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PREMISE: Herbarium specimens represent an outstanding source of material with which to 
study plant phenological changes in response to climate change. The fine-scale phenological 
annotation of such specimens is nevertheless highly time consuming and requires substantial 
human investment and expertise, which are difficult to rapidly mobilize.

METHODS: We trained and evaluated new deep learning models to automate the detection, 
segmentation, and classification of four reproductive structures of Streptanthus tortuosus 
(flower buds, flowers, immature fruits, and mature fruits). We used a training data set of 
21 digitized herbarium sheets for which the position and outlines of 1036 reproductive 
structures were annotated manually. We adjusted the hyperparameters of a mask R-CNN 
(regional convolutional neural network) to this specific task and evaluated the resulting 
trained models for their ability to count reproductive structures and estimate their size.

RESULTS: The main outcome of our study is that the performance of detection and 
segmentation can vary significantly with: (i) the type of annotations used for training, (ii) 
the type of reproductive structures, and (iii) the size of the reproductive structures. In the 
case of Streptanthus tortuosus, the method can provide quite accurate estimates (77.9% of 
cases) of the number of reproductive structures, which is better estimated for flowers than 
for immature fruits and buds. The size estimation results are also encouraging, showing a 
difference of only a few millimeters between the predicted and actual sizes of buds and 
flowers.

DISCUSSION: This method has great potential for automating the analysis of reproductive 
structures in high-resolution images of herbarium sheets. Deeper investigations regarding 
the taxonomic scalability of this approach and its potential improvement will be conducted 
in future work.

  KEY WORDS    automated regional segmentation; deep learning; herbarium data; natural his-
tory collections; phenological stage annotation; phenophase; regional convolutional neural 
network; visual data classification.
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Herbaria represent major and unique resources for the study of plant 
phenology over time and space (Willis et al., 2017a; Yost et al., 2018). 
In particular, they provide the only tangible, long-term evidence of 
sustained changes in plant phenology from the beginning of the 19th 
century to the present. Global awareness of climate change has led 
to a renewed interest in herbarium-derived data for the study of cli-
mate-induced shifts in the seasonal cycles of plants (Davis et al., 2015; 
Soltis et al., 2018; Lang et al., 2019). Several recent herbarium-based 
studies have detected changes in the flowering times of many taxa 
over the past century (Primack et al., 2004; Munson and Long, 2017; 
Pearson, 2019a). An important next step is to scale up such studies, 
extending them to much larger taxonomic and geographical ranges, 
to provide more comprehensive analyses of the potential impacts of 
such shifts on plant–pollinator interactions and on the phenological 
properties of entire plant communities.

The recent massive digitization of herbarium-derived infor-
mation from around the world has enabled a wide variety of sci-
entists to use it for phenological research (Soltis, 2017); however, 
most studies designed to detect sources of variation in the flowering 
times of wild species have classified the phenological status of spec-
imens using qualitative categories, such as the presence/absence of 
flowers, in combination with the day of year of collection to esti-
mate the flowering time of individuals and taxa. This approach has 
revealed variation among species with respect to the sensitivity of 
their flowering times to a variety of climatic parameters (Park and 
Mazer, 2018), but does not control for the notable variation among 
specimens in their precise phenological status, which may vary 
from the initiation of flower buds to the production of ripe fruits. 
Only rare experiments (such as CrowdCurio, Willis et al., 2017b) 
have been conducted to provide detailed quantitative counts on all 
specimens of a collection for the purposes of assessing phenological 
change within and between seasons. The power of this approach has 
revealed substantial and unexpected variation in phenological sen-
sitivity across the eastern United States (Park et al., 2019).

Quantitative measures of the phenological status of specimens, 
based on the estimated proportions of buds, flowers, and fruits, are 
particularly useful for the analysis of species with high numbers of 
structures in their inflorescences and/or infructescences, such as 
species of the Asteraceae (see Pearson, 2019b, for an example of the 
precise phenological status estimation method). In such taxa, quan-
titative assessments of the phenological status of individual plants 
may help to improve the explanatory power of pheno-climatic 
models, but this approach requires precise annotations (such as 
recording the number of reproductive structures representing dif-
ferent stages of development) in order to accurately estimate pheno-
logical status (cf. Mulder et al., 2017; Love et al., 2019a).

The precise and detailed counting of reproductive structures 
in herbarium images is rarely conducted and the annotation re-
quires significant time and expertise when performed by human 
observers (Brenskelle et al., 2020). Given the time required to re-
cord this information (such as the number and size of buds, open 
flowers, spent flowers, and immature/mature fruits) for the tens 
of millions of specimens already digitized, and the millions yet to 
come, it will take several decades to obtain this precise informa-
tion if we rely solely on manual annotations. A few programs have 
experimented with online collaborative approaches (e.g., Notes 
from Nature [https://www.zooni​verse.org/organ​izati​ons/md681​35/
notes​-from-nature]) for recording detailed phenological informa-
tion. Other approaches, such as the ones studied by Lorieul et al. 
(2019), have experimented with the use of deep learning techniques 

to automate basic annotations, such as the presence/absence of 
flowers and/or fruits, on a scale of several tens of thousands of her-
barium specimens. The promising results reported by Lorieul et al. 
(2019) led them to focus on the estimation of finer phenological 
information, such as the precise phenophase of a specimen, which 
has contributed to open new ways of automatically determining the 
phenological stage of a specimen using a quantitative metric.

Plant collectors seem to maximize the richness of information of 
the plant specimens that they collect by collecting samples with the 
maximum diversity of botanical structures (including reproductive 
ones). This has several benefits, including (i) facilitating the species 
identification of the specimens, (ii) providing a richer contribution 
to the knowledge of the species’ morphological diversity, and (iii) 
enabling a greater potential use of the specimen in different re-
search questions. This practice can partially explain why Lorieul et 
al. (2019) reported that, of the 163,233 herbarium specimens sam-
pled from three herbarium collections (temperate to equatorial), 
79.4% to 92.7% showed currently reproducing specimens, with a 
much higher proportion of them displaying flowers than fruits.

The numbers of different classes of reproductive structures (e.g., 
buds, open flowers, developing ovaries, and fruits) can be used to 
calculate a phenological index, a quantitative metric of the phe-
nological progression of each specimen based on the proportions 
of distinct reproductive structures. This metric has been used by 
Mulder et al. (2017) and Love et al. (2019a). Love et al. (2019a) 
demonstrated that the inclusion of this metric as an independent 
variable improves the explanatory power of pheno-climatic models 
designed to detect the effect of climate on flowering date, primarily 
because the metric itself explains a good deal of variance in the date 
of specimen collection (i.e., phenologically advanced specimens 
tend to be those collected at relatively late dates in the year).

The large-scale, precise, rapid, and automated detection and iden-
tification of reproductive structures in herbarium specimens would 
likely greatly increase the use of herbarium collections in climate 
change studies. To our knowledge, no approach in the scientific lit-
erature has attempted to automate locating, segmenting, and count-
ing distinct types of reproductive structures in digitized herbarium 
specimens. Here, we aim to fill this gap by evaluating the use of a 
state-of-the-art instance segmentation approach, called mask R-CNN 
(regional convolutional neural network, He et al., 2017), for recording 
the phenological information of the reproductive structures borne by 
Streptanthus tortuosus Kellogg (Brassicaceae). This species, native to 
California, is well-suited for this study due to (i) its relatively small 
size, which allows for entire plants (or a significant portion of them) 
to be preserved on a single herbarium sheet; (ii) its strong visual sim-
ilarity to congeners, facilitating the application of the methods de-
veloped here to a larger taxonomic scale (i.e., within the genus); and 
(iii) the clear phenotypic differences among its distinct reproductive 
phases, which include closed buds, open flowers, immature fruits, 
and ripe fruits. The clear differences between developmental stages 
provide two benefits. First, they promote consistent scoring among 
human observers, which leads to high-quality training data sets, and 
second, they facilitate the discrimination among organ types by ma-
chine learning algorithms and the resulting quantitative assessment 
of each specimen’s phenological status. In addition, the species (as 
well as the genus as a whole) is of great interest to botanists because 
it is widely distributed across latitudinal, longitudinal, and elevation 
gradients. Consequently, it is highly suitable for use in phenoclimatic 
models designed to detect the effects of extrinsic factors (e.g., climate, 
soil type) on the onset and duration of flowering (Love et al., 2019a).

https://www.zooniverse.org/organizations/md68135/notes-from-nature
https://www.zooniverse.org/organizations/md68135/notes-from-nature
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Our study was designed to compare the impact of different meth-
odological approaches toward training deep learning models for 
instance segmentation. In particular, we evaluate the performance 
of the model based on three types of annotation (points masks, par-
tial masks, and full masks), all performed on the same herbarium 
data set. The strengths and constraints of each type of annotation 
are assessed and discussed, and we offer recommendations for the 
generalization of these methods to other taxonomic groups or to a 
larger taxonomic scale. Moreover, we evaluate the applicability of 
the best approach for two concrete analysis tasks: (i) automatically 
counting the number of each reproductive structure per sheet, and 
(ii) automatically estimating their average size per sheet.

METHODS

Data sets

To evaluate the performance of the mask R-CNN approach on dif-
ferent types of annotations, we produced three different training 
sets, all of them obtained from the same initial data set of imaged 
and hand-scored herbarium specimen sheets produced by Love 
et al. (2019b). The input images were resized such that the longest 
edge was 2048 pixels and the shorter one was 1024 pixels in order 
to have sufficient numbers of pixels comprising small objects such 
as the buds. These three training data sets are each based on one 
of three methods for producing annotations of reproductive struc-
tures. The first training set (“PointsMask”) is based on the proto-
col designed by Love et al. (2019a) to score and record the number 
of reproductive structures representing successive developmen-
tal stages on imaged herbarium specimens 
using the plugin Cell Counter (https://
imagej.nih.gov/ij/plugi​ns/cell-count​er. 
html), developed for the image analysis soft-
ware ImageJ (Abramoff, 2004). It is important 
to note that this protocol was not developed 
to produce labeled data for training machine 
learning algorithms; rather, it was designed for 
use in manual organ counting. To score each 
specimen, the annotator (N.L.R.L., S.J.M., and 
two collaborators) placed a digital colored 
marker near the distal extremity or at the cen-
ter of each visible reproductive structure; each 
type of organ (buds, flowers, immature fruits, 
mature fruits) was indicated by a distinct 
marker. The scoring of each specimen was vi-
sually checked for accuracy by N.L.R.L., and 
any incorrectly categorized organs were cor-
rected before using the markers to construct 
visual masks. For each point, we produced a 
small square (3 × 3 pixels) mask (i.e., a shape 
file) close to the top of the recorded reproduc-
tive structure (Fig. 1A).

The second training set (“PartialMask”) is 
an extension of the Points training data set and 
includes the partial segmentation of reproduc-
tive structures. We applied the classical Otsu 
segmentation method (Otsu, 1979) within 
each 100 × 100-pixel box centered on the ini-
tial colored markers. The value of 100 pixels 

corresponds to a real size of 0.84 cm and represents a good compro-
mise to capture small organs such as buds and flowers while avoiding 
introducing too much background for large organs such as fruits. This 
allowed us to automatically capture preliminary masks of each anno-
tated reproductive structure (as illustrated in Figs. 1,  2B, and 3).

The third training set (“FullMask”) (illustrated in Figs. 1,  2C) 
contains only manually annotated masks and was much more time 
consuming to create. This data set, produced by two of the coauthors 
(H.G. and P.B.), was cross validated between these two people. We 
uploaded entire images of herbarium specimens and their partial 
masks into COCO Annotator (https://github.com/jsbro​ks/coco-
annot​ator) (Fig. 4), a web-based tool for object segmentation, in 
order to manually draw the full outline of each reproductive struc-
ture. This allowed us to capture the full shape of each reproductive 
organ identified on each specimen. When structures overlapped on 
the specimen, only the structure in the foreground was annotated, 
resulting in the exclusion of background structures from the seg-
mentation in that part of the image. A total of 1036 reproductive 
structures from 21 herbarium specimens were annotated. Details 
for each reproductive structure are provided in Table 1.

The test set contains 10 images annotated with the same meth-
odology used for the FullMask training set, thus totaling 678 
reproductive structures (see Table 1 for details). It is difficult to 
precisely indicate the annotation effort in terms of duration, but 
we estimated that, on average, it took one minute to edit a mask 
and the label of a reproductive structure. Figure 1C illustrates 
the precision needed to produce these FullMask training data 
for the four studied reproductive structures. It is important to 
remember that these illustrations were chosen for their clarity, 
but individual reproductive structures are not always so clearly 

FIGURE 1.  Illustration of the three different types of training data used in this study, for the 
same four different types of reproductive structures analyzed (i.e., Buds, Flowers, Immature Fruits, 
Mature Fruits). (A) Points masks. (B) Partial masks. (C) Full manual masks. Red arrows highlight the 
points masks, which are too small to be easily visible at this scale. [Color figure can be viewed at 
wileyonlinelibrary.com]

B1 B2 B3 B4

A1 A2 A3 A4

C1 C2 C3 C4

https://imagej.nih.gov/ij/plugins/cell-counter.html
https://imagej.nih.gov/ij/plugins/cell-counter.html
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visible (e.g., when structures overlap or have deteriorated), which 
greatly increases the time required to annotate each specimen. 
Considering an average of 60 reproductive structures per image, 
and that an average of one hour was required to annotate each 
herbarium specimen image, about 30 hours were spent annotat-
ing the 31 images of the training and test sets.

Evaluated deep learning framework

Our fine-grained detection method is based on the mask R-CNN 
architecture (He et al., 2017), which was chosen for its robust-
ness and demonstrated efficiency in instance segmentation tasks 

and challenges such as MS COCO (Microsoft Common Objects 
in Context; Lin et al., 2014). We used Facebook’s mask R-CNN 
benchmark (Massa and Girshick, 2018) implemented with Pytorch 
(Paszke et al., 2017). We chose ResNet-50 as the backbone CNN 
and the Feature Pyramid Networks (Lin et al., 2017) for instance 
segmentation. The selection of the number of training epochs was 
made based on the empirical observation of the model’s training 
performance. A detailed description of the hyperparameters that 
were used to train the model is provided in Appendix 1.

FIGURE 2.  Illustration of the three different types of training data used 
in this study. (A) Points masks. (B) Partial masks. (C) Full manual masks. 
The same inflorescence is displayed in A–C to indicate the four different 
types of reproductive structures analyzed (i.e., Buds in orange, Flowers 
in purple, Immature Fruits in blue, Mature Fruits in green). Red arrows 
highlight the points masks, which are too small to be easily visible at this 
scale. [Color figure can be viewed at wileyonlinelibrary.com] FIGURE 3.  Illustration of two different partial masks for each repro-

ductive structure type in black and white, based on the Otsu segmen-
tation method, automatically generated from points masks. (A) Buds. (B) 
Flowers. (C) Immature Fruits. (D) Mature Fruits.

www.wileyonlinelibrary.com
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Description of experiments

Based on the predicted and expected reproductive structures of the 
images in the test set, we computed the following measurements:

Counting precision—This metric aims to evaluate the ability of the 
proposed approach to automatically count the number of reproduc-
tive structures present on herbarium sheets. It is defined for a given 
sheet and type of reproductive structure as the ratio between the 
number of manually annotated instances (considered to be the “true 
count”) and the number of automatically detected ones. A counting 
precision (CP) higher than 100% means that the automated count 
is overestimated. A CP lower than 100% means that the automated 
count is underestimated. Complementary to the four types of re-
productive structure categories (Buds, Flowers, Immature Fruits, 

and Mature Fruits), two additional metacate-
gories were considered for performing a sec-
ondary CP metric: Buds_Flowers (the sum of 
the numbers of Buds and Flowers) and Fruits 
(the sum of the numbers of Developing Fruits 
and Mature Fruits).

Average precision at fixed intersection over 
union value—This is a common metric used to 
evaluate the accuracy of instance segmentation 
tasks, particularly in the context of the popular 
MS COCO challenge (http://cocod​ataset.org/# 
detec​tion-eval) (Lin et al., 2014). First, all the 
candidate detections that have sufficient overlap 
with each object in the ground truth are deter-
mined. This is done by computing the union 
and intersection of the object’s masks (actual 
and predicted) and retaining only the predicted 
masks that have an intersection over union (IoU) 
value above a fixed threshold value (in our case, 
IoU > 50%). A visual illustration of the IoU for 
a flower of Streptanthus tortuosus is provided 
in Fig. 5. Second, for a given class (i.e., a given 
type of reproductive structure in our case), all of 
the remaining matches are sorted by decreasing 
confidence score of the prediction (i.e., by the 
maximum probability of the softmax output of 
the classifier). Finally, the average precision (AP) 
is computed from that sorted list as follows:

where Ngt is the number of object instances in 
the ground truth, �( ⋅ ) is an indicator function 

equal to 1 if the predicted label of the detected object is equal to 
the ground-truth label, and P(k) is the precision measured over the 
top-k results (i.e., the number of correct matches in the k first de-
tections divided by k).

Size-wise AP—This is the AP computed on instances categorized 
by their size: (i) Small (1–64 pixels maximum bounding box size), 
(ii) Medium (65–128 pixels maximum bounding box size), and (iii) 
Large (>128 pixels). In centimeters, this corresponds to 0.01–0.54 
cm for Small, 0.55–1.08 cm for Medium, and >1.08 cm for Large.

Detection and confusion probability matrix—This matrix gives the 
probability of detecting a mask of a particular reproductive struc-
ture and the probability of misclassifying it as another reproductive 
structure. It was computed based on the best match of each mask 
with respect to its prediction score (i.e., the softmax output).

Measurement statistics—Box plots are used to graphically repre-
sent the length of the reproductive structures to assess the ability of 
the proposed approach to automatically estimate the size of repro-
ductive structures in the herbarium sheets. The size of each instance 
is defined as the diagonal length of the bounding box surrounding 
the mask of the instance. We considered the same types of repro-
ductive structures as for the CP metric.

AP=

∑n

k=1
P(k)�(ŷk= yk)

Ngt

FIGURE 4.  COCO Annotator interface in which a training image of a herbarium specimen has 
been fully annotated. Five buds (orange), four flowers (purple), 22 immature fruits (blue), and 16 
mature fruits (green) have been manually segmented. COCO Annotator is available from https://
github.com/jsbro​ks/coco-annot​ator. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1.  Number of reproductive structures per data set used in this study.

Reproductive 
structure type Training data set Test set Total

Flower buds 279 168 447
Flowers 349 299 648
Immature fruits 196 110 306
Mature fruits 212 101 313
Total 1036 678 1714

http://cocodataset.org/#detection-eval
http://cocodataset.org/#detection-eval
https://github.com/jsbroks/coco-annotator
https://github.com/jsbroks/coco-annotator
www.wileyonlinelibrary.com
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Measurement precision—This quantitative metric aims to evaluate 
the ability of the proposed approach to automatically estimate the 
size of reproductive structures in the herbarium sheets. For a given 
sheet and type of reproductive structure, the measurement precision 
is defined as the ratio between the average size of the manually anno-
tated instances in the sheet and the average size of the automatically 
detected ones. The size of each instance is defined as the diagonal 
length of the bounding box surrounding the mask of the instance. 
A measurement precision higher than 100% means the true aver-
age size is overestimated. A measurement precision lower than 100% 
means the true average size is underestimated. We considered the 
same types of reproductive structures as for the CP metric.

RESULTS

Comparison of the three models for counting reproductive 
structures

The comparisons of the CP achieved by the three learned models are 
presented in Fig. 6 for, respectively, all reproductive structures (Fig. 
6A), the Buds_Flowers and Fruits categories (Fig. 6B), and each re-
productive structure separately (Fig. 6C). The model with the best CP 
on average was the R-CNN-FullMask, i.e., the model that was trained 
on the full masks drawn manually. Its average CP was equal to 77.9% 
of the true number of reproductive structures whereas the CPs of the 
R-CNN-PartialMask and R-CNN-PointsMask models were 125.1% 
and 55.6%, respectively. In addition to these average values, Fig. 6A 
shows that the CP of the R-CNN-FullMask model was much more 
stable than the other models. It tended to underestimate the counts, 
but always by the same proportion. Thus, it would be very easy to 
correct this bias by applying a multiplicative calibration factor. On 
the contrary, the variance of the CP of the two other models is much 

higher, thus even a calibration would not be sufficient. Figure 6B 
shows that the R-CNN-FullMask CP is more stable across the Fruits 
and the Buds_Flowers categories. In contrast, the two other models 
behave differently for each category and have a much higher variance.

The results obtained for each reproductive structure (Fig. 6C) 
confirm this trend, but also show that the performance of the 
R-CNN-FullMask differed among the different types of reproductive 
structures. On average, it was less biased when counting Immature 
Fruits (average CP = 95.5%) and Buds (average CP = 86.3%), but in 
terms of stability, it performed better on Flowers and Mature Fruits. 
Appendix S1 provides details of the ground truth and the obtained 
results of the three learned models for the count of each reproduc-
tive structure, in each image of the test set.

Detailed analysis of the detection performance of the R-CNN-
FullMask model

Given that the R-CNN-FullMask model exhibited the most ac-
curate CP, we conducted a more detailed analysis of its detection 
performance. In particular, Fig. 7A reports its AP for detecting 
each type of reproductive structure at IoU = 50% and Fig. 7B dis-
plays the detection and confusion probability matrix. Both figures 
show that the type of reproductive structure most accurately de-
tected was Flowers, followed by Mature Fruits, Immature Fruits, 
and Buds. This is consistent with the CP experiment, in which the 
most stable counts were achieved for Flowers. Not all flowers were 
detected, but the percentage of detected ones is quite stable across 
all herbarium specimens so that a multiplicative calibration factor 
could be used to generate accurate counts. On the contrary, Buds, 
Immature Fruits, and Mature Fruits seem to be more difficult to 
detect, mainly because of a high rate of misdetection and false 
alarms (misclassifications are relatively rare, so they cannot explain 
the low AP values).

FIGURE 5.  Illustration of the masks used to compute the intersection over union (IoU). The mask of the ground truth (blue) and the mask of a pre-
diction (yellow) are displayed for an image of a Streptanthus tortuosus flower (photograph taken by Donna Pomeroy, used under a CC-BY-NC license). 
The mask of the intersection is shown in green, and the one of the union is displayed in red. In this study, only the predicted masks with an IoU value 
above a fixed threshold value of 50% were used in the final analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 7C displays the size-wise AP (still at IoU = 50%), reveal-
ing that the size of the reproductive structures has a strong impact 
on performance. Reproductive structures more than 1.52 cm long 
(i.e., the Large category in Fig. 7C) were detected with an AP of 0.4, 
while structures less than 0.76 cm long were detected with an AP of 
0.2; the highest value of AP (0.44) was obtained for medium-sized 
structures. It is important to remember that the hyperparameters of 
our model have been chosen in such a way as to cover all sizes of the 
objects present. The higher probability of misdetection of the small-
est objects is thus likely to be due to a bias rather than a problem 
of resolution. This will have to be explored more deeply in further 
work.

Evaluating the performance of the R-CNN-FullMask model for 
measuring the size of reproductive structures

Figure 8A shows the boxplot of the true and estimated object’s size 
for each type of reproductive structure. This figure displays the box-
plot of the Measurement statistics and shows that quite accurate 
measurements can be achieved for most reproductive structures, 

except in the case of immature fruits, which 
remain very difficult to detect and segment 
accurately. Indeed, the variance of the predic-
tion for immature fruits is the highest among 
all reproductive structures, particularly for 
those that are longer than 3 cm, probably be-
cause their visual appearance is very similar 
to that of mature fruits. Figure 8B shows the 
Measurement Precision and highlights the 
overestimation of sizes for Immature Fruits 
and, to a lesser extent, for Buds, while the 
variance is relatively low for Mature Fruits 
and Flowers. Mature fruits in particular 
would be the best reproductive structures to 
automatically detect in a larger data set using 
the current R-CNN-FullMask model for con-
ducting phenological studies based on fruit 
size and the date of maturity.

DISCUSSION

The purpose of this work was to develop and 
test an instance segmentation method for the 
fine-scaled detection of different reproduc-
tive structures in herbarium specimens. In 
particular, the aim was to evaluate the per-
formances of models based on different types 
of training data. For the best of these models 
(i.e., R-CNN-FullMask), we further aimed to 
precisely analyze its potential for counting, 
detecting, and measuring reproductive struc-
tures in order to facilitate new ways to con-
duct phenological studies on natural history 
collections.

One main outcome of this study is that 
deep learning technologies such as mask 
R-CNN models are highly influenced by (i) 
the type of training data on which they are 
developed, (ii) the type of reproductive struc-

ture targeted, and (iii) organ size. Indeed, although points masks 
are the most quickly produced by annotators compared with par-
tial masks or full manual masks, they are much less efficient for the 
automated counting of reproductive structures. Nevertheless, our 
study has shown that points masks can be useful to produce partial 
masks based on an automated segmentation approach within a win-
dow generated around each point, which can significantly increase 
the performance of models trained from these raw data. Full masks 
clearly provide the most efficient training data, as they can capture 
the full visual information associated with all the reproductive 
structures present on several different herbarium specimens.

This study has clearly shown that a mask R-CNN based on full 
masks has the potential to reliably contribute to the detection, 
counting, and measurement of some of the reproductive structures 
targeted. Flowers seem to be the most accurately captured, as (i) they 
are much larger than buds, (ii) they are more isolated than buds, 
which are often aggregated in a cluster at the tip of inflorescences, 
and (iii) they overlap less with other plant structures in Streptanthus 
tortuosus, in contrast to its frequently overlapping long thin fruits. 
This is an important result, as we know from the cross-herbaria 

FIGURE 6.  Results of the counting precision for the three learned models. (A) Boxplot of the 
counting precision across all reproductive structures. (B) Boxplot of the counting precision for the 
Buds_Flowers and Fruits categories. (C) Boxplot of the counting precision for each reproductive 
structure type (Buds, Flowers, Immature Fruits, and Mature Fruits). [Color figure can be viewed at 
wileyonlinelibrary.com]
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FIGURE 7.  Detection performance of the R-CNN-FullMask model. (A) Average precision (intersection over union [IoU] = 50%) of the R-CNN-FullMask 
model for each reproductive structure. (B) Confusion matrix of the R-CNN-FullMask model (i.e., the probability of detecting the incorrect organ type). 
The row probabilities do not sum to 1 because an organ may not be detected at all; (1 – sum(row)) gives the probability of misdetection. (C) Average 
precision (IoU = 50%) of the R-CNN-FullMask model for each object size category: Small, 1–64 pixels; Medium, 65–128 pixels; Large, >128 pixels. [Color 
figure can be viewed at wileyonlinelibrary.com]

FIGURE 8.  Performance of the R-CNN-FullMask model for measuring the size of reproductive structures. (A) Measurement statistics comparing the ground 
truth and the predictions of the R-CNN-FullMask with respect to the size (in centimeters) of the reproductive structures estimated through the diagonal of the 
bounding boxes. (B) Measurement precision per object of the R-CNN-FullMask of the reproductive structures estimated through the diagonal of the bounding 
boxes. [Color figure can be viewed at wileyonlinelibrary.com]
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analysis of Lorieul et al. (2019) that herbarium specimens are of-
ten collected in flower; for example, among the specimens from the 
New England Vascular Plant collection (https://www.idigb​io.org/
wiki/index.php/Mobil​izing_New_Engla​nd_Vascu​lar_Plant_Speci​
men_Data) and Florida State University’s Robert K. Godfrey 
Herbarium (Tallahassee, Florida, USA) used in Lorieul et al.’s (2019) 
study, 64.9% and 73.9% bore flowers, respectively.

The influence of organ size on the automated detection and 
identification of reproductive structures is a key issue to take into 
account; there is a real need to improve the analysis of small struc-
tures in such visual collections. A potential solution could be to 
work with higher-resolution images, which was not possible in our 
study due to computational resource limitations. The impact of or-
gan size identified here (i.e., the lowest AP value obtained for small 
structures) is important as it indicates that this approach will be 
more efficient on taxa bearing relatively large reproductive struc-
tures. Clades characterized by such traits (e.g., large-flowered and 
large-fruited Fabaceae, Onagraceae, Brassicaceae) could be much 
more suitable for this type of analysis. Similarly, taxa with loosely 
arranged inflorescences or singly borne flowers (instead of dense 
ones) will be relatively easier to analyze.

Other key issues are the capacity to take into account the high 
variability of some of these reproductive structures, such as imma-
ture fruits, which are highly diverse in terms of size, shape, color, and 
texture. Potential improvements to address these constraints could 
include the use of much larger training data sets, notably in terms of 
the number of each type of reproductive structure. This could allow 
such training data sets to sample a much larger diversity of develop-
ment stages, from closed buds to ripe fruits, with greater intensity. It 
is important to recall that the performance metrics reported here are 
based on a rather small training data set comprising 21 herbarium 
specimens. Thus, the performance could be considerably enhanced 
by enriching the data set, for example with specimens from different 
ecosystems, collected at different periods of the year, and conserved 
for different durations. In particular, this could potentially improve 
our model’s robustness and generalization capability, thereby allow-
ing its use with other Streptanthus species. The use of complemen-
tary training data representing other species or structures (such as 
leaf or stem masks) could also be beneficial for the transfer of learn-
ing strategies that have already proved their efficiency for other her-
barium visual classification tasks (Carranza-Rojas et al., 2017).

Other computation techniques could also contribute to the im-
provement of model performance. Indeed, the masks themselves 
are computed by thresholding a local heatmap, an image whose in-
tensity is proportional to the likelihood that the pixel belongs to the 
detected object. This thresholding of the heatmap can be seen as a 
loss of information, and it could be much more efficient to optimize 
the treatment directly from the set of heatmaps rather than the set 
of masks. This could be used, for example, to select masks with a 
very high score of confidence for measurement analysis, instead of 
trying to measure all detected structures, even those with low con-
fidence scores. Model combination is also a promising solution that 
has yielded performance improvement for other visual biological 
classification tasks (as in the study of Goëau et al., 2017). This is a 
computation method that consists of training multiple models in-
stead of a single model and then combining the predictions gener-
ated by these models. This method, also called “ensemble learning,” 
can be done with many different computational and statistical strat-
egies and usually improves results by generating predictions that are 
more accurate than those produced by any single model.

We chose to evaluate the use of the mask R-CNN approach, al-
ready used in other biological contexts (e.g., Champ et al., 2020), as it 
has the advantage of allowing the detection, counting, and potential 
measurement of detected structures within a single model. Other 
approaches could be evaluated, such as the strategy presented by 
Chattopadhyay et al. (2017), where the counting task is divided into 
easier and smaller object detection tasks on subsections of images. 
DeepSetNet (Rezatofighi et al., 2017) is an alternative technique that 
simultaneously detects and counts objects trained with the labels of 
the true count. Seguı et al. (2015) trained models using only the true 
count on the global image. Some of the most popular approaches are 
based on a “density” method (Arteta et al., 2016; Boominathan et al., 
2016). In this method, models are trained on the annotation of object 
centers, on which a density map is then computed and integrated to 
obtain a count value. All of these approaches could greatly enrich our 
capacity to report the presence and abundance of reproductive struc-
tures in herbarium collections, and without doubt could contribute 
to enlarging the huge research potential of these invaluable collec-
tions. Combined with other machine learning techniques (such as in 
the studies of Meineke et al., 2020; Ott et al., 2020; Pryer et al., 2020; 
Weaver et al., 2020; White et al., 2020), they could largely increase the 
benefits of using the newly digitized herbarium data sets.
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APPENDIX S1. Detail of the ground truth and results for each 
image of the test set, showing ground truth (in light blue) and the 
three learned models (dark blue = R-CNN-PointsMask, orange = 
R-CNN-PartialMask, and red = R-CNN-FullMask) for the count of 
buds (A), flowers (B), immature fruits (C), and mature fruits (D) of 
each image of the test set. The x-axis titles indicate the name of the 
images in the test set, while the y-axis ordinates denote the number 
of reproductive structures. The predictions of the R-CNN-FullMask 
are often closest to the ground truth.
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APPENDIX 1. Detailed description of the hyperparameters used to train the 
mask R-CNN architecture.

Input image size—Images are resized such that the longest edge is 
2048 pixels and the shorter one is 1024 pixels, in order to have suffi-
cient pixels related to small objects such as the buds (by default the 
mask R-CNN implementation used here considers a longest edge of 
1024 pixels and a shorter one of 600 pixels).

Anchor size and stride—Anchors are the raw regions of inter-
est used by the region proposal network to select the candidate 
bounding boxes for object detection. We chose their size to 
guarantee that the targeted objects have their size covered. The 
anchor size values were set to [32;64;128;256;512], the anchor 
stride values to [4;8;16;32;64], and the anchor ratios to [0.5;1;2].

Non-maximal suppression—The non-maximal suppression 
(NMS) quantifies the degree of overlap tolerated between two 

distinct objects (set to 0.5, the default value in the mask R-CNN 
implementation used here).

The training of the model was run on an NVidia Geforce 
RTX 2080 Ti (NVidia Corporation, Santa Clara, California, 
USA) using stochastic gradient descent with the following 
parameters: batch size of 3, total number of epochs set to 10,000, 
and learning rate of 0.01. We trained our model for several 
periods of time and stopped training when the loss converged or 
stopped decreasing. More specifically, we use a technique called 
the “Panda approach,” in which all training parameter choices 
were made on the basis of the empirical observation of the 
model’s training performance. We use a warmup strategy, where 
the learning rate increases linearly from 0.005 to 0.01 during 
the first five epochs. To improve robustness and minimize the 
variance of the model, we applied a large set of data augmentation 
techniques, including random horizontal, random rotations, and 
random variations on color contrast, saturation, brightness, and 
hue color values.


