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Applications

Balcan et al.  (2009) Seasonal transmission potential and activity peaks of the new influenza. 
BMC Medecine 7, 15052015.



Applications

Wang et al. (2014) Encapsulating urban traffic rhythms into road networks.
Scientific Reports 4, 4141.



Applications

Lenormand et al. (2018) Multiscale socio-ecological networks in the age of information.
PLoS ONE 13, e0206672.
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"Reality" Data
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Song et al. (2010) Limits of predictability in human mobility.
Science 327, 1018-1021.
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Spatial discretization

Location?



Extracting most frequented locations

an
The hours of activity are divided into two groups, daytime hours and 
nighttime hours. Only days of the week from Monday to Thursday are 
taken into account.

First filter: Consider only individuals "actives" during at least Nh hours 
spread over at least Nd days.

For each hour of activity, the most frequently visited zone during this 
hour is identified.

For both groups of hours (daytime and nighttime), we identify the zone 
in which the user has been localized the highest number of hours.

Second filter: Select only users whose fraction of hours spent at "home" 
and "work" are larger than a fraction     of the total number of locations 
visited during nighttime and daytime, respectively.

Lenormand et al. (2016) Is spatial information in ICT data reliable? In proceedings of the 2016 Spatial 
Accuracy Conference, 9-17, Montpellier, France.
https://gitlab.com/maximelenormand/Most-frequented-locations



an

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

δh

N
um

be
r o

f u
se

rs
 (x

10
4 )

(a)
Nh ≥1
Nh ≥5
Nh ≥10
Nh ≥15
Nh ≥20

0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1.0

δh

Fr
ac

tio
n 

of
 in

tra
−z

on
al

 fl
ow

s

(b)
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Lenormand et al. (2016) Is spatial information in ICT data reliable? In proceedings of the 2016 Spatial 
Accuracy Conference, 9-17, Montpellier, France.



Cross-checking different sources 
of mobility information

Lenormand et al. 2014



Data

Lenormand et al. (2014) Cross-checking different sources of mobility information.PlosOne,9(8):e105407.
Louail et al. (2017) Crowdsourcing the Robin Hood effect in cities. Applied Network Science 2, 11.
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Pairwise OD comparison
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Lenormand et al. (2014) Cross-checking different sources of mobility information.PlosOne,9(8):e105407.
Louail et al. (2017) Crowdsourcing the Robin Hood effect in cities. Applied Network Science 2, 11.



Immigrant community integration 
in world cities

Lamanna et al. 2018



Data

Lamanna et al. (2018) Immigrant community integration in world cities.
Plos One 13, e0191612.
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Spatial distribution of residence

Lamanna et al. (2018) Immigrant community integration in world cities.
Plos One 13, e0191612.



Multiscale socio-ecological networks 
in the age of information

Lenormand et al. 2018



Data

Lenormand et al. (2018) Multiscale socio-ecological networks in the age of information.
PLoS ONE 13, e0206672.
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Survey

Lenormand et al. (2018) Multiscale socio-ecological networks in the age of information.
PLoS ONE 13, e0206672.

 90% of accuracy in the users' place of residence detection!
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Is spatial information in ICT data reliable?

Lenormand et al. 2016



Data

300,000 mobile phone users' trajectories x 25 two-week periods

Identifying home-work locations
from mobile phone activity

Lenormand et al. (2016) Is spatial information in ICT data reliable? In proceedings of the 2016 Spatial 
Accuracy Conference, 9-17, Montpellier, France.
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Good agreement between the different data sources.

Uncertainty & accuracy are highly dependent of the 
spatial resolution and sample size.

More studies in this spirit need to be done to assess the 
biases and uncertainty associated with ICT data.

Take home messages...

It could be interesting to involve (more strongly and 
widely) the indiviual ICT data providers.
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