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Abstract

This study presents a new strategy to generate a surrogate model used for design purposes.
The metamodel is based on Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces
and is able to �t non-convex sets of target points (TPs). The proposed method aims at
determining all the parameters involved in the de�nition of the NURBS hyper-surface, i.e.
control points (CPs) coordinates, weights, degrees, CPs number and knot-vector compo-
nents. To this purpose, the problem of �nding a suitable metamodel is formulated as a
constrained non-linear programming problem (CNLPP) wherein the above variables are
optimised in order to �t a set of TPs. Nevertheless, when the number of CPs and the de-
grees of the basis functions are included among the design variables, the resulting problem
is de�ned over a space having a variable dimension. This problem is solved by means of
a special genetic algorithm able to determine simultaneously the optimum value of both
the design space size (related to the integer variables of the NURBS hyper-surface) and
the NURBS hyper-surface continuous parameters. The NURBS-based metamodel is then
used to emulate the �rst buckling load of a composite sti�ened panel and it is used in the
framework of a meaningful design problem.

Keywords: Optimisation, Genetic Algorithms, NURBS hyper-surfaces, Surrogate models,
Sti�ened Panels, Composite structures

1. Introduction

Composite structures are massively used in many industrial �elds because of their high
sti�ness-to-weight and strength-to-weight ratios that can lead to substantial gain of weight
when compared to classical metallic alloys. However, heterogeneity and anisotropy of
composite materials make the design of composite structures a hard task since the problem
should be considered at di�erent scales: (a) microscopic (i.e. that of the constitutive
phases), (b) mesocopic (i.e. that of the constitutive lamina) and (c) macroscopic (i.e. that
of the laminate).

Moreover, when dealing with the optimisation of composite structures, usually the phys-
ical responses involved into the problem formulation are the outputs of complex numerical
models. Accordingly, the computational cost of theses responses can be high leading, thus,
to a time consuming optimisation process. In this context, metamodelling strategies can
be used to reduce the overall time needed to assess the physical responses of the structure.
The metamodelling process consists of de�ning a suitable surrogate model requiring less
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resources to be executed than the original model from which it is obtained. The meaning of
resources depends on the problem at hand. As an example, image reduction aims to reduce
the number of data needed to evaluate the metamodel [1], while metamodels used within
an optimisation process aim to reduce the computatonal e�ort (i.e. the elapsed time) to
evaluate the outputs for a given set of inputs [2, 3]. It is noteworthy that all current meth-
ods need a calibration phase that is excluded when evaluating the overall computational
e�ort. For some complex real-world engineering problems, the calibration step can require
a huge amount of time: in these circumstances the engineer should carefully evaluate the
opportunity of formulating a metamodel. Consider a MIMO system characterised by N
inputs and M outputs de�ned as:

RN → RM
z : x → z(x),

(1)

where x =
(
x(1), . . . , x(N)

)
is the vector collecting the N inputs of the system and z(x) =(

z(1)(x), . . . , z(M)(x)
)
is the transfer function of the MIMO system containing the M out-

puts. In some cases this function may be completely known but, for real-world engineering
problems, this is not always true. From a mathematical viewpoint, the metamodelling
process consists of determining a function ẑ(x) that needs less resources to be evaluated
than z(x):

RN → RM
ẑ : x → ẑ(x) = z(x) + ε(x),

(2)

where ẑ(x) is the function approximating the real transfer function z(x) and ε(x) is the
approximation error at point x. The function ε(x) is a bounded function whose bounds
are linked to the desired accuracy.

In the literature one can �nd a wide range of metamodelling techniques such as kriging
[4], radial basis functions (RBFs) [5, 6], Arti�cial Neural Networks (ANNs) [7, 8], proper
orthogonal decomposition (POD) [9, 10] and proper generalised decomposition (PGD) [1].
Some of these methods have been used within optimisation processes [11�15], but, as a
general remark, setting the number and the value of the parameters tuning the behaviour
of classical metamodelling techniques could be a quite di�cult task, which often needs a
trial-and-error approach.

The metamodelling strategy proposed in this study relies on the use of M -dimension
(M -D) Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces characterised by a
N -D parametric space to �t a given set of data points, also called target points (TPs).
Up to now, only few research works focus on the formulation/implementation of surrogate
models based on the NURBS formalism [16�18]. NURBS curves and surfaces are stan-
dard geometrical entities widely used in Computer Aided Design (CAD) software. NURBS
hyper-surfaces represent a generalisation of these entities. A NURBS hyper-surface is de-
�ned through the number of dimensions (related to the size of the problem at hand), the
degree of blending-functions along each dimension, the overall number of control points
(CPs), the coordinates of each CPs and the related weights, the knot vector components
along each dimension. The large amount of parameters tuning the shape of a NURBS
hyper-surface makes it a versatile tool for many mathematical and engineering applica-
tions, not only for formulating surrogate models [19�27]. However, this large amount of
parameters also constitutes its main drawback: it is very hard to properly tune all these
parameters without making some simplifying assumptions or preliminary choices as done
in [16�18]. Up to now, hyper-surface �tting problems are solved by means of iterative pro-
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cedures generalising those used in the surface �tting framework [28]. These procedures can
be grouped into two categories. On the one hand, some procedures start from a minimal
number of CPs which is iteratively increased until the algorithm reaches a given accuracy.
On the other hand, some procedures make use of the opposed approach, i.e. they start from
the maximum allowable number of CPs which are iteratively removed without degrading
the desired accuracy.

The �rst attempt of using NURBS hyper-surfaces to formulate suitable metamodels
goes back to the works of Turner [16, 18]. In particular, in [18] a NURBS-based surrogate
model used in the framework of the characterisation of composite material properties is
presented. In this background, Turner and Crawford developed an iterative procedure for
the hyper-surface �tting problem focusing on the determination of a suitable number of CPs
for the NURBS hyper-surface. However, the method proposed by Turner and Crawford
is based upon an empirical rule to determine the position of new CPs that are added on
the basis of the value of the cost function of the problem at hand (typically the maximum
error of approximation). Indeed, their approach is characterised by some restrictions:

• the degrees of the NURBS blending functions are set a priori ;

• the knot vectors components are uniformly distributed or calculated by means of
simple empirical rules;

• the weights are evaluated through empirical formulae and only for those CPs whose
local support contains TPs a�ected by a relative error greater than a given threshold.

Of course, these empirical rules (and the parameters tuning the behaviour of the related
formulae) are strongly problem-dependent and the user must have a deep knowledge of the
problem at hand and of the NURBS hyper-surfaces fundamentals, as well.

To go beyond the aforementioned restrictions, the metamodelling approach based on
NURBS hyper-surfaces is here coupled with a special genetic algorithm [29�31] able of
determining both the optimal number and the value optimal of the parameters a�ecting
the NURBS hyper-surface shape, without introducing simply�ng hypotheses or empirical
rules to set these quantities. In particular, when the number of CPs and the blending
function degrees are included among the unknowns, the hyper-surface �tting problem can
be formulated as a Constrained Non-Linear Programming Problem (CNLPP) de�ned over a
space of variable dimension. Of course, when dealing with such a problem, a particular care
must be put in the choice of the proper numerical tool to perform the solution search. To
this purpose the ERASMUS code (EvolutionaRy Algorithm for optimiSation of ModUlar
Systems) [29, 30], which is able to deal with problems characterised by a variable number of
design variables, is used as optimisation tool to solve the hyper-surface �tting problem. The
e�ectiveness of the proposed surrogate model based on NURBS hyper-surfaces is proved
through a meaningful benchmark taken from the literature [32]: the least-weight design
of a composite sti�ened panel. In this context, the metamodel is used to emulate the
�rst-buckling load of the sti�ened panel as a function of the considered design variables.

The paper is organised as follows: the theoretical framework of NURBS hyper-surfaces
is presented in Section 2. The mathematical formulation of the hyper-surface �tting prob-
lem is brie�y presented in Section 3, while the hybrid optimisation tool used for solving
the metamodel generation problem is presented in Section 4. The optimisation problem
related to the sti�ness panel is presented in Section 5. The result of the metamodelling
generation process are discussed in Section 6, whilst Section 7 presents the results of the
optimisation of the sti�ened panel using the metamodel. Finally Section 8 ends the paper
with some concluding remarks and prospects.
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2. NURBS hyper-surfaces: theoretical framework

The fundamentals of NURBS entities are brie�y provided in the most general case of
NURBS hyper-surfaces. Curves and surfaces formulae, widely discussed in [28, 33�35], can
be easily deduced from the following formulæ.

A NURBS hyper-surface is a polynomial-based function, de�ned over a parametric space

(domain), taking values in the NURBS space (codomain). Therefore, if N is the dimension
of the parametric space and M is the dimension of the NURBS space, a NURBS entity
is de�ned as H : RN → RM . For example, one scalar parameter (N = 1) can describe
both a plane curve (M = 2) and a 3D curve (M = 3). In the case of a surface, two
scalar parameters are needed (N = 2) together with, of course, three physical coordinates
(M = 3). The mathematical formula of a generic NURBS hyper-surface is

H
(
u(1), ..., u(N)

)
=

n1∑
i1=0

· · ·
nN∑
iN=0

Ri1,...,iN

(
u(1), ..., u(N)

)
Pi1,...,iN , (3)

where Ri1,...,iN
(
u(1), ..., u(N)

)
are the piecewise rational basis functions, which are related to

the standard Bernstein polynomials Nik,pk(u(k)), k = 1, ..., N by means of the relationship

Ri1,...,iN

(
u(1), ..., u(N)

)
=

ωi1,...,iN
∏N
k=1Nik,pk

(
u(k)

)∑n1
j1=0 · · ·

∑nN
jN=0

[
ωj1,...,jN

∏N
k=1Njk,pk

(
u(k)

)] . (4)

In Eqs. (3) and (4), H
(
u(1), ..., u(N)

)
is aM -dimension vector-valued rational function,(

u(1), ..., u(N)
)
are scalar dimensionless parameters de�ned in the interval [0, 1], whilst

Pi1,...,iN are the so called control points (CPs). The j-th CP coordinate
(
P

(j)
i1,...,iN

)
is stored

in the array P(j), whose dimension is (n1 + 1)× · · · × (nN + 1). The explicit expression of
CPs coordinates in RM is:

Pi1,...,iN =
{
P

(1)
i1,...,iN

, ..., P
(M)
i1,...,iN

}
, P

(j)
i1,...,iN

∈ R,

ik = 0, . . . , nk, k = 1, . . . , N, j = 1, ...,M.
(5)

The CPs layout is referred as control polygon for curves, control net for surfaces and
control hyper-net for hyper-surfaces [28]. The generic CP does not actually belong to
the NURBS entity but it a�ects its shape by means of its coordinates. A suitable scalar
quantity ωi1,...,iN (called weight) is related to the respective CP, i.e. Pi1,...,iN . Nik,pk(u(k))
are the so-called blending functions. For each parametric direction u(k), k = 1, ..., N , a
speci�c degree pk is assigned. The recursive de�nition of the blending function Nik,pk(u(k))
is

Nik,0

(
u(k)

)
=

{
1 if U

(k)
ik
≤ u(k) < U

(k)
ik+1,

0 otherwise,

Nik,q

(
u(k)

)
=

u(k) − U (k)
ik

U
(k)
ik+q
− U (k)

ik

Nik,q−1

(
u(k)

)
+

U
(k)
ik+q+1 − u(k)

U
(k)
ik+q+1 − U

(k)
ik+1

Nik+1,q−1

(
u(k)

)
,

q = 1, ..., pk.

(6)
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where each blending function is de�ned on the knot vector

U(k) =

0, · · · , 0︸ ︷︷ ︸
pk+1

, U
(k)
pk+1, · · · , U

(k)
mk−pk−1, 1, · · · , 1︸ ︷︷ ︸

pk+1

 , (7)

whose dimension is mk + 1, with

mk = nk + pk + 1. (8)

Each knot vector U(k) is a non-decreasing sequence of real numbers that can be inter-
preted as a discrete collection of values of the related dimensionless parameter u(k). The
NURBS blending functions are characterised by several interesting properties: the inter-
ested reader is addressed to [28] for a deeper insight into the matter. Here, only the local
support property is recalled because it is of paramount importance for the metamodelling
strategy based on NURBS hyper-surfaces:

Ri1,...,iN
(
u(1), ..., u(N)

)
6= 0,

if
(
u(1), ..., u(N)

)
∈
[
U

(1)
i1
, U

(1)
i1+p1+1

[
× · · · ×

[
U

(N)
iN

, U
(N)
iN+pN+1

[
.

(9)

Eq. (9) means that each CP (and the respective weight) a�ects only a precise zone of
the parametric space, that is referred as local support or in�uence zone.

3. A metamodel based on NURBS hyper-surfaces

In this paper, an original approach is used to set up all the parameters tuning the shape
of the NURBS hyper-surface representing the metamodel. This method aims at providing
the function ẑ(x), approximating the real transfer function z(x) of a MIMO system, as
follows:

E =
[
x
(1)
min, x

(1)
max

]
× . . .×

[
x
(N)
min, x

(N)
max

]
→ RM

ẑ : x → H (f (x)) .
(10)

where x =
(
x(1), . . . , x(N)

)
is the vector collecting the N inputs of the system, H (f (x)) =(

X(1)(x), . . . , X(M)(x)
)
is the vector containing the M approximated outputs and f (x)

is a bijective function realising the mapping of the space E into the parametric domain
[0, 1]N of the NURBS hyper-surface, i.e.

E → [0, 1]N

f : x → f (X) =
(
f (1)

(
X(1)

)
, . . . , f (N)

(
X(N)

))
= u,

(11)

where u =
(
u(1), . . . , u(N)

)
are the parametric coordinates of the metamodel inputs x and

f (k)
(
x(k)

)
is a bijective function. Generally, the function f (k)

(
x(k)

)
can be de�ned as,[

x
(k)
min, x

(k)
max

]
→ [0, 1]

f (k) : x(k) → f (k)
(
x(k)

)
=

x(k) − x(k)min

x
(k)
max − x(k)min

= u(k), k = 1, ..., N.
(12)

The surrogate model is formulated without introducing neither simplifying hypotheses
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nor empirical rules to set all the parameters a�ecting the shape of the NURBS hyper-
surface. The resulting metamodelling strategy is thus problem-independent and constitutes
the main advantage of the proposed approach.

Of course, this ambitious goal can be achieved through a pertinent formulation of
the metamodel generation problem. Such a problem is formulated as a constrained hyper-
surface �tting problem and the surrogate model based on NURBS hyper-surfaces is smartly
coupled to the ERASMUS algorithm [29, 30] able of determining both the number and the
value of the parameters involved in the de�nition of the NURBS hyper-surface.

3.1. Design variables

Eqs. (3) and (4) show that the parameters involved in the de�nition of a NURBS
hyper-surface are of di�erent nature:

• integer variables, like the number of both knot vector components and CPs, (mk +
1, nk + 1, respectively) as well as the degrees of the blending functions pk along each
dimension;

• continuous variables, like the internal knot vector values U
(k)
pk+1, ..., U

(k)
mk−pk−1 , CPs

coordinates Pi1,...,iN , weights ωi1,...,iN and the dimensionless parameters u
(k)
s at which

the NURBS hyper-surface is evaluated.

Some of these parameters are interdependent, whereas other can be smartly chosen. In

particular, as far as the dimensionless parameters are concerned, i.e. u
(k)
s , they are obtained

according to the mapping f of Eq. (12) applied to the inputs of the MIMO for each TP,
i.e.

u(k)s =
x
(k)
s − x(k)min

x
(k)
max − x(k)min

, k = 1, . . . , N, s = 1 . . . , nTP, (13)

where nTP is the overall number of TPs. Therefore, the NURBS dimensionless parameters
do not belong to the set of design variables. Moreover, the number of CPs along each
parametric direction can be determined once the size of the knot vector and the degree of the
blending functions along the same direction are known, according to Eq. (8). Accordingly,
the number of CPs is excluded from the design variables vector.

The determination of the optimum value of CPs coordinates can be carried out by
a dedicated algorithm. In particular, when the size of the knot vector and its internal
components, along each direction, are known, the degree of the blending functions (along

each direction) is given and the values of u
(k)
s have been computed by means of Eq. (13),

�nding the optimum value of the CPs coordinates is a quite trivial task. Indeed, the NURBS
hyper-surface �tting problem is convex in terms of CPs coordinates. The interested reader
can refer to [28, 30, 31] for more information on the iterative algorithms to obtain the CPs
coordinates.

Finally, the independent parameters tuning the NURBS hyper-surface shape are:

• the N degrees pk;

• the N knot lengths mk + 1;

• the mk − 2pk − 1 internal components of the knot vector U(k), k = 1, ..., N ;

• the nCP =
∏N
k=1 (nk + 1) weights ωi1,...,iN .
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These parameters are collected in the vector of design variables ξ as

ξT =
(
p1, . . . , pN ,m1, . . . ,mN , U

(1)
p1+1, . . . , U

(1)
m1−p1−1, . . . ,

U
(N)
pN+1, . . . , U

(N)
mN−pN−1, ω0,...,0, . . . , ωn1,...,nN

)
.

(14)

It is noteworthy that the number of independent parameters de�ning the NURBS hyper-
surface is given by the following equation

nvar = 2N +

N∑
k=1

(mk − 2pk − 1) +

N∏
k=1

(nk + 1) , (15)

which depends upon the integer variables of the hyper-surface.

3.2. Objective function and optimisation constraints

The problem of generating a suitable metamodel can be formulated as a constrained
hyper-surface �tting problem. The goal is to minimise the Euclidean distance (in M
dimensions) between the NURBS hyper-surface and the set of TPs. Nevertheless, the
main idea is to search for the best value of the parameters tuning the shape of the NURBS
hyper-surface minimising the overall number of CPs and blending functions degrees by
keeping a su�cient accuracy (according to the problem requirements). Of course, the
number of CPs is related to the number of data needed to evaluate the outputs of the
metamodel, whereas the blending function degrees are related to the processing time of the
metamodel (recall that the NURBS blending functions are recursively evaluated according
to Eq. (6)). Accordingly, three objective functions Φi have been compared in this study,
i.e.

Φ1(ξ) =

(
nTP∑
s=1

(z (xs)−H (us))
2

)( N∑
k=0

nk
nkmax

+
N∑

k=0

pk
pkmax

)
, (16)

Φ2(ξ) = a

nTP∑
s=1

(z (xs)−H (us))
2

ε0
+ b

N∑
k=0

nk
nkmax

+ (1− a− b)
N∑
k=0

pk
pkmax

, (17)

Φ3(ξ) = a
N∑
k=0

nk
nkmax

+ (1− a)
N∑
k=0

pk
pkmax

, (18)

where z (xs) is the vector collecting the outputs of the s-th TP for the input vector xs while
H (us) is the corresponding point belonging to the NURBS hyper-surface, evaluated at the
parametric coordinates us. In Eqs. (17) and (18) a and b are suitable weighting coe�cients
balancing the requirements on the euclidean distance between the hyper-surface and the
set of TPs, on the number of CPs and on the NURBS hyper-surface processing time (via
the degrees). In Eq. (17), the parameter ε0 is a reference value of the Euclidean distance
between the set of TPs and the NURBS hyper-surface in order to get a dimensionless term.

It is noteworthy that when the objective function takes the form of Eq. (18) an addi-
tional requirement on the model accuracy must be added in terms of a constraint on the

7



maximum relative error on the j-th output, i.e. ε
(j)
max, as:

ε(j)max (ξ) ≤ ε(j)th , j = 1, . . . ,M, (19)

where ε
(j)
th is a threshold related to the required accuracy for the j-th output of the surrogate

model, whilst ε
(j)
max (ξ) is the maximum relative error de�ned as

ε(j)max (ξ) = max
us

(
ε(j) (us)

)
, (20)

where ε(j) (us) is the relative error at parametric coordinates us =
(
u
(1)
s , ..., u

(N)
s

)
given

by

ε(j) (us) =
|H(j) (us)− z(j) (xs) |

z
(j)
max − z(j)min

, j = 1, . . . ,M, s = 1, ..., nTP. (21)

In Eq. (21), z(j) (xs) is the j-th output evaluated as the s-th TP at inputs xs =
(
x
(1)
s , . . . , x

(N)
s

)
,

whileH(j) (us) is the counterpart evaluated on the NURBS hyper-surface at the parametric

coordinates us =
(
u
(1)
s , . . . , u

(N)
s

)
. The scalar quantities z

(j)
max and z

(j)
min are the maximum

and minimum values of the j-th output over the set of TPs, respectively.
The hyper-surface �tting problem can be stated in the form of a CNLPP as follows

min
ξ

Φτ (ξ), τ = 1, 2 or 3

subject to :

ε
(j)
max (ξ) ≤ ε(j)th , j = 1, . . . ,M, (to be considered only if τ = 3),

0 ≤ U (k)
lk
≤ 1, lk = pk + 1, . . . ,mk − pk + 1, k = 1, . . . , N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, . . . ,mk − pk + 1, k = 1, . . . , N,

nCP ≤ nTP,

nk − pk ≥ 0, k = 1, . . . , N,

ωi1,...,iN ≥ 0, ik = 0, . . . , nk.

(22)

Problem (22) is a non-standard CNLPP for di�erent reasons. Firstly, unlike the meth-
ods available in the literature [16, 28], the proposed strategy aims at providing all the
design variables ξ without introducing neither simplifying hypotheses nor empirical rules
to set the parameters involved in the NURBS hyper-surface de�nition. Secondly, the num-
ber of design variables is integrated into the design variables vector ξ and depends upon the
integer parameters of the NURBS hyper-surface. As explained in [29], problem (22) can
be smartly stated as an optimisation problem of modular systems belonging to di�erent
families. Generally speaking, a modular system is composed by elementary units, i.e. the
modules. Each module is characterised by the same vector of unknowns, i.e. the design
variables of the module, which can take, a priori, di�erent values for every module (in the
most general case of di�erent modules). For problem (22), two di�erent classes of modules
can be identi�ed: the knot vector components and the weights. CNLPPs dealing with
modular systems are unconventional because they are de�ned over a domain of variable
dimension, which depends upon a linear combination of the integer variables characterising
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the modular system. In particular, for problem (22) the problem dimension is given by Eq.
(15).

4. Numerical strategy for metamodel generation

Considering the peculiar nature of problem (22), a hybrid optimisation tool developed
at I2M laboratory in Bordeaux and called HERO (Hybrid EvolutionaRy Optimisation) has
been used. It is composed of the genetic algorithm ERASMUS (EvolutionaRy Algorithm
for optimiSation of ModUlar Systems) [29], interfaced with the active-set algorithm of
MATLAB fmincon family, available in the MATLAB optimization toolbox [36].

Figure 1: Hybrid EvolutionaRy Optimisation (HERO) algorithm.

As shown in Fig. 1, the optimisation procedure for problem (22) is split in two phases.
During the �rst step, solely the GA ERASMUS is used to perform the solution search
and the full set of design variables is taken into account. ERASMUS is a special GA
able to deal with optimisation problems characterised by a variable number of design
variables, and more speci�cally, optimisation problems of modular systems. This goal
can be achieved thanks to the original representation of information in ERASMUS. In
particular, the individual's genotype is organised in modular parts, each one composed of
chromosomes which are in turn made of genes (each gene codes a speci�c design variable).

In agreement with the paradigm of natural sciences, individuals characterised by a dif-
ferent number of chromosomes (i.e. modular structures composed of a di�erent number
of modules) belong to di�erent species. ERASMUS has been conceived for crossing also
di�erent species, thus making possible (and without distinction) the simultaneous optimi-

sation of species and individuals. This task can be attained thanks to dedicated genetic
operators, which have been implemented to perform the reproduction phase between indi-
viduals belonging to di�erent species: the general architecture of ERASMUS is illustrated
in Fig. 2. Therefore, ERASMUS is able to simultaneously optimise both the number of
modules (for each class of modules) and the values of the design variables characteris-
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ing each module. The e�ectiveness of ERASMUS has been proven on a large number of
real-world engineering problems [20�22, 32, 37�41].

Figure 2: ERASMUS algorithm [29].

Due to the strong non-linearity of problem (22), the aim of the genetic calculation is
to provide a potential sub-optimal point in the design space, which constitutes the initial
guess for the subsequent phase, i.e. the local optimisation performed via the active-set

algorithm of fmincon MATLAB function. During this second phase, only the components
of the knot vector along each dimension and the weights are considered as design variables,
see Fig. 1. The second phase of HERO allows �nding a local minimum starting from the
pseudo-optimal solution resulting from the �rst GA exploration of the design space.

4.1. Meta-heuristic exploration: �rst step

When the number of internal knots and the degree along each parametric direction
are included among the design variables, problem (22) is de�ned over a space of variable
dimension. Moreover, this CNLPP is characterised by a large number of design variables.
In particular, when all the weights are included into the design variables vector, the com-
putational cost could become prohibitive. To this purpose, a dedicated strategy, able to
determine whether weights should be integrated or not in the optimisation process, has
been developed. This task is achieved by splitting the exploration of the design space into
two steps. In the �rst step, all weights are set to one, i.e. only B-Spline hyper-surfaces
are used to �t the set of TPs. Then, if the error threshold is no satis�ed, the local support
properties of NURBS hyper-surfaces is used to assess which weights must be integrated
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as design variables for the second step of the exploration. If the approximation error is
satis�ed after the �rst step, all weights are kept equal to one and the B-Spline hyper-
surface obtained by ERASMUS is used as a starting point for the subsequent deterministic
optimisation.

As a result, the CNLPP is stated as:

min
ξI

Φτ (ξI), τ = 1, 2 or 3,

subject to :

ε
(j)
max(ξI) ≤ ε(j)th , j = 1, . . . ,M, (to be considered only if τ = 3),

0 < U
(k)
lk

< 1, lk = pk + 1, ...,mk − pk + 1, k = 1, ..., N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, ...,mk − pk, k = 1, ..., N,

nCP ≤ nTP,

nk − pk ≥ 0, k = 1, ..., N,

ωi1,...,iN = 1, ik = 0, ..., nk, k = 1, ..., N.

(23)

The vector ξI collects the optimisation variables as follows,

ξTI =
(
p1, . . . , pN ,m1, . . . ,mN , U

(1)
p1+1, . . . , U

(1)
m1−p1−1, . . . , U

(N)
pN+1, . . . , U

(N)
mN−pN−1

)
. (24)

Figure 3: Individual's genotype of ERASMUS for the NURBS hyper-surface �tting problem.
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It is noteworthy that a B-Spline hyper-surface can be considered as a modular system
where mk and pk are constant design variables, whilst each knot vector U(k) represents

the generic module whose variables are U
(k)
lk

, lk = pk + 1, ...,mk − pk − 1, k = 1, ..., N .
This system is, thus, composed of N modules corresponding to the N knot vectors of the
B-Spline hyper-surface. The individual's genotype of ERASMUS for problem (23) is given

in Fig. 3, where n
(k)
c,l is the number of chromosomes of the k-th modular part (related to

the knot vector U(k)) of the l-th individual. This quantity corresponds to the number of
internal components of the knot vector U(k) and is related to mk and pk by the following
relation:

n
(k)
c,l = mk − 2pk − 1. (25)

This step aims at determining the number of optimisation variables (i.e. the number
of parameters tuning the shape of the NURBS hyper-surface). Thus, the degrees and the
knot vector lengths given by ERASMUS remain constant for the rest of the optimisation

process. Moreover, by means of the user-de�ned error threshold ε
(j)
th and the local support

property of NURBS hyper-surfaces, the following set Ω can be de�ned

Ω =
{
ωi1,...,iN , ik = 0, ..., nk | ∃us ∈ U ∩ S(i1,...,iN )

}
, (26)

where S(i1,...,iN ) is the local support of control point Pi1,...,iN , i.e.

S(i1,...,iN ) =
[
U

(1)
i1
, U

(1)
i1+p1+1

[
× ...×

[
U

(N)
iN

, U
(N)
iN+pN+1

[
, (27)

while U is the set of TPs at which the maximum relative error does not meet the user-
de�ned threshold

U =
{

us, s = 1, ..., nTP | ∃j ∈ [1,M ] : ε(j)(us) > ε
(j)
th

}
. (28)

If Ω is not empty, the weights belonging to Ω are introduced in the optimisation
process for the second step of the exploration. Moreover, if Ω is empty, the second step of
the meta-heuristic exploration does not occur since no optimisation variables are added to
the optimisation process.

4.2. Meta-heuristic exploration: second step

During the second step of the meta-heuristic exploration, the number of optimisation
variables is set because the number of knot vector components and the degree along each
direction result from the previous step. Therefore, only continuous design variables are
considered at this stage, namely the weights belonging to the set Ω as well as the knot
vectors components. They are grouped as follows:

ξTII =
(
U

(1)
p1+1, . . . , U

(1)
m1−p1−1, . . . , U

(N)
pN+1, . . . , U

(N)
mN−pN−1,Ω

)
. (29)

This step takes place only if the set Ω is not empty and aims at providing a potential
sub-optimal point constituting the initial guess for the subsequent phase, i.e. the local
optimisation performed via the deterministic algorithm. When Ω is empty, the solution
provided by ERASMUS at the end of the �rst step is used as a starting point for the
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deterministic algorithm. For this second step, the CNLPP is formulated as follows:

min
ξII

ψ(ξII) =
1

M

M∑
j=1

[∑nTP
s=1

(
H

(j)
ξII

(us)−Q(j)
s

)χ]( 1

χ
)

[∑nTP
s=1

(
H

(j)
I (us)−Q(j)

s

)χ]( 1

χ
)

,

subject to :
0 < U

(k)
lk

< 1, lk = pk + 1, ...,mk − pk + 1, k = 1, ..., N,

U
(k)
lk
≤ U (k)

lk+1, lk = pk + 1, ...,mk − pk, k = 1, ..., N,

ωi1,...,iN ≥ 0, ik = 0, ..., nk, k = 1, ..., N.

(30)

In Eq. (30), ψ is the χ-norm function, which is used to approximate the maximum relative
error of approximation and gives good results for χ ≥ 20, while HI is the hyper-surface
resulting from the �rst step of the procedure. Obviously, the hyper-surface HI, correspond-

ing to the optimisation variables ξ
(opt)
I found at the end of the �rst step, is introduced in

the initial population of this second step to boost convergence.

4.3. Deterministic optimisation: third step

If the set Ω is not empty, the pseudo-optimal solution found at the end of the second step
ξoptII is used as initial guess for the deterministic optimisation phase. On the contrary, if Ω is
empty, the pseudo-optimal solution used as initial guess for the deterministic optimisation
phase is the one provided by the �rst step, ξoptI . The CNLPP formulation is the same
as that provided in Eq. (30). In this case the design variables vector is indicated as ξIII,
while the quantity HII is used to get a dimensionless objective function. HII is the NURBS

hyper-surface associated to the vector of optimisation variables ξ
(opt)
II given by ERASMUS

at the end of the second step. Note that the vector ξIII collects design variables as ξII
does according to Eq. (29). Of course, this step only aims at reaching the nearest local
optimum from the pseudo-optimal solution provided by the previous step (i.e. �rst step if
Ω is empty and second step otherwise).

5. The application: least-weight design of a composite sti�ened panel

The optimisation problem considered in this work has been taken from [32] and focuses
on the repetitive unit (RU) of a composite sti�ened panel typical of aircraft wings. The RU
is composed of a skin and a stringer with an Omega-shaped cross-section, as illustrated in
Fig. 4. The skin and the stringer are both made of orthotropic unidirectional carbon/epoxy
laminæ, whose properties are listed in Table 1 (the values have been taken from [32]).

The main hypotheses at the basis of the macroscopic mechanical response of the RU
focus essentially on the laminate behaviour and geometry (for both skin and stringer):
(a) each laminate is made of identical plies (i.e. same thickness tply and material); (b)
the material of the constitutive layer has a linear elastic isotropic behaviour; (c) each
laminate is quasi-homogeneous and fully orthotropic [32, 42]; (d) at the macroscopic scale
the elastic response of each laminate is described in the theoretical framework of the First-
order Shear Deformation Theory (FSDT) and its sti�ness matrices are expressed in terms
of polar parameters (PPs); (e) no delamination occurs at the plies interface for both skin
and stringer.
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Figure 4: (a) Geometry and dimensions of the sti�ened panel (only two RUs) and (b) geometrical param-
eters of the RU (taken from [32])

It is noteworthy that only the �rst-level problem (FLP) of the multi-scale two-level
(MS2L) optimisation strategy, presented in [32], is considered in this study.

In particular, the FLP aims at determining the optimal value of both mechanical and
geometric parameters of the laminates composing the RU of the panel. At this stage,
each laminate composing the RU is modelled as an equivalent homogeneous anisotropic
plate [43, 44], whose behaviour is described in terms of PPs. The goal of the FLP is the
minimisation of the RU mass subject to requirements on the laminate feasibility and on
the �rst buckling load of the RU (more details are available in [32]). The design variables
of the FLP can be of geometric or mechanical nature.

In this study, only the skin and the stringer overall thickness are taken as geometric de-
sign variables, whilst the other geometric parameters are set equal to those of the reference
solution listed in Table 2. Nevertheless, the overall thickness of each laminate composing
the RU is a multiple of the thickness of the elementary layer, tply (see Table 1), i.e.

tα = nαtply, α = S,B, (31)

where nS and nB are the number of layers of skin and sti�ener, respectively. For optimi-
sation purposes, it is very useful to consider dimensionless design variables. Accordingly,
variables nS and nB are grouped in the vector of dimensionless geometric design variables
ηg as follows:

ηTg = (nS , nB) . (32)

As discussed in [32], in the framework of FSDT [45] the constitutive law of the laminate
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Technical constants Polar parameters of Q a Polar parameters of Q̂ b

E1 [MPa] 161000.0 T0 [MPa] 23793.3868 T [MPa] 5095.4545
E2 [MPa] 9000.0 T1 [MPa] 21917.8249 R [MPa] 1004.5454
G12 [MPa] 6100.0 R0 [MPa] 17693.3868 Φ [deg] 90.0
ν12 [MPa] 0.26 R1 [MPa] 19072.0711
ν23 [MPa] 0.10 Φ0 [deg] 0.0

Φ1 [deg] 0.0
Density and thickness
ρ [kg/mm3] 1.58×10−6

tpli [mm] 0.125
a In-plane reduced sti�ness matrix of the ply.
b Out-of-plane reduced shear sti�ness matrix of the ply.

Table 1: Material properties of the carbon/epoxy ply taken from [32]

a [mm] 150.00
b [mm] 600.00
a2 [mm] 15.00
a3 [mm] 21.50
h [mm] 30.00
Mref [kg] 0.92
λref [N] 466 830

Stacking sequence Part Number of plies

[(45/− 45/902)2 / (45/− 45)3]s skin(S) 28
[452/02/− 452/904/− 452/02/452]s stringer (B) 32

Table 2: Reference solution for the sti�ened panel design problem

(expressed within its global frame R = {O;x, y, z}) can be stated as:
N
M
F

 =

 A B O
B D O

O O Â


ε0
χ0

γ0

 , (33)

where A, B and D are the membrane, membrane/bending coupling and bending sti�-
ness matrices of the laminate, while Â is the out-of-plane shear sti�ness matrix. N, M
and F are the vectors of membrane forces, bending moments and shear forces per unit
length, respectively, whilst ε0, χ0 and γ0 are the vectors of in-plane strains, curvatures
and out-of-plane shear strains of the laminate middle plane, respectively (Voigt's notation
has been employed [45]).

In order to analyse the elastic response of the multilayer structure, it is very useful to
introduce the laminate normalised sti�ness matrices [32]:

A∗ =
1

t
A, B∗ =

2

t2
B, D∗ =

12

t3
D, Â∗ =

1

t
Â, (34)

where t is the total thickness of the laminate. In this study a fully orthotropic, quasi-
homogeneous laminate is considered. As discussed in [42�44], quasi-homogeneity property

15



can be obtained by imposing the following conditions:

B∗ = O, C∗ = A∗ −D∗ = O. (35)

In Eq. (35), C∗ is the so-called homogeneity matrix [43, 44]. According to the above
formula, a quasi-homogeneous laminate is an uncoupled laminate showing the same be-
haviour in terms of membrane and bending normalised sti�ness matrices. Moreover the
fully orthotropic behaviour (both in terms of membrane and bending sti�ness matrices)
can be obtained by imposing the following condition:

ΦA∗
0 − ΦA∗

1 = KA∗ π

4
, with KA∗

= 0, 1, (36)

where ΦA∗
0 and ΦA∗

1 are the polar angles of the membrane sti�ness matrix, whilst KA∗

is a parameter tuning the orthotropy shape [42�44]. Inasmuch as the laminate is quasi-
homogeneous, Eq. (36) holds for the bending sti�ness matrix too. For more details on all
the possible laminate elastic symmetries, the reader is addressed to [42�44].
It can be proven that, in the FSDT framework, for a fully orthotropic, quasi-homogeneous
laminate the overall number of independent mechanical design variables describing its
mechanical response reduces to only three, i.e. the anisotropic polar parameters RA

∗
0K and

RA
∗

1 and the polar angle ΦA∗
1 (this last represents the orientation of the main orthotropy

axis) of matrix A∗. In this study the polar angle of matrix A∗ is set equal to ΦA∗
1 = 0,

which means that the main orthotropy axis is aligned to the RU axis. More details can be
found in [43, 44, 46].

As for the geometric variables, it is useful to introduce dimensionless PPs, i.e.

ρ0 =
RA

∗
0K

R0
, ρ1 =

RA
∗

1

R1
. (37)

As discussed in [32], further constraints, de�ning the laminate feasibility domain, have
to be considered on the laminate PPs, which arise from the combination of the layers
orientations and positions within the stack. These constraints read:

−1 ≤ ρ0 ≤ 1,
0 ≤ ρ1 ≤ 1,

2 (ρ1)
2 − 1− ρ0 ≤ 0.

(38)

Of course, the dimensionless PPs as well as the related feasibility constraints have to be
considered for each laminate constituting the panel RU (i.e. skin and stringer). Therefore,
the vector ηm collects the dimensionless PPs for skin and sti�ener as follows:

ηTm = (ρ0S , ρ1S , ρ0B, ρ1B) . (39)

The design variables (both geometrical and mechanical) are collected in the following
vector:

ηT =
(
ηTg ,η

T
m

)
. (40)
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Finally, the optimisation problem can be formulated as a classical CNLPP:

minη
M (η)

Mref
,

subject to:
1.05− λ (η)

λref
≤ 0,

2 (ρ1S)2 − 1− ρ0S ≤ 0,

2 (ρ1B)2 − 1− ρ0B ≤ 0,

(41)

In Eq. (41) M is the overall mass of the RU, λ is the �rst buckling load of the sti�ened
panel, whilstMref and λref are the counterparts for the reference solution. The design space
of the �rst-level problem, together with the type of each design variable, is detailed in Table
3. This problem has been solved in [32] thanks to the GA ERASMUS [29] coupled with a
�nite element (FE) model of the RU implemented in the commercial software ANSYS [47].
In this study, the mechanical response given by the commercial code (i.e. the �rst buckling
load of the RU computed by means of an eigenvalue buckling analysis) has been replaced
by the metamodel based on NURBS hyper-surfaces generated through the metamodelling
strategy described above.

Design
variable

Type Lower
bound

Upper
bound

Step

ρ0S continuous -1.0 1.0 -
ρ1S continuous 0.0 1.0 -
ρ0B continuous -1.0 1.0 -
ρ1B continuous 0.0 1.0 -
nS integer 20 32 1
nB integer 20 32 1

Table 3: Design space for problem (41).

6. Numerical results: metamodel generation

6.1. The �nite element model

The design problem of Eq. (41) have been solved by Montemurro et al. in [32] by
coupling the GA ERASMUS with the commercial FE code ANSYS. However, the compu-
tational cost of the optimisation process to �nd a solution for the FLP is quite high. The
main idea is to replace the FE model by a metamodel based on NURBS hyper-surfaces,
generated by means of the HERO strategy. The constrained hyper-surface �tting problems
of Eqs. (16)-(18) have been solved by generating a database of TPs obtained as a result of
the eigenvalue buckling analysis.

In particular, the metamodel aims at providing an approximation λ̂ of the �rst buckling
load of the panel RU λ as a function of the design variables of the FLP:

λ̂ ≈ λ (ξ) . (42)

The FE model of the panel RU is implemented in the FE commercial code and is shown in
Fig. 5. The FE model performs an eigenvalue analysis and is made of SHELL281 elements
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(8-nodes element) and multipoint constraint elements MPC184, both having 6 degrees of
freedom (DOFs) per node. The behaviour of SHELL281 elements is set by directly de�ning
the normalised sti�ness matrices A∗, B∗, D∗ and H∗, while MPC184 elements are used
to ensure the compatibility of generalised displacements between skin and stringer. In
addition, MPC184 elements have been used to apply boundary conditions (BCs) on two
pilot nodes, i.e. A = {0, 0, zg} and B = {b, 0, zg}, located at the ends of the RU. More
details on the FE model can be found in [32].

The BCs for nodes A and B are:

node A: ui = 0, βi = 0, i = x, y, z,
node B: Fx = −1N, uy = uz = 0, βi = 0, i = x, y, z,

(43)

where ui and βi are nodal displacements and rotations, respectively, while Fx is the x
component of the nodal force. It is noteworthy that the �rst-buckling load of the sti�ened
panel is calculated by considering periodic boundary conditions (PBCs) on its RU. This
fact implicitly implies the hypothesis of a panel having an "in�nite" length along y-axis,
according to the frame illustrated in Fig. (5). PBCs read:

ui

(
x,−a

2
, 0
)
− ui

(
x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ , i = x, y, z,

βi

(
x,−a

2
, 0
)
− βi

(
x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ , i = x, y, z.
(44)

PBCs of Eq. (44) are de�ned for each couple of nodes belonging to the skin lateral edges

(i.e nodes located at y = ±a
2
) execpt those placed on the lines at x = 0 and x = b, these last

being respectively linked to pilot nodes A and B. PBCs are de�ned via ANSYS constraint
equations (CEs) [47] between homologous nodes of the skin lateral edges. A sensitivity
analysis (not reported here for sake of brevity) on the proposed FE model with respect to
mesh size has been conducted [32] showing that a mesh having 56959 DOFs is su�cient to
properly evaluate the �rst buckling load of the sti�ened panel.

Figure 5: (a) FE model of the panel RU, (b) constraint equations for the PBC imposed on y axis and (c)
the detail of the MPC184 elements
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The TPs database is generated by assessing the �rst buckling load λ for di�erent values
of the design variables nS , nB, ρ0S , ρ1S , ρ0B and ρ1B, as listed in Table 4. The database
is stored in the form of a 6-D array Q:

Qs1,s2,s3,s4,s5,s6 = λ(ns1S , n
s2
B , ρ

s3
0S , ρ

s4
1S , ρ

s5
0B, ρ

s6
1B), sk = 0, ..., rk, k = 1, · · · , 6. (45)

TPs database nS nB ρ0S ρ1S ρ0B ρ1B Overall n. of TPs

N. of points (rk + 1) 7 7 7 7 7 7 117 649

Table 4: TPs database used to generate and validate the metamodel.

It is noteworthy that the metamodel based on NURBS hyper-surfaces can provide a
value of the �rst buckling load λ also for non-integer values of the design variables nS
and nB. However, since continuous values of these variables are meaningless only integer
values of those parameters are given as inputs to the metamodel. In addition, inasmuch
as feasibility constraints of Eq. (38) on the laminate dimensionless PPs are available in
a closed form, only feasible combinations of variables ρ0α and ρ1α (α = S,B) have been
considered to generate the TPs database.

6.2. Generation of the metamodel: results

The metamodel based on NURBS hyper-surfaces has been generated as a results of
CNLPPs of Eqs. (23)-(30). The parameters tuning the behaviour of the ERASMUS code
and of the active-set algorithm are provided in Tables 5 and 6, respectively.

Genetic parameters

Metamodel generation Sti�ened panel optimisation
(Problem (23)) (Problem (41))

N. of populations 3 3
Population size 100 200
N. of generations 100 400
Crossover probability 0.85 0.85
Mutation probability 0.005 0.005
Shift probability 0.5 0.5
Isolation time 5 5
Selection roulette-wheel roulette-wheel
Elitism active active

Table 5: Genetic parameters of the GA ERASMUS for metamodelling problems (23) and (41).

It is noteworthy that, for each considered objective function formulation, at the end of
the �rst optimisation step the set Ω is empty. Therefore, the second step of the optimisation
process does not take place and a B-Spline hyper-surface is su�cient to describe the trend
of the �rst buckling load in terms of the considered design variables.

The results of the HERO strategy for the three objective function formulations of Eqs.
(16), (17) and (18), are presented in Table 7. Firstly, it can be seen that the degrees are
relatively low regardless of the objective function form. Indeed, the greater the degree
along the generic direction, the lower the number of design variables because the number
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fmincon parameters

Algorithm Active Set
Maximum number of objective function evaluations 100× nvar
Maximum number of iterations 400
Minimum objective function improvement 10−6

Minimum input variables change 10−6

Minimum gradient norm of the Lagrange's function 10−6

Constraint violation threshold 10−6

Table 6: Parameters of the fmincon function [36] for problem (30).

NURBS hyper-surface parameters resulting from HERO

Objective function Φ1 Eq. (16) Φ2 Eq. (17) Φ3 Eq. (18)

Auxiliary coe�cients / a =
1

3
; b =

1

3
a = 0.5

p = (p1, ..., p6) (2, 2, 1, 2, 2, 2) (1, 1, 2, 1, 1, 1) (2, 1, 2, 1, 2, 2)
n = (n1, ..., n6) (5, 6, 6, 6, 6, 6) (3, 1, 3, 2, 3, 3) (4, 5, 6, 6, 6, 6)

Overall CPs number 100 842 1 536 72 030

εmax
(ERASMUS) 0.0038 0.0713 0.0087
(fmincon) 0.0036 0.0653 0.0080

εmean
(ERASMUS) 2.2336e−5 0.0099 8.9231e−5

(fmincon) 2.3744e−5 0.0071 8.8004e−5

Table 7: Results comparison of HERO metamodelling strategy for the objective function formulations of
Eqs. (16), (17) and (18).

of internal knots along this direction decreases. As a result, decreasing degrees gives a
better objective function value.

Table 7 highlights the fact that the objective function choice has a real impact on the
metamodel parameter values. The three formulation are characterised by advantages and
drawbacks.

The metamodel obtained considering Eq. (16) is the easiest to use since no additional
parameter has to be set in the objective function. It gives good results in terms of the
relative errors (maximum and average ones), but the obtained metamodel is the one with
the highest number of CPs.

Conversely, the objective function of Eq. (17) gives the user the possibility of balancing
between approximation error, number of data to evaluate the metamodel (i.e. number
of CPs) and on-line computation time, which is related to the degrees of the blending
functions. However, when equal importance is given to these requirements, the obtained
metamodel is the less accurate for the problem at hand. Indeed, the main drawback is that
one cannot know a priori the value of the auxiliary parameters a and b appearing in Eq.
(17).

Finally, the metamodel obtained with the objective function (18) appears to be the best
compromise. The obtained metamodel shows a good balance between accuracy and number
of CPs. In this case, the CNLPP during the �rst step of the optimisation process is subject
to the constraint on the maximum relative error of Eq. (19). Indeed, the optimisation tool
tries to minimise the resources of the metamodel (both number of CPs and degrees values)
respecting a given accuracy (i.e. the constraint on the maximum approximation error).
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These three metamodels have been used to optimise the panel RU and the results are
discussed in the next Section.

7. Numerical results: sti�ened panel optimisation

The optimisation of the RU of the composite sti�ened panel has been carried out by
means of the GA ERASMUS coupled with the ANSYS FE model and with the three
metamodels generated and discussed above. The parameters of the GA ERASMUS to
solve problem (41) are listed in Table 5, while the results are given in Table 8. It is
noteworthy that the value of the �rst buckling load reported in Table 8, for each metamodel,
is calculated by entering the optimum value of the design variables obtained at the end of
the optimisation process into the FE model of the panel RU. The comparison between the
�rst buckling load of the optimised con�guration resulting from each metamodel and that
provided by the FE model (for the same value of the design variables) is given in Table 9.

Parameters
Skin Stringer

Mass [kg] λ [N]
nS ρ0S ρ1S nB ρ0B ρ1B

Reference 28 - - 32 - - 0.9194 466 830

Solution 1
32 -0.0255 0.0010 23 0.5809 0.6323

0.8719 493 509
(metamodel Φ1) (-5.17%) (+5.71%)

Solution 2
32 0.0712 0.0069 22 0.6973 0.6560

0.8587 476 510
(metamodel Φ2) (-6.60%) (+2.02%)

Solution 3
32 0.4175 0.0161 23 0.6434 0.6788

0.8719 490 560
(metamodel Φ3) (-5.17%) (+5.08%)

Solution 4
32 -0.0349 0.0020 23 0.7602 0.8636

0.8719 498 332
(FE model) (-5.17%) (+6.75%)

Table 8: Optimised con�gurations of the panel RU obtained by ERASMUS coupled to the three metamodels
and the FE model (the percentage di�erence between performances of the optimised solutions and the
reference one is indicated in parentheses).

When the metamodel is interfaced with the ERASMUS algorithm, the whole optimisa-
tion process requires approximatively 2 minutes instead of two weeks when ERASMUS is
directly coupled with the ANSYS FE model (for parameters de�ned in Table 5). However,
this time does not include the TPs database generation. When the time required to gen-
erate the TPs database is taken into account, the use of the metamodel based on NURBS
hyper-surfaces allows to save about two days to obtain an optimised solution.

As it can be seen from Table 8, the optimised solution of the panel RU has improved
performances, in terms of both mass and buckling strength when compared to the refer-
ence solution, regardless of the mathematical formulation used to generate the metamodel.
Indeed, weight saving is almost 5.20% for all solutions, except for the metamodel using
objective function Φ2 of Eq. (17), which is characterised by a weight saving of about
6.6%. However, as it can been inferred from Table 9, this metamodel is characterised by
an accuracy lower than the others in terms of �rst buckling load assessment. In particular,
although at the end of the optimisation process the constraint on the buckling load of
Eq. (41) is met, the real value of the buckling load provided by the FE model for this
con�guration is lower than that resulting from the metamodel (but still higher than the
reference counterpart, see Tables 2 and 8).

It is noteworthy that the optimised con�guration resulting from the metamodel where
the objective function Φ1 is considered (solution 1 in Table 8) is very close to the optimised
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Solution First-buckling load λ [N]

Solution 1
Metamodel 494 210 (+5.87%)
ANSYS FE 493 509 (+5.71%)

Solution 2
Metamodel 491 230 (+5.23%)
ANSYS FE 476 510 (+2.07%)

Solution 3
Metamodel 491 390 (+5.26%)
ANSYS FE 490 560 (+5.08%)

Table 9: Comparison of of the �rst buckling load resulting from the three metamodels and the original FE
model for solutions listed in Table 8. The percentage di�erence between the buckling load of the optimised
solutions and the reference one is indicated in parentheses.

solution found by directly coupling the FE model of the RU to the ERASMUS algorithm
(solution 4 in Table 8). This is a quite expected result because, as stated in Section 6,
the metamodel related to the objective function of Eq. (16) is the one characterised by
the higher accuracy. Indeed, solutions 1 and 4 shows the same kind of orthotropy in terms
of the dimensionless PPs characterising both stringer and skin macroscopic behaviour.
Conversely, the optimised con�guration provided by the metamodel generated by using
the objective function of Eq. (18) (solution 3 in Table 8) is characterised by equivalent
properties (in terms of mass and �rst buckling load) when compared to solutions 1 and 4.
Nevertheless, the elastic behaviour of the skin is completely di�erent because the optimum
value of ρ0S is positive, which means that the orthotropy type is completely di�erent with
respect to the counterpart characterising solutions 1 and 4. This result con�rms the non-
convex nature of the CNLPP of Eq. (41).

8. Conclusions

An original metamodelling technique based on Non-Uniform Rational Basis Spline
(NURBS) hyper-surfaces has been presented in this paper. The generation of a suitable
metamodel is stated as a constrained non-linear programming problem (CNLPP). More
speci�cally, the metamodel is obtained as a result of a constrained hyper-surface �tting
problem: the goal is to �nd the optimal values of the parameters tuning the shape of the
NURBS hyper-surface in order to �t a given set of target points (TPs). In this background,
the metamodel constitutive parameters are determined by means of an original hybrid op-
timisation strategy, which combines the features of an enhanced meta-heuristic algorithm
and of a deterministic one to perform the solution search.

The proposed approach is very general: neither simplifying hypotheses nor empirical
rules are used to select a priori the parameters governing the behaviour of the metamodel.
Indeed, the optimal number of parameters and their optimal values are simultaneously
determined by the hybrid optimisation strategy (and according to user's de�ned accuracy),
making the proposed approach problem-independent.
In particular, a special genetic algorithm, called ERASMUS (EvolutionaRy Algorithm for
optimiSation of ModUlar Systems), has been used to �nd the optimal value of both discrete
and continuous variables involved in the de�nition of the NURBS hyper-surface. However,
when the NURBS entity discrete parameters are included in the vector of design variables,
the resulting CNLPP is de�ned over a domain of variable dimension. By means of its
peculiar features (i.e. genetic operators allowing for the simultaneous evolution of species
and individuals) the ERASMUS algorithm is able to deal with this special class of CNLPP.
Moreover, the proposed approach aims at being as e�cient as possible because it is able
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of automatically determining if a B-Spline or a NURBS hyper-surfaces is needed to �t a
given set of TPs.

The e�ectiveness of the metamodel based on NURBS hyper-surfaces is tested in the
framework of a meaningful design problem: the least-weight design of a composite sti�ened
panel subject to constraints of di�erent nature, i.e. on the �rst buckling load and feasibility
requirements.
Three di�erent formulations of the CNLPP have been proposed to generate the metamodel
based on NURBS hyper-surfaces. The �rst one is completely automatic and does not need
the user intervention. The other two formulations allows the user to de�ne the relative
importance between accuracy, amount of information (related to the number of control
points) and processing time (related to the basis function degrees). Results show that
the �rst formulation outperforms the other two in terms of accuracy, whilst the third one
represents the best compromise between accuracy and computational e�ort. Moreover, the
second formulation represents the best solution in terms of memory saving (the resulting
metamodel is the one characterised by the least amount of information) but the relative
accuracy is worse than that related to the other formulations.

This behaviour is con�rmed by the results obtained when the metamodels are used
for design purposes. The optimised con�gurations show performances better than those
characterising the reference solution (in terms of both mass and �rst buckling load). As
expected, the metamodel generated considering the second formulation is characterised by
the lowest accuracy (which remains still acceptable for design purposes). The time required
to found a solution is about two minutes (regardless of the considered formulation) which is
signi�cantly lower than that required by directly coupling the �nite element model with the
ERASMUS algorithm (about two weeks to get a solution). However, if the time required
to generate the TPs database is included in the processing time of the metamodel, the time
saving reduces to only two days.

As far as prospects of this study are concerned, the proposed metamodelling strategy
lacks of an e�cient sampling technique. As a matter of fact, if not properly set, the
sampling strategy may result in a set of TPs not suited to generate a pertinent metamodel
for the problem at hand. A good sampling strategy should generate a TPs database made
of the least amount of information, su�cient to ensure a good level of accuracy, and should
provide information in the most critical regions of the metamodel domain. These aspects
constitute a true challenge and research is ongoing in order to develop e�cient sampling
methods which take into account the topology of the set of TPs, i.e. presence of disjoint
regions, non-convex domains, etc.

Data availability

The raw/processed data required to reproduce these �ndings cannot be shared at this
time as the data also forms part of an ongoing study.
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