls packages (Mevik and Wehrens, 2007) were used. 263 

 264 

2.3.1. Dataset preparation 265 

Both DB_RMQS_SIC and DB_RMQS_SOC were divided into a calibration set (3/4 of the 266 

dataset) and a validation set (1/4 of the dataset). The samples of each dataset were 267 

ranked according to ascending reference value (observed SIC or SOC). The sample with 268 

the lowest reference value was put in the calibration set, the next sample was put in the 269 

validation set, and then the next three samples were put in the calibration set. The 270 

procedure was continued by alternately placing the next sample in the validation set and 271 

the following three samples in the calibration set. Following this process, the distributions 272 

of the DB_Calib_RMQS_SOC calibration and DB_Valid_RMQS_SOC validation datasets 273 

were similar. As well, the distributions of the DB_Calib_RMQS_SIC calibration and 274 

DB_Valid_RMQS_SIC validation datasets were similar. 275 

As the SOC values of the RMQS dataset followed a non-normal distribution (Table 276 

1), the SOC values of the DB_Calib_RMQS_SOC calibration dataset were transformed 277 

with natural logarithm (ln(SOC)) to reach a normal distribution, giving rise to new dataset 278 

for calibration DB_Calib_RMQS_lnSOC. The SIC distribution in the French dataset was 279 

also non normal, but due to the very large number of null values, ln-transformation was 280 

hardly possible (Bellon-Maurel et al., 2010; Terra et al., 2015). 281 
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The reflectance was converted into “absorbance” (log10 [1/reflectance]), and a 282 

standard normal variate correction was applied to remove additive and multiplicative 283 

effects (Barnes et al., 1989). Spectral outliers, which are defined as samples spectrally 284 

different than the rest of the samples (e.g., Pearson, 2002), were removed from the 285 

calibration datasets. The spectral outliers were identified by applying the Mahalanobis 286 

distance (Mark and Tunnell, 1985) to data condensed by principal component analysis 287 

(PCA). In the present study, a Mahalanobis distance of 3.5 was selected as the threshold 288 

for the identification of spectral outliers. 289 

 290 

2.3.2. Partial least squares regression 291 

Partial least squares regression (PLSR) is a multivariate approach that specifies a linear 292 

relationship between a dependent (response) variable (Y-variable, i.e., SIC or SOC 293 

content in the present case), and a set of predictor variables (X-variables, i.e., MIR spectra 294 

in the present case; Tenenhaus, 1998). The general concept of PLSR is to extract a small 295 

number of orthogonal variables (called the latent variables) that account for the maximum 296 

variation in the X-variables. A detailed description of the PLSR procedure can be found in 297 

Wold et al. (2001). This method is commonly used for NIRS or MIRS prediction of soil 298 

properties (e.g., Viscarra-Rossel et al., 2006; Bellon-Maurel et al, 2010). 299 

The maximum number of latent variables of PLSR was defined as 30. A leave-one-300 

out cross-validation (LOOCV) procedure was adopted to verify the prediction capability of 301 

the PLSR model for the calibration set. Each time, n − 1 samples were used to build a 302 

regression model, which was applied to the sample not used in developing the model. This 303 

procedure was repeated for all n samples, resulting in predictions for all n samples. 304 

 305 

2.3.3. Global models 306 
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Global calibration is a common calibration procedure where all calibration samples are 307 

used to build a unique prediction model that is applied identically to all validation or test 308 

samples. One global prediction model (denoted GMSIC) was built for SIC prediction based 309 

on DB_Calib_RMQS_SIC, validated on DB_Valid_RMQS_SIC and tested on 310 

DB_Tunisia_SIC. As well, a global prediction model (denoted GMSOC) was built for SOC 311 

prediction based on DB_Calib_RMQS_SOC, validated on DB_Valid_RMQS_SOC and 312 

tested on DB_Tunisia_SOC. Finally, a global prediction model (denoted GMlnSOC) was built 313 

for SOC prediction based on DB_Calib_RMQS_lnSOC, applied to spectra of 314 

DB_Valid_RMQS_SOC and DB_Tunisia_SOC, and the output predictions ln(SOC) were 315 

back-transformed into SOC values using exp(ln(SOC)). 316 

The optimal number of latent variables of GMSIC, GMSOC and GMlnSOC was 317 

determined using prediction residual error sum of squares (PRESS) analysis of LOOCV 318 

results to avoid under- and over-fitting. Then, all calibration samples were used to build the 319 

prediction model with the appropriate number of latent variables, and this model was 320 

applied to validation and test sets. 321 

 322 

2.3.4. Local models 323 

A local regression approach was implemented based on PLSR to predict the SOC and SIC 324 

content of Tunisian samples. Given a sample pi from DB_Tunisia to predict: 325 

1- The Pearson coefficient of correlation between the spectrum of the Tunisian sample 326 

pi and each RMQS calibration spectrum (from DB_Calib_RMQS) was calculated; 327 

2- The N samples from DB_Calib_RMQS with spectra that correlated to the spectrum 328 

of pi beyond a cut-off value of 0.95 were considered spectral neighbours of the Tunisian 329 

sample pi, without maximum limit for N. 330 

3- A PLSR model was built using the N spectral neighbours of the Tunisian sample pi. 331 
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If a Tunisian soil sample had less than 30 spectral neighbours among the 332 

DB_Calib_RMQS set, this soil sample was not predicted. 333 

One local prediction model (denoted LMSIC) was built for SIC prediction based on 334 

DB_Calib_RMQS_SIC, validated on DB_Valid_RMQS_SIC and tested on 335 

DB_Tunisia_SIC. One local prediction model (denoted LMSOC) was built for SOC prediction 336 

based on DB_Calib_RMQS_SOC, validated on DB_Valid_RMQS_SOC and tested on 337 

DB_Tunisia_SOC. Finally, one local prediction model (denoted LMlnSOC) was built for SOC 338 

prediction based on DB_Calib_RMQS_lnSOC, applied to spectra of 339 

DB_Valid_RMQS_SOC and DB_Tunisia_SOC, and the output predictions ln(SOC) were 340 

back-transformed into SOC values using exp(ln(SOC)). 341 

 As the calibration sets for SOC and SIC predictions did not include the same 342 

samples (DB_Calib_RMQS_SOC and DB_Calib_RMQS_SIC, respectively), the nearest 343 

calibration neighbours of a given French validation and Tunisian sample were not the same 344 

for SOC and SIC predictions. The optimal number of latent variables was finally 345 

determined using PRESS analysis of LOOCV on the selected spectral neighbours to avoid 346 

under- and over-fitting. Regardless of the type of local model, the spectral outliers were not 347 

investigated because the selection of nearest neighbours was considered an implicit 348 

rejection of outliers. 349 

 350 

2.4 PLSR model evaluation 351 

The performance of global models was evaluated according to figures of merit described in 352 

Bellon Maurel et al. (2010), from cross-validation, validation and test databases. 353 

 The coefficient of determination of cross-validation (R²cv) and root mean square 354 

error of cross-validation (RMSECV) for DB_Calib_RMQS were used. R²cv was computed 355 

as 1-ESS/TSS, where ESS is the error sum of squares and TSS the total sum of squares.  356 
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 The coefficient of determination and root mean square error of prediction for 357 

DB_Valid_RMQS, R²val and RMSEval respectively, were used. R²val was also computed as 358 

1-ESS/TSS. The ratio of performance to deviation in DB_Valid_RMQS (RPDval), which is 359 

the ratio between the standard deviation in DB_Valid_RMQS and RMSEval, was 360 

calculated. The ratio of performance to interquartile range of DB_Valid_RMQS (RPIQval), 361 

which is the ratio between interquartile range (difference between the third and first 362 

quartiles) of DB_Valid_RMQS and RMSEval, was also calculated. This parameter has been 363 

proposed for variables with non-normal distributions (Bellon-Maurel et al., 2010). And the 364 

bias, which is the mean difference between observations and predictions, was calculated 365 

for DB_Valid_RMQS (biasval). 366 

 The coefficient of determination and root mean square error of prediction for 367 

DB_Tunisia, R²test and RMSEtest respectively, were used. R²test was computed as 1-368 

ESS/TSS. The ratio of performance to deviation in DB_Tunisia (RPDtest), which is the ratio 369 

between the standard deviation in DB_Tunisia and RMSEtest, was calculated. The ratio of 370 

performance to interquartile range of DB_Tunisia (RPIQtest), which is the ratio between the 371 

interquartile range of DB_Tunisia and RMSEtest, was also calculated. And the bias, which is 372 

the mean difference between observations and predictions, was calculated for DB_Tunisia 373 

(biastest). 374 

Finally, a wavelength was considered a significant contributor in a global model 375 

when the values of both the regression coefficient and variable importance in the 376 

projection (VIP) were sufficiently large: the threshold for the VIP was set to 1 (Chong and 377 

Jun, 2005; Wold et al., 1993, 2001), and the thresholds for the regression coefficients were 378 

their standard deviations (Viscarra-Rossel et al., 2008). 379 

 The performances of local models were based on the same figures of merit as 380 

those used in global calibration, calculated on DB_Valid_RMQS and DB_Tunisia. 381 
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Concerning the models built from the DB_Calib_RMQS_lnSOC, independent validation 382 

and test statistics were calculated from back-transformed data. 383 

 384 

 385 

4. Results 386 

4.1. Preliminary analysis of soil properties and spectra 387 

The RMQS soil sampling covered the French territory, and ranges of SOC and SIC 388 

contents in the DB_RMQS_SOC and DB_RMQS_SIC, respectively, are large (Table 1). 389 

According to the French soil classification, 33 soil reference groups were sampled, with a 390 

dominance of Cambisols (IUSS Working Group WRB, 2014; 27% of the sample set), 391 

calcareous soils (Calcosols, 22%) and Luvisols (16%). High SIC values are mainly located 392 

in three French areas: 1) the southeast (Prealps), mainly with Leptosols and Calcosols, 2) 393 

the northeast (chalk Champagne) also mainly with Leptosols, and 3) a transect from west 394 

(the Aquitanian Basin) to south (Mediterranean Sea), mainly with Calcosols (Figure 2A1). 395 

High SOC values are mainly located in 1) mountain areas (Alps in the southeast, Pyrenees 396 

in the extreme southwest, Massif Central in the south-centre, Jura in the centre-east), 2) 397 

cool regions covered by forests and pastures (centre-east), and 3) intensive livestock 398 

production areas (northwest; Figure 2B1). 399 

 The Tunisian soil samples covered the northern half of Tunisian territory, and the 400 

SIC contents range in the DB_Tunisia_SIC is as large as the one in the DB_RMQS_SIC, 401 

whereas the SOC contents range in the DB_Tunisia_SOC is lower than the one of the 402 

DB_RMQS_SOC (Table 1). The sampled Tunisian soils were mainly Calcaric Cambisols 403 

and Regosols, Kastanozems, and Chromic and Vertic Cambisols. 404 

 405 

[Figure 2] 406 

 407 
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Principal component analyses were performed on pre-treated spectra of 408 

DB_Calib_RMQS_SIC and DB_Calib_RMQS_SOC, respectively, and pre-treated Tunisian 409 

spectra were projected onto the plans made by the first and second components. Most 410 

Tunisian spectra overlapped a subset of RMQS spectra for SIC (Figure 3a) and for SOC 411 

(Figure 3b). So most Tunisian soil samples had similar spectral signatures than a subset of 412 

RMQS spectra used for calibrating prediction models. 413 

 414 

[Figure 3] 415 

 416 

4.2. Global models 417 

a. Soil inorganic carbon content 418 

For SIC prediction, 52 spectral outliers were identified within the initial calibration dataset, 419 

so 1582 RMQS samples were ultimately kept and constituted the DB_Calib_RMQS_SIC 420 

dataset. The SIC content of these 1582 RMQS samples contained in 421 

DB_Calib_RMQS_SIC ranged from 0.0 to 103.9 g kg−1, averaged 6.4 g kg−1, and had a 422 

skewness value close to 3.1 (Table 1). The SIC content of the 544 RMQS samples 423 

contained in DB_Valid_RMQS_SIC ranged from 0.0 to 95.2 g kg−1, averaged 6.3 g kg−1, 424 

and also had a skewness value close to 3.1 (Table 1). 425 

The GMSIC was built from the DB_Calib_RMQS_SIC dataset using an optimal 426 

number of 15 latent variables, validated on the DB_Valid_RMQS_SIC dataset and then 427 

tested on the DB_Tunisia_SIC dataset. The performance of the GMSIC prediction model 428 

was accurate, with an R²cv of 0.97 and RMSECV of 2.8 g kg−1 in the calibration step (Table 429 

2) and an R²val of 0.98 and RMSEval of 2.1 g kg−1 in the validation step (Table 2, Figure 4b). 430 

When applied to the DB_Tunisia_SIC dataset, this GMSIC prediction model provided 431 

accurate and unbiased predictions (R²test = 0.96, RMSEtest = 5.2 g kg−1 and biastest = 0.2 432 

g kg−1; Table 3, Figure 4c). 433 
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A total of 96 spectral bands might be considered significant based on the analysis of 434 

the VIP and regression coefficients of GMSIC (Figure 4d). Among the 96 significant spectral 435 

bands, those at approximately 2500, 1800 and 860 cm-1 had regression coefficients higher 436 

than 3 times the standard deviation and therefore might be considered the most significant 437 

ones. 438 

 439 

[Figure 4]  440 

 441 

[Table 2] 442 

 443 

[Table 3] 444 

 445 

b. Soil organic carbon content 446 

For SOC prediction, 48 spectral outliers were identified within the initial calibration dataset, 447 

so 1586 RMQS samples were ultimately kept and constituted the DB_Calib_RMQS_SOC 448 

and DB_Calib_RMQS_lnSOC datasets. The SOC contents of the 1586 RMQS samples of 449 

DB_Calib_RMQS_SOC ranged from 0.6 to 411.3 g kg−1, averaged 25.6 g kg−1, and had a 450 

skewness value close to 5.5 (Table 1). The ln(SOC) values of the 1586 RMQS samples of 451 

DB_Calib_RMQS_lnSOC ranged from -0.5 to 6 ln(g kg-1), averaged 3 ln(g kg-1), had a 452 

median of 3 ln(g kg-1) and a skewness value close to 0.3. The SOC content of the 544 453 

RMQS samples contained in DB_Valid_RMQS_SOC ranged from 1.5 to 159 g kg−1, 454 

averaged 25.5 g kg−1, and had a skewness value close to 2.5 (Table 1). 455 

The GMSOC was built from the DB_Calib_RMQS_SOC dataset using 23 latent 456 

variables, validated on the DB_Valid_RMQS_SOC dataset and then tested on the 457 

DB_Tunisia_SOC dataset. The performance of the GMSOC prediction model was modest, 458 

with an R²cv of 0.80 and RMSECV of 9.9 g kg−1 in the calibration step (Table 2) and an R²val 459 
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of 0.88 and RMSEval of 7.2 g kg−1 in the validation step (Table 2, Figure 5b). When applied 460 

to the Tunisian test set, this GMSOC prediction model provided low accuracy (R²test = 0.64, 461 

RMSEtest = 16.0 g kg−1) and biased predictions (biastest = -5.2 g kg−1) (Table 3, Figure 5c). 462 

A total of 92 spectral bands might be considered significant based on the analysis of 463 

the VIP and regression coefficients of GMSOC (Figure 5d). Nevertheless, among these 92 464 

spectral bands, none was associated to very high regression coefficients. 465 

 466 

[Figure 5] 467 

 468 

A GMlnSOC prediction model was built from the DB_Calib_RMQS_lnSOC dataset using 10 469 

latent variables and this model was applied to spectra of both DB_Valid_RMQS_SOC and 470 

DB_Tunisia_SOC datasets. Finally, the ln(SOC) predictions were back-transformed into 471 

SOC values for calculating the figures of merit. The performance of the GMlnSOC prediction 472 

model was accurate, with an R²cv of 0.89 and RMSECV of 0.2 g kg−1 in the calibration step 473 

(Table 2) and an R²val of 0.90 and RMSEval of 6.6 g kg−1 in the validation step (Table 2, 474 

Figure 6b). When applied to the Tunisian test set, the GMlnSOC prediction model provided 475 

high accuracy (R²test = 0.97, RMSEtest = 4.2 g kg−1) and very slightly biased predictions 476 

(biastest = 0.7 g kg−1) (Table 3, Figure 6c). 477 

A total of 95 spectral bands might be considered significant based on the analysis of 478 

the VIP and regression coefficients in the GMlnSOC (Figure 6d). Among these 95 significant 479 

spectral bands, those at approximately 2915, and 1800 cm-1 had regression coefficients 480 

higher than 3 times the standard deviation and therefore might be considered the most 481 

significant ones. 482 

 483 

[New Figure 6] 484 

 485 
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4.3. Local models  486 

a. Soil inorganic carbon content 487 

All validation soil samples had more than 30 spectral neighbours within the 488 

DB_Calib_RMQS_SIC dataset, so SIC could be predicted from LMSIC for all samples of 489 

DB_Valid_RMQS_SIC. The LMSIC provided very accurate and unbiased SIC predictions in 490 

validation (R²val = 0.99 and RMSEval = 1.8 g kg−1; Table 2). Therefore, this LMSIC provided 491 

validation performance slightly better than that of GMSIC (Table 2). 492 

All Tunisian soil samples had more than 30 spectral neighbours within the 493 

DB_Calib_RMQS_SIC dataset, so SIC could be predicted from LMSIC for all Tunisian 494 

samples. The LMSIC provided accurate and slightly biased SIC predictions on Tunisian 495 

samples (R²test = 0.96, RMSEtest = 5.6 g kg−1 and biastest = 1.7 g kg−1; Table 3, Figure 7a). 496 

Therefore, LMSIC provided test performance slightly lower than that of GMSIC, mainly due to 497 

bias (Table 3). The number of latent variables selected for LMSIC on Tunisian samples 498 

varied depending on the sample predicted and followed a relatively normal distribution 499 

centred at approximately 13, which was close to the optimal number of latent variables 500 

selected by the GMSIC (Figure 7c). 501 

The number of spectral neighbours of Tunisian samples varied from 65 to 1293 502 

(Figure 7b). Only a slight trend was observed between the number of neighbours and the 503 

prediction error, with a lower error when the number of neighbours increased (Figure 7b). 504 

This trend could be expected, as the use of a higher number of neighbour samples for 505 

calibration should result in more accurate predictions. The spectra from 506 

DB_Calib_RMQS_SIC used for building the 96 local individual Tunisian models LMSIC 507 

were selected from 0 to 87 times. So no spectrum from DB_Calib_RMQS_SIC was 508 

systematically selected, whereas only 1.6% of spectra from DB_Calib_RMQS_SIC were 509 

never selected. The frequently selected samples were mainly located in SIC-richest areas 510 

(Calcosols and Leptosols) such as the southeast (Prealps), the northeast (chalk 511 
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Champagne) and the transect from west (the Aquitanian Basin) to south (Mediterranean 512 

Sea) (Figure 2A1 and 2A2).  513 

 514 

[Figure 7] 515 

 516 

b. Soil organic carbon content 517 

As DB_Calib_RMQS_SOC and DB_Calib_RMQS_lnSOC datasets contained same 518 

predictors X-variables (MIR spectra), spectral neighbours of validation samples were the 519 

same for LMSOC and LMlnSOC models. All validation soil samples had more than 30 spectral 520 

neighbours within the DB_Calib_RMQS_SOC dataset and DB_Calib_RMQS_lnSOC 521 

datasets, so SOC and ln(SOC) could be predicted from LMSOC and LMlnSOC, respectively, 522 

for all samples of DB_Valid_RMQS_SOC. The LMSOC provided accurate and very slightly 523 

biased SOC predictions in validation (R²val = 0.93, RMSEval = 5.4 g kg−1 and biasval = -0.7 524 

g kg−1; Table 2). Therefore, LMSOC provided validation performance higher than that of 525 

GMSOC (Table 2). The LMlnSOC provided accurate and unbiased SOC predictions in 526 

validation (R²val = 0.92, RMSEval = 5.7 g kg−1 and biasval = -0.1 g kg−1; Table 2). Therefore, 527 

LMlnSOC provided validation performance higher than that of GMSOC and almost similar to 528 

that of LMSOC (Table 2). 529 

All Tunisian soil samples also had more than 30 spectral neighbours within the 530 

DB_Calib_RMQS_SOC and DB_Calib_RMQS_lnSOC datasets, so SOC and ln(SOC) 531 

could be predicted from LMSOC and LMlnSOC, respectively, for all Tunisian samples. The 532 

LMSOC provided accurate and very slightly biased SOC predictions on Tunisian samples 533 

(R²test = 0.89, RMSEtest = 6.9 g kg−1 and biastest = 0.5 g kg−1; Table 3, Figure 8a). Therefore, 534 

this LMSOC provided test performance markedly higher than that of GMSOC (Table 3). The 535 

number of latent variables selected by this LMSOC depending on the sample followed a 536 

bimodal distribution centred at approximately 16 and 22 (Figure 8c). The second peak of 537 
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number of latent variables, approximately 22, was close to the number of latent variables 538 

selected by the GMSOC (Figure 8c).  539 

The LMlnSOC model provided accurate and very slightly biased SOC predictions on 540 

Tunisian samples (R²test = 0.93, RMSEtest = 5.8 g kg−1 and biastest = -0.6 g kg−1; Table 3, 541 

Figure 9a). The LMlnSOC provided test performance markedly higher than that of GMSOC but 542 

lower than that of GMlnSOC (Table 3). The number of latent variables selected by this 543 

LMlnSOC depending on the sample followed a relatively normal distribution centred at 544 

approximately 11 (Figure 9c), which was close to the optimal number of latent variables 545 

selected by the GMlnSOC. 546 

As DB_Calib_RMQS_SOC and DB_Calib_RMQS_lnSOC datasets contained same 547 

predictors X-variables (MIR spectra), spectral neighbours of Tunisian samples were the 548 

same for LMSOC and LMlnSOC models. The number of spectral neighbours of Tunisian 549 

samples varied from 65 to 1292 (Figure 8b and 9b), and no clear trend was observed 550 

between the number of neighbours and the prediction error obtained by LMSOC and 551 

LMlnSOC models (Figure 8b and 9b, respectively). As for SIC prediction with LMSIC, the 552 

spectra from DB_Calib_RMQS_SOC and DB_Calib_RMQS_lnSOC datasets used for 553 

building the 96 individual local Tunisian models were selected from 0 to 87 times. So no 554 

spectrum from DB_Calib_RMQS_SOC and DB_Calib_RMQS_lnSOC datasets was 555 

systematically selected, whereas 1.7% of spectra from DB_Calib_RMQS_SOC and 556 

DB_Calib_RMQS_lnSOC datasets were never selected. The frequently selected samples 557 

were mainly located in SOC-poor areas (Calcosols and Leptosols) in the northeast (chalk 558 

Champagne) and on the transect from west (Aquitanian Basin) to south (Mediterranean 559 

Sea) and in soils richer in SOC in the southeast (Prealps) (Figure 2B1 and 2B2). 560 

 561 

[Figure 8] 562 

 563 
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[New Figure 9] 564 

 565 

  566 

5. Discussion 567 

5.1. Global models built on region A for application to region A. 568 

Before being applied to the Tunisian database, the global models were calibrated with an 569 

RMQS subset (DB_Calib_RMQS_SIC, DB_Calib_RMQS_SOC and 570 

DB_Calib_RMQS_lnSOC) and validated on an RMQS subset (DB_Valid_RMQS_SIC and 571 

DB_Valid_RMQS_SOC), which means that the global models were calibrated using soil 572 

samples collected over a region A to predict values for soil samples collected over this 573 

same region A. 574 

The validation performance of GMSIC was in accordance with results reported in the 575 

literature. Grinand et al. (2012) obtained similar performances using the same RMQS 576 

MIRS database, with R²val and RPDval values of 0.97 and 7.6, respectively, when 3/4 of the 577 

set, selected at random, was used for calibration and 1/4 was used for validation. Barthès 578 

et al. (2016) obtained similar performances for SIC using the Tunisian MIRS database for 579 

both calibration and prediction, with R²cv and RPDcv values of 0.98 and 7.8, respectively. 580 

Mc Carty et al. (2002) obtained similar performances using another MIRS database 581 

collected in the US, with R²val = 0.98 (RPDval was not mentioned and could not be 582 

calculated). The most significant spectral bands for GMSIC, located at 2500, 1800 and 860 583 

cm-1 (Figure 4d), might be attributed to stretching or bending vibrations in carbonate 584 

molecules, as suggested by Du and Zhou (2009) and then by Grinand et al. (2012). 585 

The validation performance of the GMSOC was also in accordance with some 586 

literature results. Clairotte et al. (2016) obtained very similar performances using the full 587 

RMQS MIRS database (including two depth layers, 0-30 and 30-50 cm, instead of one in 588 

the present study), with R²val and RPDval values of 0.88 and 2.7, respectively. Barthès et al. 589 
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(2016) obtained better performances using the Tunisian MIRS database with cross-590 

validation, with R²cv and RPDcv values of 0.95 and 4.3, respectively. Moreover, Mc Carty et 591 

al. (2002) obtained slightly higher performances using a MIRS database collected in the 592 

US for both SOC calibration and validation, with R²val = 0.94 (RPDval was not mentioned 593 

and could not be calculated). 594 

Following previous researches dealing with non-normal distribution of soil properties 595 

(e.g., Waruru et al., 2014; Dangal et al., 2019), natural logarithm transformation was 596 

applied to the highly skewed SOC values of the RMQS database to reach a normal 597 

distribution in the calibration dataset (DB_Calib_RMQS_lnSOC). Thanks to this normal 598 

distribution, the performance of the GMlnSOC on DB_Valid_RMQS_SOC was slightly better 599 

than the one of the GMSOC.  600 

Finally, validation performance was higher for SIC with GMSIC (R²val and RPDval 601 

values of 0.98 and 7.6, respectively; Table 2) than for SOC prediction with GMSOC (R²val 602 

and RPDval values of 0.88 and 2.7, respectively; Table 2) and GMlnSOC (R²val and RPDval 603 

values of 0.90 and 2.9, respectively; Table 2), confirming that MIRS allows markedly more 604 

accurate predictions of SIC than SOC as also shown by McCarty et al. (2002), Grinand et 605 

al. (2012) and Barthès et al. (2016). 606 

 607 

5.2. Models built on region A for application to region B. 608 

The models were calibrated by using a RMQS subset (DB_Calib_RMQS_SIC, 609 

DB_Calib_RMQS_SOC and DB_Calib_RMQS_lnSOC) and tested on the Tunisian 610 

dataset, which means that the models were calibrated by using soil samples collected over 611 

a region A to predict values for soil samples collected over a region B, where A and B had 612 

no common area, so the soil and climate conditions were different between the calibration 613 

and test datasets. Our results showed that GMSIC provided accurate test performance 614 

(R²test and RPDtest values of 0.96 and 4.9, respectively; Table 3), which was however lower 615 
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when applied to region B than to region A (Figure 4c, Tables 2 and 3). The GMSOC also 616 

provided markedly lower performance (R²test and RPDtest values of 0.64 and 1.3, 617 

respectively; Table 3) when applied to our region B than to our region A (Figures 5c, Table 618 

2 and 3).  619 

The RMQS spectra used for SIC and SOC predictions by local models were 620 

selected using a similarity measure (Pearson’s coefficients of correlation), following the 621 

same approach than Shenk et al. (1997) and Nocita et al. (2014). So the driver of 622 

neighbours selection was the spectral similarity between Tunisian and French spectra. The 623 

LMSIC did not improve the SIC prediction accuracy compared to the GMSIC (Table 3). 624 

Therefore, GMSIC seemed robust and did not need to be adjusted to spectral particularities 625 

of region B. So rather than spectral similarity between French and Tunisian samples, the 626 

main reason for accurate SIC predictions in region B seemed to be the strong spectral 627 

features of SIC in the MIR region, as suggested by Gogé et al. (2014). The LMSOC 628 

improved SOC prediction accuracy compared to the GMSOC (Table 3). Therefore, GMSOC 629 

seemed poorly robust and the calibration over region A needed to be adjusted to spectral 630 

particularities of region B using spectral neighbours (e.g., Shenk et al., 1997; Nocita et al., 631 

2014). The increase in the performance of MIRS-based SOC prediction when shifting from 632 

global to local PLSR is in accordance with literature (e.g. Ramirez-Lopez et al., 2013; Shi 633 

et al., 2015; Clairotte et al., 2016 and Dangal et al., 2019). Finally, the frequently selected 634 

spectral neighbours of Tunisian samples by the LMSOC were mainly located in SOC-poor 635 

areas in the northeast (chalk Champagne) and on the transect from west (Aquitanian 636 

Basin) to south (Mediterranean Sea) and in soils richer in SOC in the southeast (Prealps) 637 

(Figure 2B1 and 2B2). So these frequently selected spectral neighbours of Tunisian 638 

samples by SOC local model were not located only over the more similar climatic and 639 

pedological contexts such as the Mediterranean context (southeast of France). 640 

 641 
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5.3. Impact of the SOC ln-transformation on models built on region A for application 642 

to region B. 643 

The global model calibrated on region A with log-transformed SOC values (GMlnSOC) 644 

provided accurate performance on region B (R²test and RMSEtest values of 0.97 and 4.9 g 645 

kg-1, respectively; Figure 6c, Table 3). The local model provided better performance when 646 

calibrated on region A with log-transformed SOC values (LMlnSOC) than with SOC values 647 

(LMSOC), but less accurate than GMlnSOC on region B (R²test and RMSEtest values of 0.93 648 

and 3.6 g kg-1, respectively; Figure 9c, Table 3). So whatever the model using log-649 

transformed SOC data in calibration database (GMlnSOC or LMlnSOC), the SOC predictions 650 

on region B were improved compared to models using highly skewed SOC values in 651 

calibration database (GMSOC or LMSOC; Table 3), as showed by Jaconi et al. (2019).  652 

Finally, and unexpectedly, GMlnSOC provided better performance than LMSOC when 653 

applied on Tunisian samples. So a transformation of calibration SOC values improved 654 

SOC model performance more clearly than spectral selection of calibration samples 655 

(neighbours). Therefore SOC model performance was more sensitive to the distribution of 656 

the explained variable of the calibration samples than to spectral similarity between 657 

calibration and test spectra.  658 

 659 

5.4. Perspectives 660 

This study, which used MIRS to predict SOC and SIC contents by using a database 661 

collected over a region A to predict values over a region B, where A and B have no 662 

common area, could be continued with a study to develop predictions based on selected 663 

spectral bands. Indeed, spectral band selection remains to be explored, as several studies 664 

testing such an approach have obtained different results. Viscarra Rossel and Lark (2009) 665 

successfully used wavelets and a variable selection technique to improve SOC calibration 666 

using Vis–NIR and MIRS data. Additionally, Volhand et al. (2016) outperformed SOC 667 
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predictions based on Vis–NIR spectra by using band selection. However, Stevens et al. 668 

(2013) tested recursive feature elimination based on the random forest approach and 669 

obtained no overall increase in the accuracy of soil property prediction using the LUCAS 670 

(European) Vis-NIR soil database compared to models using all spectral bands. In 671 

addition, Yang et al. (2019) tested a generic algorithm for spectral band selection but 672 

obtained no overall increase in SOC prediction accuracy. As previously tested by, e.g., 673 

Guerrero et al. (2014) and Guy et al. (2016), spiking could be another useful approach to 674 

improve prediction accuracy when applying large-scale calibrations to small regions. 675 

Spiking consists of adding a small subset of samples from region B (spiking subset) to the 676 

dataset from region A to recalibrate a model.  677 

As well, this study could be continued with an impact analysis of the selection of 678 

spectral neighbours. Both the number of spectral neighbours and the procedure to select 679 

them could be analysed. Several approaches are available for selecting representative 680 

calibration samples (Shetty et al., 2012) and could also be tested. For example, to analyse 681 

the spectral similarity between calibration and test spectra, the Pearson correlation 682 

coefficient between spectra could be replaced by the Mahalanobis distance between 683 

spectra (Nocita et al., 2014) or the Pearson correlation coefficient distance based on Fast 684 

Fourier Transform of spectra (Gogé et al., 2012). Finally, some covariates could be added 685 

in local regression to improve prediction accuracy, as previously tested by Nocita et al. 686 

(2014) who used clay contents of samples as covariates to predict SOC content. 687 

 688 

 689 

6. Conclusion 690 

This work highlighted that, as expected, the SOC and SIC contents of French samples 691 

were successfully predicted from the French MIRS soil database using a global model 692 

based on PLS regression. Predictions of SIC and SOC are accurate when the calibration 693 
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and validation samples come from same pedologic and climatic contexts. This work also 694 

highlighted that when the calibration and validation samples come from different pedologic 695 

and climatic contexts, the SOC prediction performance over validation samples decreases, 696 

whereas the SIC prediction performance remains accurate. Finally, this work showed that 697 

prediction models were more sensitive to the distribution of the explained variables of 698 

calibration samples than to the spectral similarity between calibration and test spectra. 699 

This study confirmed the very high applicability of MIRS for SIC determination and the 700 

robustness of SIC prediction models, even when the calibration and validation samples 701 

come from different contexts. 702 

 703 
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Table 1: Soil datasets statistics. The SIC values set to zero correspond to values 

under the laboratory quantification limit (< 0.1 g kg-1). 

Dataset 

Number of 

soil 

samples  

Min 

g kg-1 

Max 

g kg-1 

Mean 

g kg-1 

Median 

g kg-1 

SDa 

g kg-1 
Skewness 

DB_RMQS_SOC 2178 0.6 411.3 25.8 19.6 21.8 4.9 

DB_RMQS_SIC 2178 0.0 103.9 6.4 0.0 16.1 3.1 

DB_Tunisia_SOC 96 2.0 121.0 20.1 14.6 21.0 3.0 

DB_Tunisia_SIC 96 0.0 92.9 43.3 48.5 25.6 -0.2 

DB_Calib_RMQS_SOC 1586b 0.6 411.3 25.6 19.4 22.3 5.5 

DB_Calib_RMQS_SIC 1582c 0.0 103.9 6.4 0 16.1 3.1 

DB_Valid_RMQS_SOC 544 1.5 159.0 25.5 19.6 19.5 2.5 

DB_Valid_RMQS_SIC 544 0.0 95.2 6.3 0.0 15.7 3.1 

a SD: standard deviation 

b after removing 48 spectral outliers 

c after removing 52 spectral outliers 

 

 

  



Table 2: Figures of merit obtained with global and local models over the French 

calibration and validation databases. 

Models R²cv 
RMSECV

(g kg-1) 
R²val 

RMSEval  

(g kg-1) 

biasval 

(g kg-1) 
RPDval RPIQval 

GMSIC 0.97 2.8 0.98 2.1 0.0 7.6 0.5 

LMSIC nd nd 0.99 1.8 0.0 8.8 0.6 

GMSOC 0.80 9.9 0.88 7.2 -0.4 2.7 2.4 

LMSOC nd nd 0.93 5.4 -0.7 3.6 3.2 

GMlnSOC 0.89 0.2* 0.90 6.6 -0.1 2.9 2.6 

LMlnSOC nd nd 0.92 5.7 -0.1 3.4 3 

*RMSEcv calculated on ln(SOC) 

nd: Not determined. 

 

  



Table 3: Figures of merit obtained with global and local models over the Tunisian soil 

samples. 

Prediction model R²test 
RMSEtest  

(g kg-1) 

biastest 

(g kg-1) 
RPDtest RPIQtest 

GMSIC 0.96 5.2 0.2 4.9 8.9 

LMSIC 0.96 5.6 1.7 4.6 8.3 

GMSOC 0.64 16.0 -5.2 1.3 0.8 

LMSOC 0.89 6.9 0.5 3.0 1.9 

GMlnSOC 0.97 4.2 0.7 4.9 3.1 

LMlnSOC 0.93 5.8 -0.6 3.6 2.3 

 




