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Abstract 14 

It has long been acknowledged that the soil spatial samplings used as inputs to DSM models 15 

are strong drivers – and often limiting factors – of the performances of such models. 16 

However, few studies have focused on evaluating this impact and identifying the related 17 

spatial sampling characteristics. In this study, a numerical experiment was conducted on this 18 

topic using the pseudo values of topsoil clay content obtained from an airborne Visible Near 19 

InfraRed-Short Wave InfraRed (Vis-NIR-SWIR) hyperspectral image in the Cap Bon region 20 

(Tunisia) as the source of the spatial sampling. 21 

Twelve thousand DSM models were built by running a Random Forest algorithm from soil 22 

spatial sampling of different sizes and average spacings (from 200 m to 2000 m) and 23 

different spatial distributions (from clustered to regularly distributed), aiming to mimic the 24 
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various situations encountered when handling legacy data. These DSM models were 25 

evaluated with regard to both their prediction performances and their ability to estimate 26 

their overall and local uncertainties. Three evaluation methods were applied: a model-based 27 

one, a classical model-free one using 25% of the sites removed from the initial soil data, and 28 

a reference one using a set of 100,000 independent sites selected by stratified random 29 

sampling over the entire region.  30 

The results showed that: 1) While, as expected, the performances of the DSM models 31 

increased when the spacing of the sample increased, this increase was diminished for the 32 

smallest spacing as soon as 50% of the spatially structured variance was captured by the 33 

sampling, 2) Sampling that provided complete and even distributions in the geographical 34 

space and had as great spread of the target soil property as possible increased the DSM 35 

performances, while complete and even sampling distributions in the covariate space had 36 

less impacts, 3) Systematic underestimations of the overall uncertainty of DSM models were 37 

observed, that were all the more important that the sparse samplings poorly covered the 38 

real distribution of the target soil property and that the dense sampling were unevenly 39 

distributed in the geographical space, 4) The local uncertainties were underestimated for 40 

sparse sampling and over-estimated for dense sampling while being sensitive to the same 41 

sampling characteristics as overall uncertainty. 42 

Such finding have practical outcomes on sampling strategies and DSM model evaluation that 43 

are discussed. 44 

Keywords  45 

Uncertainty, sampling methods, spatial distribution indicators, Quantile Random Forest 46 
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1. Introduction 49 

Digital Soil Mapping has now emerged as a credible solution for providing soil data to 50 

decision-makers acting at global or local scales. Following the GlobalSoilMap specifications 51 

(Arrouays et al., 2014), a significant number of countries across the world are now covered 52 

by a high-resolution (90-m) grid documented with estimates of soil properties and their 53 

associated prediction uncertainties. To obtain this spatial soil information, Digital Soil 54 

Mapping models relating the targeted soil properties with exhaustively available covariates 55 

were built by running learning algorithms onto spatial sampling of available legacy soil 56 

profiles with measured soil properties. Numerous different algorithms have been proposed, 57 

mainly depending on the availability and type of soil data (e.g. point data (profiles, 58 

augerings), soil maps with various scales and detailed legends) and on the availability of 59 

covariates (Minasny and McBratney, 2010).  60 

It has been largely acknowledged that the main limitation of such digital models is the 61 

spatial sampling of the legacy measured soil profiles. The average spacing of such soil spatial 62 

sampling used in most operational DSM applications have been very large, e.g. 28 km (Hengl 63 

et al., 2017) and 5.5 km (Mulder et al., 2016). Furthermore, these soils’ spatial samplings 64 

have been constituted by the soil profiles of the different existing soil surveys within the 65 

mapped area, which means that their locations were not specifically selected for a DSM 66 

application and are often clustered at a few sub-areas of the study region, with large sub-67 

areas without any soil information. Consequently, the performances of soil predictions are 68 

often severely limited, especially for soil properties whose pattern of variation is largely 69 

below the soil profiles’ spacing (Vaysse and Lagacherie, 2016; Gomez and Coulouma, 2018). 70 

One way to increase DSM performance is therefore to increase the average densities and 71 

improve the spatial distribution of the measured soil profiles (Voltz et al., submitted).  72 
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Because of their high cost of acquisition, such new locations should be selected with care. 73 

For that, the prerequisites are: i) to accurately evaluate the uncertainty of the current soil 74 

property maps made from the unevenly distributed legacy measured soil profiles, ii) to 75 

determine the expected gain of an increase in the average spatial sampling densities and iii) 76 

to identify the spatial sampling characteristics that should be considered in the sampling 77 

strategies. These three prerequisites will be examined in this paper and are successively 78 

evoked in the following. 79 

The uncertainty evaluation of the soil property maps is an intrinsic part of a DSM application. 80 

This was theorized very early (McBratney et al., 2003) and translated into specifications in 81 

the GlobalSoilMap project (Arrouays et al., 2014). Although there exist guidelines for the 82 

assessment of uncertainty of Digital Soil Maps (Heuvelink, 2014), their practical application is 83 

not straightforward, which makes the uncertainty evaluation itself uncertain. The spatial 84 

sampling from which uncertainty is evaluated is a crucial point: the probability sampling that 85 

is advocated to obtain an unbiased estimate of uncertainty (Brus et al., 2011) cannot be 86 

obtained with the already fixed legacy soil data locations. Furthermore, uncertain 87 

estimations of the uncertainty of soil maps can be non-negligible even when using 88 

independent probability sampling (Kempen et al., 2011, Lagacherie et al., 2019). Lastly, it is 89 

uncertain that the set of locations used as evaluation data well describes the real pattern of 90 

the soil cover that is to be mapped, especially the short-range variations. For all of these 91 

reasons, determining the uncertainty of a DSM map is still an open question. 92 

Although there has been a large consensus in the DSM community that the density of soil 93 

data is a clear limiting factor for DSM (Lagacherie, 2008), few experiments showing their 94 

impacts on DSM mapping performances exist in the literature. Somarathna et al. (2017) and 95 

Wadoux et al. (2019) both observed an increase in the performances of Soil Carbon Mapping 96 
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as the amount of input data increased, regardless the algorithms used to build the DSM 97 

models. However, Somarathna et al. (2017) observed that this increase in performances was 98 

lower for the highest sampling densities, which may suggest that, beyond a given threshold 99 

of density, it would not be worthwhile to add further new locations. Such a threshold was 100 

not observed by Wadoux et al. (2019), which means that it should be highly case-dependent. 101 

More case studies should therefore be studied to gain expertise regarding fixing this 102 

threshold. 103 

Apart from their average densities, the soil spatial samplings may vary with regard to their 104 

spatial distribution across the study areas, which may also strongly affect the prediction 105 

performances of the DSM models that use such data as input. This was acknowledged early 106 

on (Brus and de Gruijter, 1993), and sampling algorithms for optimizing the completeness 107 

and evenness of the input soil locations within the geographical space (Brus et al., 2007) or 108 

soil covariate space (Minasny and McBratney, 2006) have been proposed. Similarly, Zhang 109 

and Zhu (2019) observed a slight increase in DSM performances when the spatial sampling 110 

was optimized with regard to its representativeness of the distribution of the soil covariates. 111 

Lark and Marchant (2018) showed that geostatistical predictions can be improved by adding 112 

10% of the closely spaced locations to regular sampling to better represent the short-range 113 

spatial structures. Finally, Adamchuk et al. (2011) improved the soil property predictions 114 

from soil sensors by developing a sampling strategy that considered the spread among 115 

sensor output, the local homogeneity and the physical coverage across an entire field as 116 

target spatial sampling properties. All of these works converge towards the idea that 117 

sampling strategies can be leveraged to increase DSM performances. However, a recent 118 

experiment (Wadoux et al., 2019) showed that this increase could not be obtained by some 119 
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sampling strategies, which means that the benefit of sampling strategies could be highly 120 

case-dependent.  121 

This paper presents a numerical experiment that relates the characteristics of legacy spatial 122 

samplings used as input soil data (spatial density and spatial distribution characteristics) with 123 

the DSM performance and the accuracy of their ex-ante evaluation. The study used the 124 

pattern of the topsoil pseudo clay content derived from airborne Visible Near InfraRed-Short 125 

Wave InfraRed (Vis-NIR-SWIR) hyperspectral data acquired over the Cap Bon region (300 126 

km2, Tunisia) at five-metre resolution (Gomez et al., 2012). This pattern is composed of well-127 

predicted clay values (R2 = 0.75) that are free of visible artefacts and pedologically plausible, 128 

which allows it to be considered as a fair representation of the variations of a real soil 129 

property across the landscape (Lagacherie et al., 2019). Such a soil dataset provided a quasi-130 

unlimited number of pseudo-measured sites, which enabled the testing of a large number 131 

(12,000) of spatial samplings. These spatial samplings were used as input data for a Quantile 132 

Random Forest algorithm that produced DSM models whose performances in predicting clay 133 

values and the associated accuracy were analysed with regard to the sampling 134 

characteristics. 135 

 136 

Insert figure 1 here 137 

2. Case study 138 

 139 

This case study has already been described in a previous paper (Lagacherie et al., 2019). 140 

Large excerpts of this paper are used in the following.  141 

2.1. The study area 142 
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The study area is in the Cap Bon region in northern Tunisia (36°24’N to 36°53’N; 10°20’E to 143 

10°58’E), which is 60 km east of Tunis (Figure 1a). This 300-km² area includes the Lebna 144 

catchment, which is mainly rural (>90%). The Lebna catchment is devoted to the cultivation 145 

of cereals in addition to legumes, olive trees, vineyards and natural vegetation for animals. 146 

The region is characterized by its rolling hills and elevations between 0 and 226 m. The 147 

climate varies from humid to semi-arid, with an inter-annual precipitation of 600 mm and an 148 

inter-annual potential evapotranspiration of 1500 mm. The soil pattern of the Lebna 149 

catchment is mainly the result of variations in lithology. The variations in the bedrock 150 

between Miocene sandstone and Marl cause large variations in the physical and chemical 151 

soil properties (Zante et al., 2005). Furthermore, the distance between successive sandstone 152 

outcrops decreases significantly as the terrain changes from the ocean to the mountains, 153 

which also causes variations in the soil property patterns (Gomez et al., 2012). The soil 154 

materials were redistributed laterally along the slopes during the Holocene, which adds to 155 

the complexity of the soil pattern. The main soil types are Regosols (IUSS working group 156 

WRB, 2006), which are preferentially associated with sandstone outcrops, and Calcic 157 

Cambisols and Vertisols, which preferentially formed on marl outcrops and lowlands. The 158 

south-eastern region of the study area has a flatter landscape with sandy Pliocene deposits 159 

in which Calcosols and Rendzinas prevail. 160 

 161 

2.2. Data 162 

 163 

2.2.1. Hyperspectral image and derived topsoil clay content predictions 164 

 165 
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The numerical experiment uses an image of topsoil clay content as input. The topsoil clay 166 

contents were derived from a Vis-NIR-SWIR hyperspectral image (Gomez et al., 2012). The 167 

approach used to produce the data is summarized below. More details regarding the pre- 168 

and post-processing of the hyperspectral image can be found in Gomez et al. (2012). 169 

On November 2, 2010, AISA-Dual airborne-based hyperspectral data were acquired over the 170 

study area with a spatial resolution of 5 m. The area of the image is approximately 12 km x 171 

24 km. The AISA-Dual spectrometer measured the reflected radiance via 359 non-contiguous 172 

bands covering the 400- to 2450-nm spectral range, with 4.6-nm bandwidths between 400 173 

and 970 nm and 6.5-nm bandwidths between 970 and 2450 nm. The radiance units were 174 

converted to reflectance units using ASD spectrometer measurements of uniform surfaces 175 

(parking lots, asphalt, concrete) that were collected at the same time during the over flight. 176 

Topographical corrections were performed using a digital elevation model built from ASTER 177 

data and ground control points. 178 

To isolate the bare soil areas, the study masked pixels with normalized difference vegetation 179 

index (NDVI) values greater than an expert-calibrated threshold (0.20). Water and Urban 180 

areas were also removed. Finally, the bare soil represented 46.3% of our study area, that is, 181 

5,889,847 measured AISA-Dual 5-m x 5-m pixels. 182 

A Partial Least Square Regression (PLSR) technique (e.g. Tenenhaus, 1998) was then applied 183 

to estimate the topsoil clay contents from AISA-DUAL reflectance at each location. The PLSR 184 

was calibrated from 129 couples of AISA-DUAL Vis-NIR-SWIR reflectance spectra on bare soil 185 

surfaces associated with the topsoil clay content measured on a laboratory soil sample 186 

collected from the same bare soil surfaces. Before the PLSR model was built, the reflectance 187 

was converted into “absorbance” (log [1/reflectance]). In addition, a Savitzky–Golay filter 188 

with second-order polynomial smoothing and window widths of 30 nm (Savitzky and Golay, 189 
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1964) and a mean centring and variance scaling was applied to the spectra to reduce noise. 190 

The calibrated PLSR model was then validated using a leave-one-out cross-validation that 191 

showed successful predictions (R² = 0.75, Gomez et al., 2012, figure 3). The PLSR model was 192 

then applied to all bare soil pixels to estimate the topsoil clay content, thus providing the 193 

final predicted topsoil clay properties map (Figure 1b). These treatments were implemented 194 

in R (Version 1.17) using the signal and pls packages (Mevik and Wehrens, 2007). 195 

 196 

2.2.2. Digital Elevation Model and derivatives 197 

 198 

A 30-m ASTER digital elevation model (DEM) with specific ortho-rectification and mosaicking 199 

was produced for this area. The classical geomorphometric indicators found in the DSM 200 

literature were calculated. These include Elevation, Slope, Aspect, plan Curvature, Profile 201 

Curvature, Multi-Resolution Valley Bottom Flatness (MRVBF) and four variables describing 202 

the aspect: northness, easterness, northwesterness, and northeasterness. All of these 203 

indicators served as covariate candidates for representing the relationships between clay 204 

content and the relief. 205 

 206 

2.2.3.  Tunisian agriculture map 207 

A set of layers of the Tunisian agriculture map (STUDI-SCOT-SODETEG, 2001) at 1:20,000 208 

scale was considered as covariates. This includes two soil properties, soil colour classes and 209 

textural classes, which were mapped by considering existing detailed soil maps completed 210 

by manual interpretation of remote sensing images. The other covariates extracted from the 211 

Tunisian agriculture map were the parent material (14 classes) and the land use (7 classes). 212 

 213 

2.2.4. Indices from Sentinel-2 images 214 
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 215 

Three spectral indices were used in this work, based on a Sentinel-2 image acquired on the 216 

2nd of November 2016 over the study area. The acquisition date of Sentinel-2 data was 217 

chosen to fit in the period of more extensive bare soils. Sentinel-2 data are composed by 218 

multispectral data in 13 bands covering the Visible, Near InfraRed and Short Wave InfraRed 219 

spectral domain with spatial resolutions ranging from 10 to 60 m. The Sentinel-2 data 220 

acquired on the 2nd of November 2016 was downloaded from the Muscate platform of the 221 

French land data centre, called Theia (https://www.theia-land.fr/) in Level 2A, i.e., corrected 222 

from atmospheric effects, thanks to the three bands acquired at 60-m spatial resolution 223 

(coastal at 443 nm, water vapour at 1375-nm atmospheric correction, coastal at 443 nm, and 224 

cirrus at 1376 nm). The three spectral indices used in this work were the normalized 225 

difference vegetation index (NDVI), Redness index (RI) and Colour index (CI), calculated 226 

following Pouget et al. (1990) and Ghodalizeh et al. (2016):  227 

���� = ���	�
�
�����
� [1] 228 

� = �
�
���               [2] 229 

�� = ��
	���
��
����  [3] 230 

where B8, B4 and B3 are the spectral bands centred at 842 nm, 665 nm, and 490 nm, 231 

respectively. 232 

NDVI was selected as a proxy of the vegetation health and biomass that could be in relation 233 

with topsoil clay contents through the water and nutriment retention properties. CI and RI 234 

were selected as proxies of topsoil colour that could be related to clay content through 235 

different parent materials. 236 

3. Methods 237 

3.1. DSM modelling 238 
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Three criteria were considered to select the learning algorithm used to produce the DSM 239 

models: i) the algorithm should be one of the most used and the most efficient among the 240 

recent DSM applications, ii) the algorithm had to provide local uncertainty predictions to be 241 

able to test its ability to predict the associated uncertainty, and iii) the algorithm should be 242 

run without manual intervention and repeated a great number of times in the numerical 243 

experiment. Combining these three criteria resulted in selecting the Quantile Regression 244 

Forest as the learning algorithm used in this study.  245 

Recent performance testing has found that the Random Forest, from which the Quantile 246 

Regression Forest is derived, was among the best algorithm for obtaining predictions of soil 247 

properties (Nussbaum et al., 2017), which confirmed a test performed on a wider range of 248 

machine learning applications (Caruana et al., 2006). The Quantile Regression Forest has also 249 

been demonstrated as efficient for predicting the uncertainty associated with soil property 250 

predictions (Vaysse and Lagacherie, 2017). Finally, many authors have adopted this machine 251 

learning algorithm for recent large-scale DSM applications (Hengl et al., 2017; Roman 252 

Dobarco et al., 2019). 253 

 254 

3.1.1. Random Forests and Quantile Regression Forests 255 

This section summarizes the main characteristics of Random Forests and Quantile 256 

Regression Forests, using excerpts of Meinshausen (2006). It was already presented in 257 

Lagacherie et al. (2019). More details on these two machine learning algorithms are given in 258 

the seminal papers by Breiman et al. (2001) and Meinshausen (2006), respectively. 259 

Let Y be a real-valued response variable and X be a covariate or predictor variable that is 260 

likely high-dimensional. A standard goal of statistical analysis is to infer the relationship 261 

between Y and X. Random Forests grow a large (>500) ensemble of trees using n 262 
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independent observations (Yi , Xi), i = 1, . . ., n. Each tree grows via a recursive partitioning of 263 

the source set using one predictor variable X. At each step, the source set is split into two 264 

subsets following a test on the value of X. When Y is a quantitative variable, the selected test 265 

is the one that minimizes the within-subset variance of Y (Breiman et al., 1984). The 266 

recursive partitioning is limited by a stopping rule, and the subsets are produced by the last 267 

split being the leaves of the tree. The ensemble of trees is produced by using a random 268 

sample of the training data and a random subset of the predictor variables for each tree.  269 

For the regression, the prediction ������ of a single tree ?? of a Random Forest for a new 270 

data point x can be represented as the weighted average of the original observations Yi, i = 1, 271 

. . ., n:  272 

 273 

������ = ∑ �����, ��������      [4] 274 

 275 

where �����, ��  is the weight vector given by a positive constant that is 1 if the 276 

observation Yi is part of the same leaf and 0 otherwise. 277 

By using Random Forests, the prediction is the average prediction of k single trees that were 278 

constructed as described above.  279 

�� ��� = ! ��������
�

���
 281 

    [5] 280 

with      ������ = "	� ∑ �����, ��#$��       [6] 282 

 283 

One could assume that the weighted observations deliver a good approximation not only of 284 
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the conditional mean but also of the full conditional distribution. This assumption is at the 285 

heart of the Quantile Regression Forest algorithm, which estimates the conditional 286 

distribution function of Y given x via: 287 

 288 

%��&|�� = ∑ �����1)*+,-.����     [7] 289 

 290 

From this conditional distribution, it is possible to derive both the predicted value (the 291 

mean) and the bound of the 90% prediction interval that predicts the associated uncertainty 292 

(the 0.05 and 0.95 quantiles). 293 

Numerous implementations of RF and QRF now exist. Ranger Package (Wright and Ziegler, 294 

2017) was selected because it is a fast implementation of Random Forests that is suitable for 295 

multiple model building. 296 

 297 

3.1.2. Tuning Random Forest Parameters 298 

The Random Forest Algorithm has several hyperparameters that must be set by the user. 299 

Among them, three parameters may significantly impact the results and therefore should be 300 

tuned to improve the predictions (Probst et al., 2018): i) the number of observations drawn 301 

randomly for each tree, ii) the number of variables drawn randomly for each split and iii) the 302 

minimum number of samples that a node must contain. These parameters were tuned using 303 

one of the most established tuning strategies, sequential model-based optimization (Jones 304 

et al., 1998; Hutter et al., 2011). This tuning algorithm iteratively uses the results of the 305 

different already evaluated hyperparameter values and chooses future hyperparameters 306 

based on these results. It is implemented in the TuneRanger Package (Probst et al., 2018). 307 

After some trials, 100 iterations appeared to be a good compromise that ensured a fairly 308 
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good convergence towards an optimized solution while being acceptable in terms of 309 

computing costs. 310 

 311 

Insert figure 2 here 312 

 313 

3.2. The numerical experiment 314 

3.2.1. General approach 315 

 316 

The workflow of the numerical experiment is presented in Figure 2. First, a master 317 

evaluation set of 100,000 locations with pseudo values of clay content was randomly 318 

selected from the total set of pixels. This master set served to determine the real 319 

performances of the tested models through a set of indicators described further in 3.2.3.  320 

The remaining locations were used to build and evaluate 12,000 models, i.e., 1,000 models 321 

for each of the 12 considered sample sizes (100, 200, 300, 400, 500, 600, 800, 1,000, 2,000, 322 

3,000, 5,000, and 10,000 locations), each corresponding to a given average spacing ( 1732 m, 323 

1225 m, 1000 m, 866 m, 775 m, 707 m, 612 m, 548 m, 387 m, 316 m, 245 m and 173 m) 324 

using the following equation: 325 

/012/31 56/7893 =  :$;$<= <>?<
@�A?       .   [8] 326 

 327 

For a given average spacing, the soil inputs of the 1000 models were selected by a specific 328 

sampling procedure (see the next section) that mimicked the more or less uneven spatial 329 

distributions observed when using legacy data as soil inputs. The soil inputs were then 330 

randomly divided into two sets, keeping 75% of the locations to produce DSM models using 331 

the QRF algorithm and 25% to obtain a so-called independent evaluation set as currently 332 
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practised in DSM applications. The DSM models were obtained using QRF according to the 333 

method presented above and then evaluated from the independent datasets. The same 334 

performance indicators used for the master set were considered to enable statistical 335 

comparisons.  336 

 337 

Insert figure 3 here 338 

 339 

3.2.2. The sampling procedure 340 

The sampling procedure was designed to randomly produce spatial samplings with 341 

contrasting degrees of unevenness. The study area was first stratified into 25 geographical 342 

strata of equal area using a K-means classification of the locations (Walvoort et al., 2010). 343 

Then, the following algorithm was applied: 344 

1) Define a given size of sampling N 345 

2) Select at random an integer P between 1 and 25 (the number of strata) and select at 346 

random P strata among the 25 347 

3) Select N/2 locations by a stratified random sampling, using the P strata selected in 348 

step 2 349 

4) Complete the spatial sampling by N/2 locations selected at random over the entire 350 

study area 351 

For a given size N, steps 2 through 4 were repeated 1,000 times to obtain 1,000 spatial 352 

sampling that differed in unevenness thanks to different random selections of P. The 353 

procedure was repeated for each selected sample size. 354 

Figure 3 shows four examples of different spatial samplings provided by this procedure. 355 

 356 
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3.2.3. Model performance indicators 357 

Four model performance indicators were considered. The first two were the Mean Square 358 

Error (MSE) and the 90% Prediction Interval Coverage probability (PICP90), which were 359 

calculated using the master evaluation set of 100,000 sites.  360 

MSE>?E  =  �
�  . �&G� – y��J                                            [9] 361 

with ŷi as the predicted value,   yi as the observed value of Clay, and n = 100,000  362 

    363 

PICP90 =  �
�  . card �) &G� ≥  yUVWXYZ and &G� ≤  yUVWX]Z.�J          [10] 364 

with yUVWXYZ and yUVWX]Z as the lower and upper bounds of the predicted 90% confidence 365 

interval PICP90 expressing the probability that all observed values fit within the 90% 366 

prediction limits provided by the DSM model.  367 

The last two indicators aimed to quantify the relative errors of Mean Square Error provided 368 

either by the QRF algorithm as a by-product (MSEmod) or by removing 25% of the soil inputs 369 

taken as an independent evaluation set (MSErmv). To calculate these errors, the MSE 370 

calculated on the master evaluation (MSEref) set served as a reference. 371 

^22_;` =  abcdef	abcghi
abcghi

    [11] 372 

^22>_j =  abcgdk	abcghi
abcghi

    [12] 373 

 374 

3.2.4. The Spatial sampling indicators  375 

Several spatial sampling indicators quantifying the characteristics of the spatial distributions 376 

of the tested spatial sampling were calculated as candidates to explain the performances of 377 

the model summarized by the performance indicator presented above. The first three 378 

indicators (Coverage Index, Kullback-Leibler Divergence and percentage of out of range) 379 
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were calculated in the covariate space, in the geographical space and with regard to the 380 

target variable (Clay content). The last two (variance and spatially structured-Variance ratio) 381 

were calculated for Clay content only. These indicators are detailed below. 382 

 383 

Coverage index 384 

The Coverage index (CI) (Gunzburer and Burkdart, 2004) expresses the degree of unevenness 385 

of the spatial distribution of the locations of the spatial sampling. 386 

� =  :�
l̀ m�

� ∑ no� − o̅rJ���� s           [13] 387 

with o� the distance of site i to its nearest neighbour and o̅ the mean value of the o�  388 

Note that, for a regular mesh, CI = 0. Then, a small value of CI means that the spatial 389 

sampling has a spatial distribution close to that of a regular grid. The R package DiceDesign 390 

(Dupuy et al., 2015) was used to calculate CI. 391 

 392 

Kullback-Leibler Divergence (KLD) 393 

The Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951) measures how close two 394 

probability distributions are. It was used here to measure the distance between the 395 

calibration or evaluation sets and the master validation set. It is a measurement of the 396 

representativeness of the calibration and validation sets with regard to the master validation 397 

set, which is assumed to represent the real distribution of the different variables across the 398 

study region. 399 

For distributions P and Q defined in the same probability space, the Kullback–Leibler 400 

divergence between P and Qis defined to be (Wikipedia, 401 

https://fr.wikipedia.org/wiki/Divergence_de_Kullback-Leibler) 402 
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tu��v|| w� =  − ∑ v���x∈z . {|3 m}�x�
~�x�s  [14] 403 

For distributions P and Q of continuous random variables, the Kullback–Leibler divergence is 404 

tu��v||w� = � 6���. log m��x�
��x�s�

	�   [15] 405 

The KLDs are first calculated for each variable and then averaged to obtain a unique value 406 

for the geographical and the covariate spaces.  407 

 408 

Percentage of out of range 409 

The percentage of out of range measures the proportion of locations of the study region 410 

having values of variables (in the covariates space, the geographical space of Clay values) 411 

that are out of the range of those of the sites included in the calibration or evaluation sets. It 412 

is also a measurement of representativeness but differs from the former due to its focus on 413 

extreme values. 414 

 415 

%���_|�_�/931 = �<>`m�-+����� - & -+����� -�s
�<>`���       [16] 416 

with P the calibration or evaluation sets and R the set of locations in the study region 417 

 418 

Clay Variance and percentage of spatially structured variance ratio  419 

Variance of clay is a measure of dispersion within the calibration or validation dataset with 420 

regard to clay values.  421 

A spatially structured variance ratio (SSVR) was proposed by Vaysse and Lagacherie (2015) as 422 

the complement to 1 of the nugget-to-sill ratio (Kerry and Oliver, 2008). It indicates the 423 

proportion of the spatially structured variance that is captured by the model. 424 

 425 
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SSVR = variance – nugget / variance.   [17] 426 

 427 

Because it was impossible to fit variograms on 12,000 trials, the nugget could not be 428 

calculated directly. It was therefore approximated by computing the semi-variances at lags 429 

centred on the average spacing (［average spacing – 100 metres, average spacing + 100 430 

metres]) 431 

 432 

Insert figure 4 here 433 

 434 

4. Results 435 

4.1. Impact of average spacing  436 

Figures 4a through 4d show the evolution of the different indicators of DSM performances 437 

with the average spacing (Equation 8). The Mean Square error on the predicted Clay value 438 

(MSEref) covered a large range of values across the 12,000 models (Figure 4a). These values 439 

increased regularly with the average spacing: from MSE = 7,911 g2.kg-2 (68% of explained 440 

variance) to MSE = 18,882 g2 kg-2 (22% of explained variance). The amount of variation of 441 

MSEref for a given size of sampling also increased regularly with the average spacing.  442 

PICP90 exhibited a positive bias (overestimated uncertainty) with regard to the expected 443 

90% value for the smallest average spacings (below 612 m) and a negative one 444 

(underestimated uncertainty) beyond this threshold (Figure 4b). However, the errors were 445 

only important (more than 1%) for the largest average spacing (- 2.5% for 1732 m) and for 446 

the smallest ones (between 1.2 and 1.7 for average spacing at and below 316 m). Apart from 447 

the influence of the average sampling variations, great variabilities of performances for 448 
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PICP90 estimations were observed for the largest average spacings (see the bars of Figure 449 

4b). 450 

The bagging procedure of the QRF algorithm and the external evaluation using 25% of 451 

removed sites both had a negative bias (Figures 4c and 4d) regardless of the average 452 

spacing, which revealed systematic underestimations of the overall uncertainty of the DSM 453 

models (e.g., -17% and -10% respectively for 1732-m spacing). This bias seemed not as 454 

closely related to the average spacing of sites as was observed previously for the other 455 

indicators, although slight decreases could be observed beyond 866-m spacing. The most 456 

important variations were observed within each sampling size, as shown by the large bars of 457 

Figures 4c and 4d. 458 

 459 

Insert figure 5 here 460 

 461 

4.2. The impacts of the spatial distributions of sites 462 

The matrices of Figures 5a through 5d show, for each average spacing (the columns of the 463 

matrices), the correlations between the spatial sampling indicators (lines of the matrices) 464 

and the indicators of DSM performance (one matrix per indicator). The last lines of the 465 

matrices show the coefficients of determination of the stepwise regressions between the 466 

indicator of performance of interest and the set of indicators of spatial sampling, which 467 

allowed the strength of the relation between these two types of indicators to be 468 

appreciated. 469 

Whatever the considered DSM performance indicators, the correlation coefficients were 470 

highly variable with regard to the spatial sampling indicators and the average spacing 471 

(between 0.00 to 0.91). These coefficients tended to increase with the decrease of average 472 
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spacing, which is summarized by the increase in the strength of the relation between the 473 

indicators of performance and the spatial sampling indicators (last lines of the matrices). 474 

However, some noticeable exceptions occurred for some relations between performance 475 

indicators and spatial sampling indicators. 476 

MSEref (Figure 5a), which expressed the ability of the DSM models to predict the correct 477 

value of clay content, was strongly positively correlated with the coverage_index and 478 

Kullback-Leibler divergence calculated in the geographical space, which means that the 479 

performances of the DSM models were better for evenly geographically distributed and 480 

representative spatial samplings. These correlations increased greatly when average spacing 481 

decreased (until - 0.87 for the two indicators) but were already substantial for the largest 482 

spacing (-0.42 and -0.38). For all of the tested average spacings, MSEref was also moderately 483 

correlated with Variance_Clay and %-out-of-range_Clay (between 0.27 and 0.40 and 484 

between – 0.27 and -0.56, respectively). This means that the performances of the DSM 485 

models tended to increase as the clay values included in the spatial sampling were largely 486 

dispersed, and this well covered the range of clay values of the study region. The three 487 

indicators calculated in the covariate space were only significantly correlated with MSEref for 488 

the smallest average spacings. Furthermore, these correlations were always smaller than 489 

those obtained by the same indicators calculated in the geographical space. Finally, the 490 

spatially structured variance ratio (SSVR) exhibited moderate negative correlations for 491 

intermediate values of average spacing (between -0.27 and -0.42), which means that, for 492 

these values, the more the spatially structured variability (especially the short range one) 493 

was captured by the spatial sampling, the better the performances were. 494 

PICP90, ^22_;` and ^22>_j (Figures 5b, 5c and 5d), which all expressed the ability to predict 495 

the uncertainty associated with the predicted values given by the DSM models, behaved 496 
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similarly to each other with regard to the correlations with the spatial sampling indicators, 497 

with however stronger overall correlations for ^22>_j than for PICP90 and for ^22_;` than 498 

for ^22>_j (see the stepwise regression coefficient, the last lines of the matrices in Figures 499 

5b, 5c and 5d). Contrary to MSEref, clear differences of correlation rankings were observed 500 

between the smallest and the largest average spacings. As far as the former are concerned, 501 

PICP90, ^22_;` and ^22>_j were predominantly correlated with Variance_Clay and %-out-502 

of-range_Clay (between 0.46 and 0.76 and between -0.38 and -0.62, respectively, for 503 

average spacing larger than or equal to 866 m). This means that the uncertainty was much 504 

better predicted when the clay values included in the spatial sampling were highly dispersed 505 

and covered well the range of clay values of the study region. At the smallest spacings, the 506 

strongest correlations were observed with the coverage_index and Kullback-Leibler 507 

divergence calculated in the geographical space (between -0.49 and -0.88 and between -0.48 508 

and - 0.85, respectively, for average spacing smaller than or equal to 387 m), which means 509 

that evenly geographically distributed and representative spatial samplings enabled an 510 

accurate prediction of the DSM model uncertainty. The spatial sampling indicators 511 

calculated on the covariate space only exhibited substantial correlations with PICP90, 512 

^22_;` and ^22>_j at the smallest spacings. Finally, SSVR exhibited substantial correlations 513 

only for PICP90 (between 0.33 and 0.45). 514 

 515 

Insert figure 6 here 516 

 517 

5. Discussion 518 

5.1. The impact of the average spacing  519 
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All of the results confirmed that the average spacing, related with the size of the calibration 520 

data sets used as input for the DSM approach, strongly impacted the results of a DSM 521 

approach. As already observed by Somarathna et al. (2017) and Wadoux et al. (2019), we 522 

observed (Figure 4a) a clear decrease of prediction errors (MSEref) when the average spacing 523 

is decreasing. It should be noticed that, thanks to the use of pseudo-values of clay content 524 

given by the hyperspectral image, we explored a more complete range of average spacing, 525 

which allowed us to analyse a larger range of model performances (from 22% to 68% of 526 

explained variance) that covered fairly well the ones cited in the literature. Figure 4a 527 

revealed that the decrease of prediction errors with average spacing was not linear. By 528 

substituting the average spacing X axis of Figure 4a by the spatially structured variance ratio 529 

(SSVR, see section 3.2.4), a new insight into this average proportion of clay variance was 530 

revealed (Figure 6): for the largest average spacing, that captured the least spatially 531 

structured variance (<= 800 sites, average spacing = 707 m), the average increase in 532 

performances was perfectly linear, whereas further increases of this ratio provided gains 533 

that were smaller and smaller than the previously observed linear trend. Therefore, this 534 

observed threshold separated two contrasting situations: below the threshold of average 535 

spacing of 707 m, the spacing of sampled sites was the only limiting factor, while beyond the 536 

threshold, other limiting factors, such as the precision of the covariates, also played a role in 537 

the quality of the results. This contrasting behaviour could explain why contradictory results 538 

have been obtained recently regarding the impact of the spatially structured variance ratio 539 

on DSM results, as observed by Vaysse and Lagacherie (2015) and not observed by 540 

Nussbaum et al. (2017). It may also explain why improving a covariate dataset often do not 541 

significantly improve the DSM products when overly sparse test datasets are used to 542 

calibrate the DSM model (Samuel-Rosa et al., 2015; Loiseau et al., 2019). 543 
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Apart from its influence on the prediction error, the average spacing of sites also had an 544 

impact on the estimations of the associated uncertainty, which, to our knowledge, has not 545 

been observed before. Decreasing the average spacing reduced the underestimation of the 546 

overall uncertainty provided either by the bagging procedure of the Random Forest (Figure 547 

4c) or the model-free evaluation process (Figure 4d), although these reductions were not as 548 

clear and regular as the prediction error because larger variabilities of results were observed 549 

within each tested spacing (see the error bars in Figures 4c and 4d). A more complex 550 

behaviour was observed for the local estimation of the confidence interval by the model 551 

tested by PICP90 (Figure 4b). For the largest spacings, PICP90 estimates converged towards 552 

the nominal value of the confidence interval (90%) as the spacing decreased, whereas for 553 

the smallest spacings, PICP90 moved away from this nominal value. This latter unexpected 554 

result could be interpreted as the inclusion of outliers as the spacing decreased, which could 555 

perturb the estimates of the confidence interval bounds. It must be noticed that, as for the 556 

estimations of the overall uncertainty evoked before, a large variability in estimating PICP90 557 

was observed within each tested spacing. 558 

Finally, a final effect of the spatial sampling size is that it changes the amount and the drivers 559 

of the variations of performances observed within each sampling size. This will be developed 560 

in the next section.  561 

 562 

5.2. The impact of the distribution of sites over the study region 563 

The bars on Figures 4a through 4d show that the average spacing is not the only driver of 564 

DSM performance, especially with regard to the ability of DSM approaches to estimate 565 

overall (Figures 4 c and 4 d) and local uncertainties (Figure 4b). The matrices of Figure 5 566 

confirmed many of the underlying hypotheses of the sampling strategies that have been 567 
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proposed in the literature while providing new insights on the relation between spatial 568 

sampling and uncertainty estimation and nuancing the importance of some sampling 569 

characteristics according to the size of the spatial sampling.  570 

From the matrices of Figure 5, it clearly appeared that the regularity of sampling and the 571 

representativeness in the geographical space improved the DSM results whatever the size of 572 

the spatial sampling and the considered indicators of performances. Therefore, the legacy 573 

soil data that are often characterized by both under-sampled and over-sampled sub-regions 574 

should be ideally completed using sampling strategies that could mitigate this irregularity of 575 

sampling in the geographical space (Brus et al., 2011; Adamchuk et al., 2011). This would 576 

require harmonizing the legacy and the new dataset techniques for removing biases caused 577 

by differences of dates, field protocols and laboratory methods (Baume et al., 2011; 578 

Ciampalini et al., 2013). An alternative to adding samples should be to better take into 579 

consideration in the DSM modelling the perturbing effects of the clusters of sites. This could 580 

be done by assigning different weights to the input sites according to their degree of 581 

remoteness (Bel et al., 2009), applying resampling techniques (Richer-de-Forges et al., 2017; 582 

Taghizadeh-Merjadhi et al., 2020) or restricting the predictions inferred from each cluster of 583 

sites to representative areas corresponding to well-identified and well-mapped soil systems 584 

(Lagacherie et al., 2001). 585 

The spread of the spatial sampling with regard to the values of the target soil property 586 

(%out-of-range and variance of Clay in Figure 5) also seemed crucial for improving both the 587 

predictions of the soil property and the predictions of the associated overall and local 588 

uncertainties. However, correcting the existing legacy sample with regard to this 589 

characteristic is an uneasy task because it requires additional knowledge to anticipate the 590 

locations of the extreme values of the targeted soil property that should be preferentially 591 
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sampled. A local pedological knowledge or a proxy of the soil property of interest 592 

(Adamchuk et al., 2011) could be mobilized for that.  593 

It is interesting to note that the sampling characteristics that involved the soil covariates 594 

only had an impact on the results for the smallest spacing of spatial sampling. In these cases, 595 

this impact was increased by strong relationships established between the covariates and 596 

the predicted soil property, whereas for the largest spacing, these relationships were too 597 

weak, even if the most related covariates were selected (results not shown in this paper). 598 

This means that the strategies of sampling based on the regularity of coverage of the spatial 599 

sampling in the covariate spaces (Minasny and Mc Bratney, 2006; Carré et al., 2007; Zhang 600 

and Zhu, 2019) could not be effective for correcting overly sparse legacy datasets. 601 

Conversely, for large datasets for which more covariates were involved in the model, a fair 602 

distribution of the covariates values would be required. However, the coverages and KLD 603 

indices in the covariate space and the geographical one were found to be highly correlated 604 

for the smallest average spacing (r > 0.90 for average sampling >= 1225 m), which means 605 

that taking into account the covariate space would be of little interest if the regularity of 606 

sampling in the geographical space is already ensured. However, this result would not hold 607 

in particular pedological contexts characterized by small inclusions of land with contrasted 608 

values of covariates that could be missed by regular samplings in the geographical space.  609 

Finally, the stepwise regression coefficients of determination given in the last lines of the 610 

matrices of Figure 4 clearly showed that the selected sampling characteristics could not 611 

alone explain the variations of performances that were observed across the 12,000 trials. 612 

This was particularly true for the sparsest spatial sampling when we considered the mean 613 

square error on predicted value (Figure 5a) or the biases of estimation of the latter (Figure 614 
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5c or 5d). The reverse tendency was observed for the error on PICP, for which the smallest 615 

average spacing of sites obtained the lowest coefficient of determination. 616 

 617 

5.3. Uncertainty estimation biases  618 

The two tested procedures of overall uncertainty estimation - the model-based and the 619 

model-free ones - exhibited non-negligible biases on uncertainty of clay content predictions 620 

(Figures 4c and 4d). Although the two procedures could be considered as intrinsically 621 

unbiased, some specific characteristics of the legacy spatial sampling to which they were 622 

applied were responsible of these biases. Although it could be observed (Figure 4) that the 623 

sparse samplings were more prone to bias than the dense ones, the average spacing did not 624 

seem to be a first-order driver because much more variability occurs within a given sampling 625 

size (see the bars of Figures 4c and 4d).  626 

The correlations matrices (Figures 5c and 5d) provided some insights on the causes of such 627 

biases. As far as the largest spacing were concerned, biases were all the more great that the 628 

sampling underestimated the real variations of clay content and thus left aside their extreme 629 

values. This observation can be related  with the general difficulty of the inference models, 630 

such as Random Forest, to predict values that are out of the range of their learning sample 631 

(Conn et al., 2014). Alternately, overly clustered datasets (see examples in Figure 3, left 632 

column) resulted in selecting evaluation sites that could be too close from the calibration 633 

sites for satisfying the condition of independence , which may induce underestimations of 634 

the prediction errors. Therefore, to estimate the overall uncertainty as well, it is important 635 

to mitigate the perturbing effects of the clusters of sites techniques cited above. 636 

Finally, it is worth noting that the estimations of the local uncertainty through a confidence 637 

interval calculated by the QRF algorithm seemed to be more robust than the estimations of 638 
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the overall uncertainty (Figure 3b). Only the largest spacing (1732 m) and, to a lesser extent, 639 

smallest ones gave unsatisfactory results. This confirmed the results obtained by Vaysse and 640 

Lagacherie (2017) using the same algorithm. 641 

 642 

5.4. Limitations and open questions. 643 

Although some clear and coherent tendencies could be retrieved from the results of this 644 

numerical experiment (see above), some open questions remain. First, the characteristics of 645 

the spatial sampling that were considered in this paper did not explain the entire variability 646 

of DSM performances. The weak statistical relations observed in Figure 5 for the largest 647 

spacing suggest that some hidden factors should be evoked. Among others, we hypothesize 648 

that the random process used for optimizing the hyperparameters of the Random Forest 649 

generated a noise on DSM performances, the best possible combination of parameters not 650 

always being reached because of local optimal solutions, especially when the size of the 651 

learning sample is small. This hypothesis is supported by the fact that the average 652 

variabilities of the optimal QRF parameters provided by the optimization process decreased 653 

as the size of the sampling increased (average Coefficient of Variation from 35% to 21%). 654 

Second, although a large range of soil sampling spacings were explored in this case study, 655 

the size of the study areas limited the testing of the sparser soil datasets that fed the DSM 656 

applications conducted at national (e.g. Mulder et al., 2016), continental (Ballabio et al., 657 

2016) or global scale (Hengl et al., 2017). Whether or not the trends exhibited in Figures 4 658 

and 5 can be extrapolated to these applications remains an open question. With the next 659 

availability of hyperspectral VIS-NIR-SWIR satellite data (such as the French HYPerspectral X 660 

Imagery –HYPXIM-, Briottet et al., 2013; the Spaceborne Hyperspectral Applicative Land and 661 

Ocean Mission –SHALOM-, Bussoletti, 2012; the German Environmental Mapping and 662 
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Analysis Program –EnMAP-, Stuffler et al., 2007; Steinberg et al., 2016 and the Hyperspectral 663 

Infrared Imager -HyspIRI-, Lee et al., 2015), it could be envisaged to reproduce the same 664 

numerical experiment at a wider extent with, however, a loose spatial resolution. In the 665 

absence of such an experiment, the results obtained for the largest average spacing 666 

considered in this numerical experiment (1732 m) should help in orienting the future design 667 

of DSM approaches at these largest extents. 668 

 669 

6. Conclusions 670 

The main lessons of the numerical experiment are as follows 671 

• User and producers of DSM products should be aware that the current methods of 672 

evaluation tend to underestimate the overall uncertainty, especially for sparse and 673 

unevenly distributed soil sampling 674 

• Although decreasing the average spacing of soil inputs always brings improvements 675 

of DSM performances, one should be aware that, beyond a given threshold of 676 

average spacing, the improvement would need also to collect better soil covariates. 677 

• The spatial distributions of the legacy data and the sampling strategies for correcting 678 

these distributions play a key role in reaching the best DSM performances. Sampling 679 

strategies that provide complete and even distributions in the geographical space 680 

and have as great a spread of the target soil property as possible should be 681 

privileged. 682 

• Some hidden sampling characteristics that were not considered in this experiment 683 

seem to play a significant role, especially for sparse sampling. More research is 684 

required for identifying these characteristics. 685 

 686 
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Figure 1: Location of the study area (a) and the spatial pattern of pseudo values of topsoil clay 

content (b) (after Lagacherie et al, 2009) 

 

Figure 2: General approach for the numerical experiment 

 

Figure 3: Examples of tested spatial sampling in the numerical experiment. Left column: Three 

clusters, right column: Fifteen clusters, top row : 75 calibration sites and 25 evaluation sites, 

bottom row : 750 calibration sites and 250 evaluation sites. Calibration sites are in black. 

Evaluation sites are in red. 

 

Figure 4: Evaluation of DSM models (quantile Random Forests) using different size of soil input 

data (size is expressed by spacing): 

 a) Mean Square error on predicted Clay value (MSEref), (in g2/kg2).The green line is the total 

variance of Clay content over the study area 

 b) 90% Prediction Interval Coverage Index (PICP90) (in %). The green line is the expected value 

of 90%. 

 c) error on the QRF based estimation of MSEref (in % MSEref). The green line is 0 (no error) 

 d) error on the model-free estimation of MSEref (removing 25% of the soil inputs for 

validation) (in % MSEref), ). The green line is 0 (no error). 

Red dots are averaged values per spacing and bars are +- the standard deviations (1000 

models per spacing)  

 

Figure 5: Correlation coefficients (CC) between the indicators of performances and the 

indicators of spatial distribution of sampling for different sizes of spatial sampling (1000 

simulations per size): a) Mean Square error (MSEref), b) PICP90 c)  error on MSE estimated by 

the random forest bagging procedure d) error on MSE estimated by removing 25% of sample. 

 

Figure 6 : Evolution of the average performances of predictions (mean MSEref) with the 

spatially-structured variance ratio (SSVR). The red line is the linear regression using the 

seven spatial sampling (out of 12) having the smallest values of SSVR.  
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