H. G. Andrews and J. P. Badyal, Bioinspired hook surfaces based on a ubiquitous weed (Galium aparine) for dry adhesion, J. Adhes. Sci. Technol, vol.28, pp.1243-1255, 2014.

D. Barthélémy and Y. Caraglio, Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny, Ann. Bot, vol.99, pp.375-407, 2007.

W. Barthlott, M. Mail, B. Bhushan, and K. Koch, Plant surfaces: structures and functions for biomimetic innovations, NanoMicro. Lett, vol.9, p.23, 2017.

R. M. Bateman, Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited, Developmental Genetics and Plant Evolution, pp.109-159, 2002.

G. Bauer, M. C. Klein, S. Gorn, T. Speck, D. Voigt et al., Always on the bright side -the climbing mechanism of Galium aparine, Proc. R. Soc. B, vol.287, pp.2233-2238, 2011.

W. J. Book, S. Le, and V. Sangveraphunsiri, The bracing strategy for robot operation, 5th Symposium on Theory and Practice of Robots and Manipulators, 1984.

J. N. Burris, S. C. Lenaghan, and C. N. Stewart, Climbing plants: attachment adaptations and bioinspired innovations, Plant Cell. Rep, vol.37, pp.565-574, 2018.

S. Busch, R. Seidel, O. Speck, and T. Speck, Morphological aspects of self-repair of lesions caused by internal growth stresses in stems of Aristolochia macrophylla and Aristolochia ringens, Proc. R. Soc. B. Biol. Sci, vol.277, pp.2113-2120, 2010.

C. Darwin, On the movements and habits of climbing plants, J. Linn. Soc. Bot, vol.9, pp.1-118, 1867.

E. Del-dottore, A. Mondini, A. Sadeghi, and B. Mazzolai, Characterization of the growing from the tip as robot locomotion strategy, Front. Robot. AI, vol.6, p.45, 2019.

E. Del-dottore, A. Sadeghi, A. Mondini, V. Mattoli, and B. Mazzolai, Toward growing robots: a historical evolution from cellular to plant-inspired robotics, Front. Robot. AI, vol.5, p.16, 2018.

I. Fiorello, E. Del-dottore, F. Tramacere, and B. Mazzolai, Taking inspiration from climbing plants: methodologies and benchmarks -a review, Bioinspir. Biomim, vol.15, p.31001, 2020.

I. Fiorello, F. Meder, O. Tricinci, C. Filippeschi, and B. Mazzolai, Roseinspired micro-device with variable stiffness for remotely controlled release of objects in robotics, Biomimetic and Biohybrid Systems. Living Machines, pp.122-133, 2019.

I. Fiorello, O. Tricinci, A. K. Mishra, F. Tramacere, C. Filippeschi et al., Artificial system inspired by climbing mechanism of galium aparine fabricated via 3D laser lithography, Biomimetic and Biohybrid Systems. Living Machines, pp.168-178, 2018.

F. Gallenmuller, A. Feus, K. Fiedler, and T. Speck, Rose prickles and asparagus spines -different hook structures as attachment devices in climbing plants, PLoS ONE, vol.10, p.143850, 2015.

A. G. Gentry, The distribution and evolution of climbing plants, The Biology of Vines, pp.73-97, 1991.

E. Gianoli, The behavioural ecology of climbing plants, AoB Plants, vol.7, p.13, 2015.

A. C. Gibson and P. S. Nobel, The Cactus Primer, 1986.

S. Gorb, Biological attachment devices: exploring nature's diversity for biomimetics, Philos. Trans. A, vol.366, pp.1557-1574, 2008.

E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, A soft robot that navigates its environment through growth, Sci. Robot, vol.2, p.3028, 2017.

E. E. Hegarty, Vine-host interactions, The Biology of Vines, pp.357-375, 1991.

S. W. Hughes, Archimedes revisited: a faster, better, cheaper method of accurately measuring the volume of small objects, Phys. Educ, vol.40, pp.468-474, 2005.

J. C. Huss, V. Schoeppler, D. J. Merritt, C. Best, E. Maire et al., Climate-dependent heat-triggered opening mechanism of banksia seed pods, Adv. Sci, vol.5, p.1700572, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01814021

J. C. Huss, O. Spaeker, N. Gierlinger, D. J. Merritt, B. P. Miller et al., Temperature-induced self-sealing capability of Banksia follicles, J. R. Soc. Interface, vol.15, 2018.

S. Isnard and N. P. Rowe, The climbing habit in palms: biomechanics of the cirrus and flagellum, Am. J. Bot, vol.95, pp.1538-1547, 2008.

K. Koch and W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials, Phil. Trans. R. Soc. A, vol.367, p.14871509, 2009.

S. S. Latthe, C. Terashima, K. Nakata, and A. Fujishima, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf, Molecules, vol.19, pp.4256-4283, 2014.

B. Mazzolai, Plant inspired growing robots, Soft Robotics: Trends, Applications and Challenges, 2017.

B. Mazzolai, L. Beccai, and V. Mattoli, Plants as model in biomimetics and biorobotics: new perspectives, Front. Bioeng Biotechnol, vol.2, pp.1-5, 2014.

J. S. Mehling, M. A. Diftler, M. Chu, and M. Valvo, A minimally invasive tendril robot for in-space inspection, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006.

B. Melzer, R. Seidel, T. Steinbrecher, and T. Speck, Biomechanics of the attachment system of English Ivy (Hedera helix): properties and structure of attachment roots in relation to the climbing substrate, J. Exp. Bot, vol.63, pp.191-201, 2012.

B. Melzer, T. Steinbrecher, R. Seidel, O. Kraft, R. Schwaiger et al., The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels, J. R. Soc. Interface, vol.7, pp.1383-1389, 2010.

M. Milvich, T. Speck, O. Speck, T. Stegmaier, and H. Planck, Biomimetics and technical textiles: solving engeneering problems with the help of nature's wisdom, Am. J. Bot, vol.93, pp.1455-1465, 2006.

I. Must, E. Sinibaldi, and B. Mazzolai, A variable-stiffness tendrillike soft robot based on reversible osmotic actuation, Nat. Com, vol.10, p.344, 2019.

C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot, vol.79, pp.667-677, 1997.

K. J. Niklas, F. Molina-freaner, and C. Tinoco-ojanguren, Biomechanics of the columnar cactus Pachycereus pringlei, Am. J. Bot, vol.86, pp.767-775, 1999.

K. J. Niklas, F. O. Molina-freaner, C. Tinoco-ojanguren, C. J. Hogan, and D. J. Paolillo, On the mechanical properties of the rare endemic cactus Stenocereus eruca and the related species S. gummosus, Am. J. Bot, vol.90, pp.663-674, 2003.

J. Peñalosa, Morphological specialization and attachment success in two twining lianas, Am. J. Bot, vol.69, pp.1043-1045, 1982.

N. Pérez-harguindeguy, S. Díaz, E. Garnier, S. Lavorel, H. Poorter et al., New handbook for standardised measurement of plant functional traits worldwide, Aust. J. Bot, vol.61, pp.167-234, 2013.

F. E. Putz and H. A. Mooney, The Biology of Vines, 1991.

M. Rampf, O. Speck, T. Speck, and R. H. Luchsinger, Selfrepairing membranes for inflatable structures inspired by a rapid wound sealing process of climbing plants, J. Bionic Eng, vol.8, pp.242-250, 2011.

M. Rampf, O. Speck, T. Speck, and R. H. Luchsinger, Investigation of a fast mechanical self-repair mechanism for inflatable structures, Int. J. Eng. Sci, vol.63, pp.61-70, 2013.

N. P. Rowe, Lianas. Curr. Biol, vol.28, pp.249-252, 2018.

N. P. Rowe, S. Isnard, F. Gallenmüller, and T. Speck, Diversity of mechanical architectures in climbing plants: an ecological perspective, Ecology and Biomechanics: a Mechanical Approach to the Ecology of Animals and Plants, pp.35-59, 2006.

N. P. Rowe, S. Isnard, and T. Speck, Diversity of mechanical architectures in climbing plants: an evolutionary perspective, J. Plant Growth Regul, vol.23, pp.108-128, 2004.

N. P. Rowe and T. Speck, Plant growth forms: an ecological and evolutionary perspective, New Phytol, vol.166, pp.61-72, 2005.

A. Sadeghi, A. Mondini, E. Del-dottore, V. Mattoli, L. Beccai et al., A plant-inspired robot with soft differential bending capabilities, Bioinspir. Biomim, vol.12, p.15001, 2016.

A. Sadeghi, A. Mondini, and B. Mazzolai, Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot, vol.4, pp.211-223, 2017.

A. Sadeghi, A. Tonazzini, L. Popova, and B. Mazzolai, A novel growing device inspired by plant root soil penetration behaviors, PLoS ONE, vol.9, p.90139, 2014.

S. Siegel and N. J. Castellan, Nonparametric Statistics for the Behavioural Sciences, 1988.

O. Speck, M. Schlechtendahl, F. Borm, T. Kampowski, and T. Speck, Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi-An adaptation to seasonal drought stress, Beilstein J. Nanotechnol, vol.9, pp.175-186, 2018.

T. Speck and N. P. Rowe, A quantitative approach for analytically defining, growth form and habit in living and fossil plants, The Evolution of Plant Architecture, pp.447-479, 1999.

T. Speck and N. P. Rowe, Plant growth forms and biomechanics, pp.379-384, 2001.

T. Speck, N. P. Rowe, L. Civeyrel, R. Classen-bockhoff, C. Neinhuis et al., The potential of plant biomechanics in functional biology and systematics, Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, pp.241-271, 2003.

T. Steinbrecher, G. Beuchle, B. Melzer, T. Speck, O. Kraft et al., Structural development and morphology of the attachment system of Parthenocissus tricuspidata, Int. J. Plant Sci, vol.172, pp.1120-1129, 2011.

J. F. Vincent, Structural Biomaterials, 1990.

S. Vogel, Comparative Biomechanics: Life's Physical World, 2003.

D. Voigt, A. Karguth, and S. Gorb, Shoe soles for the gripping robot: searching for polymer-based materials maximising friction, Rob Auton Syst, vol.60, pp.1046-1055, 2012.

I. D. Walker, Biologically inspired vine-like and tendril-like robots, Science and Information Conference, 2015.

M. Wooten, C. Frazelle, I. D. Walker, A. Kapadia, and J. H. Lee, Exploration and inspection with vine-inspired continuum robots, 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

M. Wooten and I. D. Walker, Circumnutation: from plants to robots, From Animals to Animats 14. SAB 2016, pp.1-11, 2016.

M. Wooten and I. D. Walker, Vine inspired continuum tendril robots and circumnutations, Robotics, vol.7, p.58, 2018.

Y. Yang, D. Davydovich, C. C. Hornat, X. Liu, and M. U. Urban, Leafinspired self-healing polymers, vol.4, pp.1-9, 2018.