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Abstract  18 

Establishing laws of plant and ecosystems functioning has been an overarching objective of 19 

functional and evolutionary ecology. However, most theories neglect the role of human 20 

activities in creating novel ecosystems characterized by species assemblages and 21 

environmental factors not observed in natural systems. We argue that agricultural weeds, as 22 

an emblematic case of such an ‘ecological novelty’, constitute an original and underutilised 23 

model for challenging current concepts in ecology and evolution. We highlight key aspects of 24 

weed ecology and evolutionary biology that can help to test and recast ecological and 25 

evolutionary laws in a changing world. We invite ecologists to seize weeds as a model system 26 

to improve our understanding of short-term and long-term dynamics of ecological systems in 27 

the Anthropocene. 28 

 29 

Novelty as a challenge 30 

Ecologists and evolutionary biologists have always sought repeated patterns that reveal 31 

universal laws of biological function and diversification. Several general theories have been 32 

proposed to define ecological and evolutionary processes explaining diversity within and 33 

across levels of organization, and across temporal and spatial scales. However, these theories 34 

are mostly inspired from natural or semi-natural ecosystems, and theoretical models are 35 

developed under idealized conditions such as population equilibrium or non-limiting resource 36 

conditions for plant growth. These theories largely neglect the role of human activities in 37 

creating novel ecosystems with original species assemblages and environmental factors. Such 38 

‘ecological novelties’ represent new frontiers of knowledge and create opportunities to 39 

challenge widely accepted theories [1], which, in line with Popper’s view of science, is a key 40 

aspect of the development of theory.  41 
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The emergence of agriculture during the Neolithic period is perhaps the most widespread 42 

example of a driver of novel ecosystems. It has created new habitats for numerous plant 43 

species [2] (so-called agricultural weeds) which now cover more than 40% of the terrestrial 44 

surface [3]. At the scale of the cropped field, weed communities represent melting pots of 45 

plant species with various biogeographic and ecological backgrounds and whose local 46 

assembly results as much from the movement of crops and civilisations as ecological rules 47 

(Box 1). In addition, agricultural practices result in environmental conditions that are unique 48 

from conditions in non-cultivated habitats, notably in term of disturbances and resource 49 

gradients (Box 2). Mechanical and chemical weeding also represent highly specific and strong 50 

selection pressures on weed communities [4]. New species combinations and environmental 51 

factors in cultivated fields can, therefore, lead to new forms of ecological and evolutionary 52 

dynamics that are difficult to capture using well-established theories.   53 

In this review, we argue that weeds in cropped fields provide a valuable but under-utilised 54 

model for challenging conceptual foundation stones in both ecology and evolution in the 55 

context of the current era that is characterised by rapid, human mediated change [5]. We 56 

discuss how our understanding of short-term and long-term diversification and dynamics of 57 

ecological systems should benefit from the study of weeds. In turn, better knowledge of weed 58 

ecology and evolutionary biology should help explain and predict their dynamics in cultivated 59 

fields, which will be necessary to develop innovative weed management schemes  that 60 

consider both services (e.g. pollination; [6]; [7]) and disservices (e.g. yield loss; [8] [9]) 61 

provided by weeds [10].  62 

Ecological outliers: why and how can weeds challenge functional ecology 63 

Functional ecology has long been searching for repeated patterns in the phenotypic diversity 64 

of life [11–14]. These patterns reflect the existence of common physiological and biophysical 65 

constraints that structure the ‘phenotypic space’ of organisms and govern their ability to adapt 66 
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to novel environments [13,15]. They are at the basis of major theories in functional ecology 67 

and macroecology [12,16,17]. For instance, in plants, the leaf economics spectrum describes 68 

leaf covariation of physiological and morphological traits that emerge from evolutionary 69 

trade-offs between resource acquisition and resource conservation strategies [18]. Most plant 70 

species seem to fall along this physiological trade-off [17]. However, these phenotypic 71 

patterns mostly rely on correlative approaches and, as such, a comprehensive falsification 72 

framework is lacking for most of them [19]. Testing the robustness of these laws would allow 73 

the validation, or not, of the existence of universal ecological, evolutionary, physiological and 74 

biophysical constraints for all taxa on Earth [20,21]. 75 

Agricultural weeds appear as good candidates to test whether organisms can overcome the 76 

constraints and tradeoffs that determine these patterns, and consequently whether (natural or 77 

artificial) selection can act against them [15,22]. Recent comparative analyses using taxa 78 

spanning continental and global scales show that weeds are located at the margins of the 79 

functional space defined by national and global floras [23,24]. Such a position makes them 80 

potential ‘functional outliers’, i.e. species functionally distinct from the rest of the global pool 81 

of species [25]. In addition, weed species are expected to have greater phenotypic plasticity 82 

than non-weeds [26,27], particularly for traits related to reproduction - allowing life cycle 83 

completion in variable conditions [28–30]. Being at the margins of the plant functional space 84 

and having high level of phenotypic plasticity are two key ingredients for weeds to eventually 85 

overcome eco-physiological and biophysical constraints that are assumed to limit the 86 

diversification of life (Fig. 1A).  87 

The possibility of original trait combinations in weeds reflects the unique environmental 88 

conditions that characterize the cultivated fields. For instance, enclosed fields and the use of 89 

pesticides remove top-down regulation of plant communities by invertebrate and vertebrate 90 

herbivores in cropped fields. The removal of natural herbivory in cropped fields can therefore 91 
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change the underlying constraints that determine the leaf economics spectrum (resource 92 

acquisition vs. conservation;[18]). Moreover, the original combination of disturbance and 93 

resource levels in agricultural fields (Box 2) might have selected for weed ecological 94 

strategies that differ from the ones observed in natural ecosystems. According to the C-S-R 95 

model, the combination of disturbance and resource gradients shape three primary plant 96 

ecological strategies that explain the diversity of the whole flora [31]. A high level of resource 97 

availability and a low level of disturbance select for species that display a combination of 98 

traits that make them good competitors (‘Competitor species’, C). ‘Stress-tolerant’ (S) species 99 

occur where both resource availability and disturbance levels are low while ‘Ruderal’ (R) 100 

species are adapted to habitats where both resource availability and the levels of disturbance 101 

are high. Finally, no trait combination allows species to persist in environments where 102 

disturbance level is high and resources availability is low [31]. Intriguingly, the CSR scheme 103 

has been built on habitat characteristics where species are found, not on the levels of 104 

resources and disturbance actually perceived by the organisms. This approach may be limited 105 

in seeking to understand the functional ecology of agricultural weeds that occur in habitats 106 

characterized by high levels of resources and disturbance but also experience severe resource 107 

depletion, notably in light, the latter being largely preempted by the crop species that is 108 

artificially dominant (Box 2). Agricultural weeds thus face repetitive disturbances in the 109 

context of strongly imbalanced resource ratios [32]. This extreme situation is not considered 110 

in the traditional CSR model where the ability of species to capture above and below ground 111 

resources is assumed to co-vary along a stress tolerant – competitive gradient (Fig. 2B). The 112 

exceptional combination of disturbances and the imbalance above and belowground resources 113 

available for weeds in agricultural fields thus questions the CSR model developed from 114 

observations in natural ecosystems. A greater consideration of the effect of imbalance 115 
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resource availability on the evolution of plant ecological strategies is required to better 116 

understand the success of weeds in cultivated habitats.   117 

 Functional ecology approaches to studying weeds are at their infancy.  While the ruderal 118 

strategy has traditionally been related to weeds, empirical evidence shows that a wider range 119 

of ecological strategies also exist in weeds [24]. Particularly, weeds species differ between 120 

those that compete with the crop and those that avoid it as well as between species that resist 121 

or avoid disturbances [33,34]. These results suggest that the same environmental constraints 122 

may select for a variety of ecological strategies that can co-exist in the same field. Improving 123 

the characterization of the whole weed biota through the lens of functional traits will allow the  124 

species able to establish and persist in arable habitats to be identified (so-called ‘regional 125 

pool’ in community ecology). This will inform the profiling of future weed communities and 126 

the assessment of the physiological and biophysical constraints that regulate weed success and 127 

their potential to adapt. 128 

2. Challenging community assembly rules 129 

Weed science has largely focused on understanding the biology and control of individual 130 

weeds infesting cropland. However, plant species do not act independently but are imbedded 131 

in complex interaction networks, both within and between local communities. This evidence 132 

has motivated the seminal article of Booth & Swanton [35] that calls for a shift from species 133 

to community level studies in weed science. Yet, despite an increasingly number of studies 134 

addressing weed community assembly, the rules that govern weed community dynamics 135 

remain far from clear, making predictions of the impact of any change in farming practices 136 

difficult (e.g., refs. [36–41]). Here, we argue that this may result from the fact that weed 137 

communities display particular dynamics that cannot be fully capture by classical ecological 138 

theories. 139 
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Whether the assembly of ecological communities follow general rules is a fundamental but 140 

still unresolved question in community ecology [42]. One of the most challenging issues is to 141 

understand and model the combined influences of stochastic, neutral (i.e. independent from 142 

biological differences) and niche-based (i.e. biotic interactions and environmental filtering) 143 

processes on community assembly [43–45]. According to the stress gradient hypothesis, 144 

competition should govern community assembly in productive habitats while harsh 145 

environmental conditions should filter stress-tolerant species [45]. By contrast, community 146 

assembly can be neutral where both competition and environmental stress are weak, for 147 

example after a disturbance that strengthens the influence of stochastic species recruitment 148 

[45]. However, weed communities occupy habitats where competition, environmental 149 

filtering and stochastic dynamics are all extremely strong (Box 2). Intense competition arises 150 

from a pre-emption of space and light by the crop, which strongly reduces weed biomass 151 

[46,47]. Abiotic constraints are caused by agricultural practices such as chemical weeding and 152 

soil disturbances (i.e. tillage and mechanical weeding), which filter out species according to 153 

their sensitivity to herbicides and to their phenology, respectively [48,49]. These recurring 154 

disturbances further maintain the farmed ecosystem in early stages of secondary succession 155 

(i.e. dominance of annuals; [50]), where stochastic colonization-extinction dynamics also play 156 

an important role ([40,41,51,52]). These dynamics might however shift in no-till systems 157 

where the abandonment of ploughing favour more perennial weed species [7,53]. Weed 158 

communities thus represent a combination of transient species that rely on repeated 159 

colonisation from field edges and resident species that are adapted to the habitat filters in the 160 

field [52]. Because of the unique  combination of niche-based and neutral processes in 161 

cultivated fields , weed communities are particularly valuable for investigating how complex 162 

assembly dynamics govern species persistence and coexistence across spatial scales.  163 
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Another critical issue in the Anthropocene is to predict the responses of communities to 164 

anthropogenic environmental changes [54,55]. Spatial variation contributes to species 165 

coexistence via the spatial storage effect [56] that allows less competitive species to migrate 166 

and persist in communities (source-sink dynamics, [57]). By contrast, temporal variation can 167 

modify the competitive hierarchy between species, allowing species to coexist over the long-168 

term (i.e. temporal storage effect, [56]). However, ecological theories implicitly assume 169 

stationary regimes of environmental variation so that some coexistence equilibrium is reached 170 

at a given time (reviewed in [55]). In the case of agricultural weeds, this fundamental 171 

assumption is violated by abrupt changes imposed by changing human activities, which 172 

prevents the system reaching any long-term stability. Over decadal time scales, the 173 

development of new agricultural practices and the abandonment of ancient ones has strongly 174 

affected the dynamics of weed populations, as some formerly rare weeds become more 175 

successful and vice et versa [49,58]. Similarly, the introduction of new cultivated species 176 

within a region (e.g. rapeseed, sugar beet, sunflower in France) creates unprecedented 177 

environmental conditions that can radically change the composition of weed communities in 178 

just a few years [59]. From year to year, the sequential cultivation of different crop species 179 

within a field also causes large fluctuations of disturbance regimes and competitive 180 

interactions [60]. Such non-stationary environmental constraints should theoretically drive 181 

deviations from community equilibrium within an environment at a given time by favouring 182 

transient and delayed species responses (lag response hypothesis;[55,61]). This has been 183 

verified empirically with agricultural weeds where temporal dispersal from the dormant 184 

seedbank allows the presence of weed species that reproduced successfully under previous, 185 

more suitable conditions (i.e. temporal source-sink dynamics, [38,41,62]). The ability of 186 

weeds to colonise novel cropping environments over short time scales will also be related to 187 

spatial dynamics of introductions of seed in crops and on machinery or dispersal from 188 
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surrounding habitats, involving stochastic processes and landscape composition [63,64]. 189 

Weeds thus represent an exemplary case to elaborate a “non-equilibrium” community 190 

assembly theory, a theory that is urgently needed to better understand and anticipate plant 191 

community responses to the ongoing global changes [65]. 192 

3-Weeds: evolutionary roadrunners? 193 

Although scientists long assumed that evolution proceeds slowly, an increasing number of 194 

examples of rapid evolution have been documented in wild plant species (e.g. [66,67]). 195 

Evidence of rapid phenotypic and molecular evolution challenge the classical view of the 196 

standard model of population genetics [68]. Furthermore, because ecological and evolutionary 197 

time scales overlap, ecological and evolutionary process are now known to interact and we 198 

need to understand how evolutionary process can affect population growth rates and 199 

ecological dynamics [69]. A better understanding of rapid evolution and eco-evolutionary 200 

dynamics is particularly crucial given that these phenomena may become increasingly 201 

frequent in the Anthropocene [70] due to the dramatic acceleration of human driven 202 

ecological changes ("the Great Acceleration," [5]). 203 

Rapid evolution is particularly frequent in agricultural fields where farming practices have 204 

caused intense but unintended selective pressures on weeds since the Neolithic. The 205 

contribution of the genetic attributes of weeds and their evolutionary dynamics (in term of 206 

mating systems, phenotypic plasticity, and many other adaptive traits) to their capacity for 207 

rapid evolution in a new human-made environment have been repeatedly pointed out 208 

[2,4,29,71–73]. The evolution of herbicide resistance is probably the most emblematic and 209 

well-documented case of rapid evolution in plants (reviewed in [74]). Beyond herbicide 210 

resistance, rapid evolution can also affect weed demography by controlling weed-crop or and 211 

weed-pathogens interactions. For example, Guo et al. [75] demonstrated the rapid evolution of 212 

allelopathy and pathogen resistance in the barnyard grass (Echinochloa crus-galli) in response 213 
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to co-cultivation with rice and to infection by pathogenic Pyricularia oryzae, respectively. In 214 

addition, many weed species rapidly evolve traits that mimic the crops to survive the selective 215 

constraints historically imposed by the farmers (Vavilovian mimicry, [76,77]). For instance, 216 

there is evidence that populations of Agrostemma githago have adapted to mimic the size and 217 

shape of crop seed to avoid being removed during seed cleaning ([78]). This species is also 218 

virtually indistinguishable from wheat during the vegetative stage (Figure 2), which also 219 

probably allows it to escape from manual weeding in traditional farming systems. Another 220 

example is the evolution of the crop mimicry syndrome in Camelina alyssum (Mill.) Thell. 221 

that has led to the weed reducing its phenotypic plasticity ([28]). If the evolution of vegetative 222 

or seed traits has been driven by crop mimicry, by contrast floral traits may have 223 

differentiated from crops due to divergent selection. For example, Agrostema githago 224 

produces flowers that are clearly visible among wheat plants; presumably, to attract 225 

pollinators and ensure reproduction at low plant densities in self-pollinating crop stands 226 

(Figure 2). Thomann et al. [79] also reported the evolution of increased capitula size in the 227 

cornflower (Cyanus segetum), in parallel with pollinator decline in 1990’s agrosystems in 228 

northern Europe. However, the generalization of contrasted selection pressures on vegetative 229 

and floral traits in weeds, as well as the mechanisms of convergent and divergent evolution, 230 

remain an open question.  231 

The realization that evolution can occur on short time suggests the existence of reciprocal 232 

interactions between ecological and evolutionary dynamics [69]. Although a growing number 233 

of studies show that rapid trait evolution can drive ecological dynamics on contemporary time 234 

scales, there are few empirical evidence of feedbacks from these altered ecological 235 

interactions on the evolutionary responses of plant communities [80]. Recently, Baucom [74] 236 

argue that weed communities exposed to herbicides provide an attractive system to study such 237 

eco-evolutionary feedbacks. Indeed, the emergence of resistance boosts the demography of 238 



 11

resistant populations in agrosystems that can in turn affect pollinator communities and disease 239 

prevalence. The resulting changes in biotic interactions between weeds and other trophic 240 

levels can in turn promote the evolution of new weed species traits (see Fig. 1 in [74]). Here, 241 

an important and still unresolved question is to identify functional traits that can drive rapid 242 

evolution and eco-evolutionary dynamics. Plant genome size (GS) might be such a trait as it 243 

simultaneously controls evolutionary rates and several important plant functional traits such 244 

as plant relative growth rate and generation time [81,82]. Intriguingly, Bennett [77] reported 245 

that GS was smaller in weeds than in non-weeds although polyploidy was more common in 246 

weeds.   This is surprising given that plant GS positively correlates with the amount of 247 

repetitive DNA that result from hybridization and/or polyploidy (at least soon after such 248 

polyploidization events occur; [78]). Antagonistic forces may therefore drive plant GS size 249 

and ploidy level in agricultural weeds.  250 

Finally, archeological findings provide both a chronology of agricultural innovations and a 251 

parallel record of associated weed floras from archaeological remains (e.g. [85,86]), making 252 

agricultural weeds remarkable models to understand the genetic basis of rapid evolution as 253 

well as the evolutionary trajectories of complex traits in natural populations. The progress in 254 

ancient DNA sequencing techniques makes it possible to scan whole genomes of weed 255 

historical samples to detect candidate genes under selection. On a shorter time scale, 256 

resurrection ecology [87] and museum specimen analysis [88] can also be a relevant 257 

methodologies to investigate weed trait evolution and its genetic and epigenetic underpinning 258 

over hundreds to a few dozens of generations. Weeds are particularly useful for this approach 259 

since most of these species are annuals producing numerous seeds that persist in soil seedbank 260 

for decades [89]. Recent resurrection experiments on weed species have for example revealed 261 

rapid evolution on herbicide and drought resistance, pathogen susceptibility, phenology, floral 262 

traits and pollination biology and adaptive plasticity [79,87,90]. Coupling resurrection 263 
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ecology with genome wide association mapping will be a key approach to understand the 264 

genetic basis of rapid evolution of multiple and complex traits in response to documented 265 

selective pressures (e.g. [91]). 266 

Concluding remarks 267 

Understanding the impacts of human activities on ecological and evolutionary dynamics will 268 

require revisiting ecological theories initially developed for natural ecosystems (see also 269 

oustanding questions). Pivotal to this is the integration of reciprocal interactions between 270 

human activities and ecological and evolutionary processes. Because weed evolutionary 271 

history and ecological dynamics are linked intrinsically to human activities, these species 272 

have great potential to become a valuable model in ecology and evolution. Yet, weeds are 273 

absent from most ongoing efforts of global biodiversity and trait databases, or at least their 274 

peculiarities are not recognized (due to e.g., lack of vegetation plot data in cropping systems, 275 

lack of data on intraspecific trait variation). We urge (numerical) ecologists not to discard the 276 

amazing source of information coming from weed species and their associated habitats. Field 277 

ecologists might have also overlooked widespread cultivated habitats compared to rare and 278 

emblematic ones. However, studying plant community assembly using weed communities is 279 

an attractive prospect given that assembly processes can be more easily identified, deciphered 280 

and quantified. Finally, weeds, by their short life cycle and relatively simple genome, appear 281 

as preferential experimental models for ecology and evolution. Let ecologists and 282 

evolutionists seize the weeds! 283 
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 493 

 494 

 495 

Box 1. How to become an agricultural weed? 496 

Three roads can lead a plant species to become a weed: wild species invading fields, crop-497 

wild hybridization and crop de-domestication [72,92]. 498 

First, crop domestication during the Neolithic has resulted in the construction of a new 499 

human-made ecological niche, the agricultural fields in different part of the world [93]. At 500 

this moment, and in each center of plant domestication, numerous local pre-adapted plants 501 

were able to colonize cultivated fields [94]. These proto-weeds probably locally evolved 502 

according to the man-made selective pressures (the first agricultural practices) during 503 

millennia, as plant cultivation started long before crop domestication, at least in the Levant 504 

[95]. Some of these species still exist in both cultivated and non-cultivated habitat (i.e. 505 

apophytes), while others such as Lolium temulentum, Bromus secalinus, Agrostemma githago 506 

or Vaccaria hispanica, are only known in agricultural habitats (i.e. anecophytes).  507 

Second, the expansion phase of agriculture has then carried out secondary contact among 508 

previously isolated populations or species, both domesticated and wild, generating admixture 509 

or hybridization [96,97]. Hybridization has triggered the emergence and diversification of 510 

many emblematic weed species such as Capsella bursa-pastoris [98], Veronica persica [99], 511 

or Chenopodium album [100]. Moreover, during the expansion phase, pre-adapted plant 512 

species from the newly cultivated areas could enter in the field adding new species [2]. 513 
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Finally, some contemporary weed species are the result of de-domestication from cultivated 514 

ancestors (e.g. weedy rice, Oryza sp. [101]; weedy radish, Raphanus sp. [102]). By definition, 515 

these feral species are highly adapted to their early agricultural practices. This can explain 516 

why these weed species are notoriously ones of the most problematic weeds in contemporary 517 

farming [102]. 518 

These various processes make modern weed communities a unique assemblage of species 519 

with various biogeographic origins and evolutionary histories. 520 

 521 

Box 2. Environmental gradients in cultivated fields. 522 

Environmental conditions in cultivated fields refer to both local pedo-climatic conditions and 523 

farming practices. Farming practices such as tillage and weeding operation correspond to 524 

major disturbance events in arable fields [60]. Crop phenology (e.g. sowing date, harvest date) 525 

notably determines the timing of disturbance during while herbicide intensity and tillage 526 

depth dictate the intensity of disturbance. In addition, the soils of cultivated habitat are 527 

extremely rich in resources as fertilization and irrigation provide large amounts of nutrient 528 

and water. Although fertilization and irrigation mostly benefit the crop species, the amount of 529 

nutrient and water supplies are such that they remain largely non-limiting for weeds [103]. By 530 

contrast, the amount of space and light that are available for weeds are strongly limited by the 531 

presence of the crop species that produce most of the standing biomass in agricultural fields. 532 

The amount of aboveground resources pre-empted by the crop varies according to crop 533 

height, lateral spread and sowing density [104].  534 

The rapid monopolization of space and light by one species in a regularly disturbed habitat is 535 

specific to cultivated fields [4]. In non-cultivated ecosystems, disturbance releases resources 536 

by destroying biomass, so that regularly disturbed habitat generally show high level of 537 
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resources availability [105]. By contrast, in cultivated fields, crop characteristics more than 538 

disturbances dictates the amount of available resources for weeds so that the positive 539 

covariance between disturbance and resource gradients do no longer exist. Finally, the 540 

succession of different crop species and associated farming practices within a field (i.e. crop 541 

sequences) causes major year-to-year changes in both disturbances and resources availability 542 

[60].  543 

Figure 1. Whether and how weed species can break functional ecology rules: theoretical 544 

expectations. (A) Functional ecology has highlighted cross-taxa trait-trait relationships that 545 

mirror physiological and biophysiological constraints at the origin of the diversification of 546 

life. For instance, the leaf economics spectrum describes a trade-off between photosynthetic 547 

rate (trait Y) and leaf lifespan (trait X) among many plant species [16]. Each gray dot 548 

represents a given species. Weed species have been characterized as functional outliers 549 

because they were located at the margins of the multi-trait space (so-called functional space) 550 

in recent cross-taxa comparative studies. In addition, weed species are expected to display 551 

high phenotypic plasticity ability, which can help them to overcome the envelope of 552 

constraints delineated by functional ecological laws. (B) The CSR theory delineates a triangle 553 

of tenable strategies of species based on the characteristics of the habitat where they live, 554 

namely resources and disturbances. However, when decoupling resources into aboveground 555 

and belowground resources to account for the levels of resources that are available for weeds, 556 

weeds might be considered as functional outliers in this untenable triangle. Indeed, they 557 

undergo high disturbance level, high belowground resources but low aboveground resources 558 

due to high depletion of light availability by the crop species. Such imbalance between 559 

belowground and aboveground resources is not considered in the traditional CSR model.  560 

Figure 2. Phenotypic convergence and divergence between wheat and the common corn 561 

cockle (Agrostemma githago). Left: At the vegetative stage, the common corn cockle is 562 
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virtually indistinguishable from wheat. Right: By contrast, floral traits strongly diverge. Photo 563 

credit: Guillaume Fried. 564 
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