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Controlling enzootic diseases, which generate a large cumulative burden and are often unregulated, is needed for
sustainable farming, competitive agri-food chains, and veterinary public health. We discuss the benefits and
challenges of mechanistic epidemiological modelling for livestock enzootics, with particular emphasis on the
need for interdisciplinary approaches. We focus on issues arising when modelling pathogen spread at various
scales (from farm to the region) to better assess disease control and propose targeted options. We discuss in
particular the inclusion of farmers’ strategic decision-making, the integration of within-host scale to refine in-

tervention targeting, and the need to ground models on data.

1. Introduction

The control of animal diseases is a major challenge not only for
sustainable livestock farming and competitive agri-food supply chains,
but also for veterinary and public health (Tomley and Shirley, 2009).
Disease risks increases due to globalization, especially international
human travel and trade of animals and animal products. Although very
few comprehensive studies are available at a global level, it is estimated
that diseases cause an average loss of 20 % of livestock production (OIE,
2015), with detrimental impact on food security (Tomley and Shirley,
2009). To produce a given amount of animal proteins, more animals are
needed, which enhances the negative environmental externalities as-
sociated with animal productions (e.g., increasing greenhouse gas, ni-
trate, land and water use, etc.; Thornton, 2010). Medicine usage also
generates detrimental externalities (residues in food, transfer of anti-
microbial resistance to humans; Perry et al., 2013). Furthermore, many
pathogens have a zoonotic potential (Lefrancois and Pineau, 2014) and
can spread at the interface between livestock and humans. They pose a
significant threat to public health as illustrated by recent human
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outbreaks of salmonellosis and Q fever. Reducing the burden of animal
diseases is thus a priority to feed the human population while limiting
the environmental and sanitary risks (Perry et al., 2013).

Enzootic (also called endemic) infectious diseases in livestock have
a substantial impact on farming as they persist over long time periods
(Fig. 1), potentially generating a large cumulative incidence, and
leading to poor animal welfare, increased use of antibiotics and pro-
duction losses for farmers (Tomley and Shirley, 2009). They involve
various pathogens, with different survival and transmission character-
istics, and circulate in a wide range of biological and managerial sys-
tems (Radostits et al., 2006). The costliest enzootics for farmers and
society are mastitis, lameness, bovine viral diarrhoea (BVD), and tu-
berculosis in cattle; enzootic abortions in sheep; influenza in pigs; and
salmonellosis in poultry (Bennett and Ijpelaar, 2005). Specific data
collection is often required to assess the field impact of these diseases as
case reports are not mandatory. Indirect evaluation of their impact can
however be supported by production data, sometimes routinely col-
lected in livestock.

Predicting the spread and control of enzootics needs to account for

E-mail addresses: pauline.ezanno@inrae.fr (P. Ezanno), mathieu.andraud@anses.fr (M. Andraud), gael.beaunee@inrae.fr (G. Beaunée),
thierry.hoch@inrae.fr (T. Hoch), stephane.krebs@inrae.fr (S. Krebs), arnaud.rault@oniris-nantes.fr (A. Rault), suzanne.touzeau@inrae.fr (S. Touzeau),

elisabeta.vergu@inrae.fr (E. Vergu), stefan.widgren@sva.se (S. Widgren).

1 present address: Université de Lorraine, Université de Strasbourg, AgroParisTech, CNRS, INRAE, BETA, 54000, Nancy, France.

https://doi.org/10.1016/j.epidem.2020.100398

Received 18 December 2019; Received in revised form 7 May 2020; Accepted 29 May 2020

Available online 20 June 2020

1755-4365/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://www.sciencedirect.com/science/journal/17554365
https://www.elsevier.com/locate/epidemics
https://doi.org/10.1016/j.epidem.2020.100398
https://doi.org/10.1016/j.epidem.2020.100398
mailto:pauline.ezanno@inrae.fr
mailto:mathieu.andraud@anses.fr
mailto:gael.beaunee@inrae.fr
mailto:thierry.hoch@inrae.fr
mailto:stephane.krebs@inrae.fr
mailto:arnaud.rault@oniris-nantes.fr
mailto:suzanne.touzeau@inrae.fr
mailto:elisabeta.vergu@inrae.fr
mailto:stefan.widgren@sva.se
https://doi.org/10.1016/j.epidem.2020.100398
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epidem.2020.100398&domain=pdf

P. Ezanno, et al.

N
EPIZOOTICS

(%]

©

c Control

= implementation
©

(]

% LIRS .o 4’ &
qq;, o ° (]
E Data 009

1 5 10 15 0>

A Time (years)

()

(S}

c

[}
T

[S]
£
©

Q
+—
)

=}

£

=}
O

1 5 10 15 20 °

Time (years)

Fig. 1. Epizootic infectious diseases (red) cause major losses over short time
periods, while enzootic infectious diseases (dotted orange) persist and can lead
to a large cumulative incidence. Data collection is required to assess the field
impact of enzootics and assess the efficacy of control strategies. (For inter-
pretation of the references to colour in the Figure, the reader is referred to the
web version of this article).

specifics of livestock populations. Enzootics frequently display variable
levels of prevalence over time within an infected herd, and among in-
fected herds at a given time since pathogen introduction (e.g., in VTEC:
Widgren et al., 2015). Hence, herd infection statuses and transitions
between statuses cannot be easily determined. They depend on man-
agerial processes (e.g., herd renewal, contact structure, detection and
control; Kiinzler et al., 2014) and on host heterogeneity in susceptibility
and infectiousness (Beldomenico and Begon, 2010). Interactions with
other herds, evolving over time, also play a significant role (trade,
neighbourhood contacts, etc.; Salines et al., 2018). In addition, mana-
ging enzootics relates to various control options available for farmers,
who are the key decision makers as many enzootics are left to regional
or individual regulation (Carslake et al., 2011). Control results from a
balance between disease losses and control costs, but also requires a
good understanding of the infection process, resource allocation to
control actions, and farmers’ compliance. However, field observations
with regards to these processes are scarce or missing (Brooks-Pollock
et al., 2015). In contrast, for epizootics (i.e. epidemics in animals) such
as foot-and-mouth disease, African swine fever, and avian influenza,
that can easily spread in naive livestock, mitigation strategies are
regulated at national or transnational levels (Wentholt et al., 2012).
Since the dynamics of such managed epidemiological systems result
from the complex interplay between various phenomena, multiple data
sources, scales, and disciplines need to be integrated (Fig. 2). Me-
chanistic modelling provides a useful framework: it can rigorously de-
scribe the multiscale interactions between the elements involved in
pathogen spread in a wide range of contexts (Keeling and Rohani,
2008). It also enables assessing ex ante control actions. Modelling is
complementary to observational approaches which cannot always be
implemented on commercial livestock farms for obvious ethical, lo-
gistic, and financial reasons. By providing an integrated view of epi-
demiological systems, it also complements experimental approaches
that aim at generating new knowledge on specific biological processes
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Fig. 2. To better target control measures and decrease the spread of enzootics,
multiple scales should be considered: within the host (left) to modulate trans-
mission features, within the herd (middle) accounting for host heterogeneity,
managed demography and contacts, and between herds (right) accounting for
relevant transmission pathways (trade movements, proximity contacts, ...).

(e.g., in diseases of oysters: Lupo et al., 2019). Through computation-
ally intensive simulations, mechanistic epidemiological models can
explore the effectiveness of control strategies at various scales (animal,
farm, region, supply chain). For example, targeted vaccination, test at
purchase for traded animals, or trade regulations according to source
herd statuses can be assessed. Accounting for farmers’ decisions in such
models, while enabling to account for an adaptive control, remains a
challenge.

In this paper, we discuss the benefits and challenges of mechanistic
epidemiological modelling for livestock enzootic diseases, with parti-
cular emphasis on the need to adopt interdisciplinary and integrative
approaches. In the first two sections, we focus on issues related to
modelling pathogen spread at the farm and region scales, aiming at
better assessing disease control and proposing targeted options. We
emphasize the importance of accounting for farmers’ decisions in
models for enzootics. In the third section, we focus on the within-host
dynamics and heterogeneities among animals. We highlight the im-
portance of their inclusion in within-farm models to refine intervention
targeting. The fourth section is devoted to the need of grounding
models on data to render model outputs et predictions more relevant
and meaningful.

2. Spread of enzootic pathogens within a farm

Understanding pathogen spread in animal populations better starts
at the local (herd) scale, which has so far been the most studied scale
(e.g., for cattle Brock et al., 2020). As with most other hosts, farm an-
imals are heterogeneous in susceptibility and infectiousness. To account
for such a heterogeneity without explicitly representing within-host
infection, appropriate health statuses and transmission functions need
to be considered (Courcoul et al., 2011b). In addition, in many areas,
animal herds can be small, in which case stochastic events play a large
role and should be accounted for (Lambert et al., 2018).

Three issues have been particularly investigated in livestock en-
zootics: (1) the interplay between demographic and infection processes,
(2) the role of the within-herd contact structure, and (3) the impact of
external infectious risks in open populations. First, enzootics usually
spread over a much longer time scale compared to epizootics (which
can spread rapidly, especially for pathogens introduced in a naive po-
pulation). Demographic processes (birth, death, culling, herd renewal,
physiological evolution) and related management practices thus occur
at comparable time scales as pathogen spread, and should be
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considered (Brock et al., 2020). This is even more crucial if vertical
transmission is possible, demography and transmission being closely
intertwined. For instance, a seasonal breeding during the pasture
period, when contacts and transmission are modified, may lead to an
increased exposure of gestating females. Second, herds are structured
populations, contacts occurring more within than between groups,
which possibly impacts pathogen spread (Ezanno et al., 2008; Marcé
et al.,, 2011b). As a typical example, batch management in pig herds
largely constrains pathogen carriage (Lurette et al., 2008). However,
herd structure has in other cases barely any impact, e.g., when group
composition changes over the year (Damman et al., 2015). Third, herds
are not isolated entities; they interact with other herds and possibly
with wildlife outdoor, inducing an external risk of pathogen introduc-
tion through purchases (Ezanno et al., 2006; Frossling et al., 2014) or
through proximity contacts (with the same or with other species;
Brooks-Pollock and Wood, 2015).

If interactions between pathogens, hosts, and the farm environment
are generally well represented, farmer’s management decisions are
barely accounted for. The farmer manages herd demography (breeding
and culling), contact structure (age groups, building usage), and con-
tacts with other herds (trade movements, equipment sharing, pasture
usage). Such decisions, which are in most situations not specific to a
particular disease, influence pathogen spread. They could be more
disease-specific to reduce the disease impact on production (e.g. for
bovine tuberculosis in New Zealand, Hidano et al. 2019). In particular,
the farmer could decide to improve the internal biosecurity by reducing
contacts between groups or enhancing hygiene.

3. Control of enzootics in a farm, prioritisation of options

A key challenge to control enzootics is to make the best use of the
various control measures available, which requires to identify the most
effective combinations of measures according to the (possibly time
varying) sanitary context. To assess the effectiveness of a measure, long
term effects should be analysed. Control measures not effective for ra-
pidly spreading epidemics, such as within-herd biosecurity, are worth
being considered for enzootics (e.g., in Salmonella carriage, Lurette
et al., 2011b). In addition, some measures are disease-specific (vacci-
nation as in Q fever, Courcoul et al., 2011a; test-and-cull as in para-
tuberculosis, More et al., 2015), but others are not (e.g., herd man-
agement) whose effectiveness would be better assessed considering the
multiple diseases they affect. Finally, it may be impossible to control a
disease using a single measure, and measure combinations could be
more effective (Camanes et al., 2018). Modelling can be of great help to
design effective control schemes.

An additional issue is that a farmer individually decides to control
or not an unregulated disease (and his effort level) based on his eco-
nomic rationality. Individual decisions may be distant from public
health objectives, implying possible non-compliance, as well as vary
among farmers and over time. This highly contrasts with regulated
diseases whose control is decided by the competent authorities leading
to almost uniformly complied on-farm measures. However, to assess on-
farm disease control, epidemiological models usually compare a priori
defined strategies (ex-ante assessment). Although various strategies can
be compared, this assumes that the farmer continuously applies the
strategies as defined in the model.

To better account for such a heterogeneity in the decision-making,
economic modelling could be helpful to explicitly represent farmers’
behaviour with regards to disease control decisions. Economic models
first focused on the farmer’s trade-off between disease losses and re-
sources allocated to disease control (Mclnerney et al., 1992), and then
on the trade-off between preventive and curative expenses (Chi et al.,
2002). Health management has been considered jointly with the var-
ious choices to be made on a farm (e.g., breeding, renewal; Santarossa
et al., 2005). However, such models only account for the on-farm epi-
demiological situation, which is only influenced by the farmer’s
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decisions, while the farm infection risk often depends on the regional
prevalence. Therefore, microeconomic models should account both for
the individual farm epidemiological status and its environment. Be-
cause individual decisions also impact the regional prevalence, epide-
miological and economic models should be combined to consider the
global problem. Such an approach has emerged in human health eco-
nomics (Brito et al., 1991; Gersovitz and Hammer, 2003, 2004), and
was transposed to the control of animal diseases (Gramig and Horan,
2011; Rat-Aspert and Fourichon, 2010). Risk behaviours and temporal
preferences (Horan et al.,, 2010; Enright and Kao, 2015), as well as
information bias (Gilbert and Rushton, 2018; Hennessy and Wolf, 2018)
start to be accounted for.

4. Spread of enzootic pathogens in a production area or a supply
chain

For many enzootics, local infection dynamics must be accounted for
to predict infection dynamics at a larger scale. First, herds may have
encountered the pathogen before or be exposed to multiple pathogen
introductions, which impacts herd immunity. Second, the prevalence
highly varies among infected herds due to farm intrinsic characteristics
(e.g., size, structure, management) and local control decisions made by
farmers. As a result, the contribution to the spatial propagation of pa-
thogens is heterogeneous across farms and varies over time for a given
farm. In contrast, for epizootics, most herds are naive when facing a
new pathogen spreading. The variability among farms is expected to be
smaller, and models often neglect or highly simplify the within-herd
infection dynamics. For enzootics, the contribution of each farm to the
upper scale infection dynamics cannot be summarised through simple
herd statuses. The evolution of the within-herd prevalence and the
frequency of contacts between farms occurring at similar time scales,
both spatial scales should be considered to prevent bias in the mutual
influence of farms concerning the epidemiological risk.

A key issue at large scales is to identify the transmission pathways
playing a pivotal role in pathogen spread and persistence (Keeling and
Rohani, 2008). Endemicity could be due to pathogens persisting locally
once introduced with no need for further introductions. This is for ex-
ample the case for chronic diseases or if the pathogen shows a long
survival in the environment. However, in most cases, disease en-
demicity is due to a rescue effect (Jesse et al., 2008) which induces
successive colonization / fade-out / recolonization events (Fig. 3A). In
any case, contacts between animal populations increase the risk of
pathogen (re)introduction. Two main types of contacts occur, with
different consequences on the local and regional pathogen spread and
persistence: neighbourhood contacts and animal movements.

Neighbourhood contacts generally occur in a continuous manner
over rather long time periods. They can be due to direct contacts in a
shared local environment (e.g., in bovine tuberculosis, Brooks-Pollock
and Wood, 2015) or over fences during pasture season (e.g., in BVD, Qi
et al., 2019). They can also consist in indirect contacts, e.g., airborne
(e.g., in avian influenza, Ssematimba et al., 2012), water-borne (Lupo
et al., 2019), or vector-borne pathogen transmission (e.g., in blue-
tongue, Gubbins et al., 2008). Seasonal occurrence of new cases is
frequent in these cases, potentially impacted by host and vector dis-
tribution (Charron et al., 2013). To represent such contacts, various
between-group transmission functions have been proposed (Hoch et al.,
2018). Neighbourhood contacts in animal populations, often similarly
influencing enzootics and epizootics, contrast with human situations
where proximity contacts vary over a day (working time, school time)
or a few weeks (holidays vs. school time). An interesting exception is
represented by markets, where animals from multiple herds are gath-
ered for a day, especially impacting the dynamics of directly trans-
mitted pathogens (Vidondo and Voelkl, 2018).

Animal movements between populations (trade movements and
transhumance for livestock; migration for wildlife) can introduce new
infected individuals in remoted areas. Contact networks most often are
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dynamic (relationships vary over time), directed (movements are not
symmetric), and weighted (several animals can move simultaneously)
(Woolhouse et al., 2005; Dutta et al., 2014). Again, such networks both
influence enzootics and epizootics. However, they differ from human
movement networks, characterised by back-and-forth persistent links
between cities (inter-cities flights, commuters; Keeling and Rohani,
2008; Arino and Portet, 2015). In animal populations, the moving in-
dividual leaves its source population, at least for a period (e.g., in
transhumance; Pomeroy et al., 2019). This also impacts the prevalence
in the source population, especially if low. In a network, the node in-
fection risk depends on its connectivity (Fig. 3B), i.e. the number of
connections with other herds (degree in the network) and the connec-
tion weight (frequency of contacts and number of traded animals). It
also depends on its position in the transmission chain, nodes with a high
betweenness (i.e. located on a large number of network paths) being at

a higher risk to spread pathogens. Farms contributing the most to pa-
thogen spread on such networks are not necessarily those selling many
animals, but those selling and purchasing many animals (e.g., for bo-
vine paratuberculosis: Beaunée et al., 2015). Furthermore, animals are
transported in trucks or bought during markets or in assembling cen-
tres, inducing a risk of contamination during the between-herd transfer
(Ferrer Savall et al., 2016; Vidondo and Voelkl, 2018).

5. Control of enzootics in a production area or a supply chain
5.1. To assess and prioritise collective static control strategies

As at the farm scale, models at a larger scale usually consider a
unique set of control strategies for the whole metapopulation. The most
studied measures are test-and-cull and vaccination. Either uniformly
distributed actions (Noordegraaf et al., 2000; Charron et al., 2011) or
strategies targeting a fraction of the farms (Brooks-Pollock and Wood,
2015; Beaunée et al., 2017; Widgren et al., 2018) are tested. Using
targeted strategies, the aim is to act on as few farms/animals as pos-
sible, for practical and economic reasons, while ensuring the highest
effect. This requires targeting the most relevant farms (Fig. 4), i.e. the
ones that contribute significantly to pathogen spread at large scale.
First, control can be targeted based on epidemiological criteria, such as
within-herd prevalence, herd location in a high-risk area, and between-
herd intensity of contacts (Fig. 3C-D). Second, control can be targeted
based on economic reasons, such as stocks (within-population) or flows
(between-population), with potentially highly contrasted impacts when
resources are limited (Moslonka-Lefebvre et al., 2016). The control of
animal movements has also been used to minimise the risk of in-
troducing a pathogen in a free population, e.g., through tests at pur-
chase (Beaunée et al., 2017). An accurate evaluation of the health status
of purchased animals is required before their introduction in the new
herd. Alternatively, a modification of trade partnerships, and of the
number and type of traded animals, can be used to protect disease-free
and low prevalence herds from pathogen introduction (Lurette et al.,
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2011a; Gates and Woolhouse, 2015; Hidano et al., 2016).

Designing effective control strategies on a large scale is not
straightforward and usually involves the use of several measures, pos-
sibly varying over time and among herds or areas. Computational ap-
proaches based on intensive simulations and extensive exploration of
combined control strategies offer a useful tool to optimally target herds
in space and time. The duration of measure implementation also must
be optimised in relation with time-varying epidemiological and eco-
nomic criteria. However, such a complexity increases the risk of
farmers’ non-compliance. Therefore, the combination of large scale
epidemiological models and collective decision models needs further
developments. The main challenge is to integrate interactions between
space-varying and time-varying components, which are first the on-
farm epidemiological risk and farmers’ decision, second the regional
epidemiological risk and collective decision-maker’s strategy (social
planner).

5.2. To analyse individual decision-making and their interactions at large
scale

Integrating farmers’ control decisions in a between-herd epidemio-
logical model enables specifying the epidemiological and economic
criteria for implementing measures. Such an approach comes from be-
havioural epidemiology (Manfredi and d’Onofrio, 2013) and economic
epidemiology (Tassier, 2013; Perrings et al., 2014) fields, and has rarely
been applied to veterinary epidemiology (Horan et al., 2010). Defined
at the farm level, criteria depend on farmers’ characteristics (e.g., risk
aversion, trust). They can vary over time, allowing the representation of
dynamic decisional processes. When decisions are decentralised (as for
most unregulated diseases), private interests are the core of individual
decision-making (Fig. 5).

A simple way to formalise farmers’ behaviours is to consider that
farmers decide independently. Decisions can be identical (e.g., control
of the porcine reproductive and respiratory syndrome (PRRS): Rat-
Aspert and Krebs, 2012) or variable among farmers (e.g., control of

Farmers’ strategic behaviour
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Fig. 5. Effect of the unequal adoption of a voluntary control strategy on disease
dynamics. Two schematic behaviours coexist. Farmers can choose to implement
disease control in their farm (blue), which reduces the within-farm prevalence
and further the risk for farms they are connected to but may decrease their herd
immunity once control is stopped. Or, they can choose to do nothing (brown),
but still benefit from others’ actions. (For interpretation of the references to
colour in the Figure, the reader is referred to the web version of this article).
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BVD virus spread in a context of risk aversion, Rat-Aspert and
Fourichon, 2010). However, as farms are connected, information on
regional prevalence plays a key role in decisions also at large scale
(Gramig, 2008). Besides, decisions are not independent among farmers
who may adopt strategic behaviours (Murray, 2014; Bauch et al., 2003;
Laguzet and Turinici, 2015). Finally, farms are spatially distributed,
and farmers belong to professional and regional networks, possibly
leading to clusters of farmers sharing information. To represent the
complex interplay between biological, technical, and economic pro-
cesses, agent-based models can be useful. They have already been used
in ecology (coupling of human and natural systems: Heckbert et al.,
2010; An, 2012) and in agricultural economics (Wilen, 2007). Appli-
cations to animal health economics remain rare (Rich et al., 2005).

5.3. To account for a social planner

When decisions are decentralised (laissez-faire situation), individual
efforts are likely to be suboptimal from a social point of view (Rat-
Aspert and Fourichon, 2010; Murray, 2014; Bauch et al., 2003; Laguzet
and Turinici, 2015). To improve the social outcome while accounting
for individual constrains and objectives, there is a need to consider si-
tuations where farmers’ decisions are coordinated at an upper level by a
social planner (Gersovitz and Hammer, 2004), e.g. using incentives.
Farmers’ associations, such as Animal Health Services, play such a role
of social planner. They aim at assessing animal- and farm-level pre-
valence at a regional scale. They also propose collective control
schemes to improve the sanitary situation at the collective level.
Sometimes, pathogen eradication is not targeted, because a low level of
prevalence can be acceptable for farmers and society.

A first approach is to determine how to direct coordination efforts
over time to optimise the social welfare (Manfredi et al., 2009). How-
ever, the added value of coordination is often overestimated because
the diversity of individual decision-making is not considered. This ap-
proach is barely used in animal health (Enright and Kao, 2015; Viet
et al., 2018; Mohr et al., 2020). It also raises the issue of evaluating
farmers’ response to coordination measures, which could be addressed
thanks to data obtained through experimental behavioural studies
(Chapman et al., 2012) or using coordination data for other diseases
(Noremark et al., 2009).

A second approach consists in mechanistically modelling the in-
dividual decision-making. Incentives are defined a priori as coordina-
tion scenarios, and their impact on farmers’ decision-making and the
associated epidemiological dynamics is studied. However, the optimal
scenario might not belong to the set of explored scenarios, making it
difficult to quantify the gap between modelled and optimal situations.
In contrast, the comparison with the laissez-faire scenario (generally less
favourable from a social point of view) makes it possible to quantify the
effectiveness of an incentive scheme (e.g., for BVD: Rat-Aspert and
Fourichon, 2010; for PRRS: Rat-Aspert and Krebs, 2012).

6. Animal response to infection and host heterogeneity at
population scale in enzootics

Usually, within- and between-herd scales are sufficient to consider
fundamental mechanisms of pathogen spread. However, sometimes
within-host dynamics need to be incorporated to modulate transmission
features. Indeed, hosts are heterogeneous and respond differently to
infection according to their intrinsic characteristics. This complicates
the way herd immunity governs the within-herd infection dynamics.

6.1. To assess host immunity and its impact on pathogen dynamics

Understanding the within-host mechanisms involved in infection
dynamics is of paramount importance to better control infectious dis-
eases (McKinley and Wood, 2007). If pathogen spread and evolution in
a (meta)population are strongly conditioned by characteristics of
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populations, they are also influenced by intrinsic host attributes,
especially their susceptibility, immune response to infection, and
shedding pattern. Such characteristics vary with age, genetics (Anacleto
et al., 2015; Lough et al., 2017), immune status (Alizon and van Baalen,
2008; Luo et al., 2012). How hosts and pathogens interact at the mi-
croscopic scale should be analysed to better understand what drives the
inter-individual variability. For example, super-shedder individuals, if
they exist, have to be identified as they are most probably super-
spreaders (Lloyd-Smith et al., 2005).

Immunity development most often leads to self-resolving infections
with long-lasting effects and immune memory, enhancing the response
in case of secondary infections. Here appears the primary objective of
vaccination: protecting the host by developing a specific response. This
leads to the concept of herd immunity: by immunizing a sufficient
proportion of the population (mainly related to the basic reproduction
number, Ry), disease should theoretically not spread (Keeling and
Rohani, 2008). This is rarely obtained in practice, most vaccines being
imperfect, i.e. providing only partial protection (Bitsouni et al., 2019).

A particular issue concerns the protection conferred by maternally
derived antibodies (MDA) to very young animals. On the one hand,
MDA confer partial protection against infection (e.g., in swine influenza
A: Cador et al., 2016). On the other hand, MDA also interfere with
several vaccines in newborn animals, thus impairing the development
of vaccine-induced immune response (Renson et al., 2019). Both si-
tuations lead to heterogeneous infection statuses which may have sig-
nificant epidemiological consequences.

6.2. To model within-host infection dynamics

Within-host models are commonly developed for human infectious
diseases, but remain sparse in a veterinary perspective. The simplest
model describes viral load evolution and the target-cell infection pro-
cess, driven by a limited number of parameters favouring model fitting
to viral kinetics (Perelson et al., 1996; Neumann et al., 1998). One of
the possible extensions accounts for the impact of the immune response
on viral dynamics and the differentiation of infectious and non-in-
fectious viral particles (Beauchemin and Handel, 2011). Such models
were also used to analyse within-host infection dynamics in animals.
For example, the persistence of a resistant strain of equine infectious
anaemia virus was analysed considering both cell-to-cell infection and
cell infection by free virions (Allen and Schwartz, 2015). This provided
guidance on treatments targeting infected cells to avoid the emergence
and persistence of resistant strains.

Recently, an immunological model described immune mechanisms
at the between-cell level (Go et al., 2014). This model was applied to
PRRS, a worldwide enzootic disease responsible for huge economic
consequences for the swine industry. Although PRRS immuno-sup-
pressive effect is well recognised, the interplay between the virus, the
target cells and different cytokines remains puzzling. It was explicitly
modelled to identify the immune mechanisms governing infection
duration. The model produced counter-intuitive outcomes preventing
the viral load decline. It suggests that viremia rebounds observed in
data, and thus possible prolonged virus transmission in a herd, could be
prevented by altering the immune response through vaccines (Go et al.,
2019).

Knowledge on immunity duration, which conditions the probability
of (re)infection, is also essential to understand pathogen spread. The
long-term duration of vaccine-induced or MDA was evaluated by fitting
mathematical models to field data for different pig endemic pathogens
(Andraud et al., 2014, 2018). Such analyses reinforce the need to ac-
count for host heterogeneity and immune history within modelling
frameworks to develop innovative vaccination schedules.

6.3. To model host-pathogen interactions at population scale

The multiscale modelling of the interplay between immunity, viral
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replication and host-to-host transmission appears as useful to better
understand underlying mechanisms and their consequences on pa-
thogen transmission and control at the population scale (Doeschl-
Wilson, 2011). However, this integrative view faces numerous chal-
lenges (Gog et al., 2015), in particular in the case of multi-strain pa-
thogens (Gog and Grenfell, 2002; Wikramaratna et al., 2015). Also,
modelling explicitly within-host processes should be done only if ap-
propriate evidence is available. In the absence of accurate information,
it is better suited not to consider detailed within-host dynamics, to
avoid degrading the predictive model accuracy.

Immuno-epidemiological approaches have been developed first for
macroparasitic infections and malaria (Hellriegel, 2001). Numerous
models for human diseases (e.g., for Influenza: Handel et al., 2013; e.g.,
for HIV: Lythgoe et al., 2013) include assumptions about acquired im-
munity to study infection spread (Heffernan and Keeling, 2009;
Steinmeyer et al., 2010) and host-pathogen co-evolution (Gilchrist and
Sasaki, 2002; Mideo et al., 2008). The nested approach (Gilchrist and
Sasaki, 2002) links immunological and epidemiological models: it em-
beds a mechanistic host-pathogen dynamic model into a time-since-
infection epidemiological model by linking epidemiological para-
meters, such as transmission rate and infectiousness duration (Mideo
et al., 2008; Gandolfi et al., 2014). However, such models do not always
represent the host immune status upon recovery, while some diseases
induce a waning or partial immunity (Steinmeyer et al., 2010).

Only few immuno-epidemiological models have been proposed yet
for livestock diseases (Doeschl-Wilson, 2011; Martcheva et al., 2015).
Epidemiological models classically divide hosts into classes with respect
to their health status. Some also account for a heterogeneous in-
fectiousness depending on shedding intensity (Lloyd-Smith et al., 2005;
Marcé et al., 2011a). However, the underlying mechanisms generally
are not represented and only few relate this heterogeneity with pa-
thogen virulence (Islam and Walkden-Brown, 2007). Structured models
can be used to assess control measures targeting specific subgroups, or
selective breeding for disease resistance (Rowland et al, 2012).
Nevertheless, jointly modelling within- and between-host dynamics
would help identifying specific points of the system to be targeted by
control measures boosting host response, which is of particular interest
to design new vaccines (Metcalf et al., 2015). In addition, host im-
munity varies over time (Andraud et al., 2009). To account for this,
epidemiological models can include a time-since-recovery structure,
implicitly accounting for a time-varying loss of protective immunity.
Models can also use more realistic non exponential distributions for
sojourn times in health state (Lloyd, 2001; Vergu et al., 2010). Ex-
plicitly representing within-host processes, where possible, would im-
prove model accuracy, and would make it possible to determine the
distribution of individuals between health states, as well as transitions
between states. It would provide a better understanding of how the
time-varying immune response drives transitions (Fig. 6), whose rates
are often unknown and hard to estimate.

Finally, a few genetic epidemiological models have been proposed
so far. They can address pathogen spread when hosts heterogeneously
express disease resistance (Nieuwhof et al., 2009; Russell et al., 2013)
and scenarios where selecting for more resistant hosts improve herd
resilience to infection (Berry et al.,, 2011; Rowland et al.,, 2012;
Raphaka et al., 2018). The coupling of epidemiological and genetic
models is of growing interest with the rapid development of genomics,
these data being increasingly used in animal breeding selection (Phocas
et al., 2016). However, dedicated models are required to account for
specifics of genomic selection compared to genetic one. In addition,
selecting resistant animals to a given disease might increase suscept-
ibility to other diseases. A current challenge, facing many threats, is to
assess selection schemes aiming to improve animal im-
munocompetence.
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Fig. 6. Effect of heterogeneity in shedding on predicted prevalence in an SIR model (22 individuals, 1 initially infected, all others being susceptible). Assuming a
homogeneous time-varying individual force of infection (FOI, left: brown curve) overestimates prevalence (right: stochastic runs in orange, mean in brown) com-
pared to accounting for host heterogeneity (host FOI (left) and stochastic runs (right) in thin blue lines, means in dashed or thick lines). The homogeneous FOI and
the mean of the heterogeneous FOI are similar. (For interpretation of the references to colour in the Figure, the reader is referred to the web version of this article).

7. Data and their added value for mechanistic models for
enzootics

The relevance and practical usefulness of models presented in pre-
vious sections are acutely conditioned by data availability. Information
on population characteristics and demography, epidemiological pro-
cesses and economic costs is crucial (Brooks-Pollock et al., 2015). Such
data are required for model calibration, estimation of key parameters,
and validation, to provide reliable insights on epidemiological me-
chanisms and accurate predictions. In turn, models can be used to point
out specific data need and hence to provide guidance for the develop-
ment of data collection systems.

Outside resource-poor settings (Brooks-Pollock et al., 2015), a large
amount of useful data is collected for various reasons (legislation,
health management, disease surveillance, research). This potentially
provides critical information for performing integrative mechanistic
modelling for enzootics. However, at least two challenges remain to
fully exploit such datasets. First, modellers have to cope with highly
heterogeneous datasets composed of demographic, trade, epidemio-
logic, genomic, geographic, climatic data at various temporal and
spatial scales. Second, data availability does not necessarily mean
permission for data usage. Many datasets cannot easily be shared since
they are owned by different - and most often private — actors, partly due
to the decentralised and optional management of enzootics. Data
privacy also acts as an impediment to reproducibility, since model
predictions based on data cannot be easily regenerated. Beyond the
diversity in nature, these datasets are also different in quality. Limita-
tions and biases in data collections should be explicitly accounted for,
e.g., by appropriate weighting (De Angelis et al., 2015). This challenge
stands also for epidemics. However, case reporting is not mandatory for
most enzootics, decreasing even more data quality. Data are most often
collected locally, affected by the long-term dynamics of enzootics.
Long-term longitudinal surveys are thus required to assess enzootic
pathogen spread and its impact on herds, which increases the risk of
missing values, sparse spatial coverage, and high censoring. Finally,
mostly indirect observations are made (e.g., past seroconversion instead
of current infection), which renders difficult their use in models.

Among new available datasets, genomic data are particularly in-
teresting since they open new ways in outbreak investigation. These are
for instance related to the impact of host genetic traits affecting disease
transmission and burden of enzootic diseases (Biemans et al., 2017).
The inference of transmission trees also is rendered possible by recent
advances in phylodynamics, a promising direction, ideally requiring
deep data collection (Saulnier et al., 2017; Alamil et al., 2019). Another

type of data, economic data, are not routinely collected. They are scarce
and obtained at rather small scales (e.g., during a few interviews).
However, they are key to address issues with regards to on-farm stra-
tegic decision-making. In contrast, some processes are very well ob-
served in livestock, e.g., trade and demographics in European cattle
populations, following individual animal tracing. Trade networks were
used in many applications, e.g. to assess control strategies involving
animal movements between holdings (Tinsley et al., 2012). Besides,
intensive simulations to assess targeted control were used to motivate
routine collection of livestock movement data in emergent economies
(Chaters et al., 2019). With the rise of digital agriculture and of sensors,
new data begin to be routinely collected on farms (e.g., animal per-
formance, behaviour, body temperature). This is expected to modify the
way enzootics will be predicted. Mechanistic models could be relevant
tools to identify which data should be collected, and to prioritise sce-
narios after the alert for new cases has been given (Picault et al.,
2019a).

Estimating model key parameters from data increases the accuracy
of model predictions. However, appropriate inference methods are
needed. It is often harder to estimate parameters with endemic diseases
simply because one of the key signatures (variation over time) is usually
missing. Methods have also to cope with the variety of datasets (De
Angelis et al., 2015) and the partial observation of processes. More
generally, methods should address the data missingness and the dif-
ferent sources of noise (uncomplete case reporting, imperfect diagnosis
tests, measurement errors). Given the relatively high complexity of
epidemiological models for enzootics, especially at large scales, and
incomplete data patterns, usual likelihood-based methods are in-
tractable. Instead, methods based on efficient particle filtering algo-
rithms for likelihood maximization (Breto, 2019), likelihood-free
methods (Sisson et al., 2018), or tailored estimation methods are highly
suited. For example, those based on composite likelihoods account for
main data specificities (e.g., temporal and spatial dependence of ob-
servations, over representation of the zeros).

When data are too poor to make parameter inference, experts’
knowledge and literature are used to calibrate models. Model then can
be used for scenario analyses (e.g., prioritisation of control options), but
are not suited for quantitative predictive purposes. Experimental data
are also useful to estimate specific epidemiological process (Andraud
et al., 2009; Go et al., 2019). Such a knowledge is particularly relevant
with regards to within-host response to infection. However, animals
used in experiments are often far from similar to on-farm animals. They
have never been exposed to any pathogen before the experiment. They
are most often not of the same breed as on-farm animals. Finally, due to
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ethical constrains, only small groups are considered compared to herd
or feedlot size. All these render estimates obtained from experiments
difficult to generalise at a population scale.

8. Conclusion

Mechanistic epidemiological modelling has largely contributed to
better understand enzootic pathogen spread. Interdisciplinary and
multiscale approaches should be further encouraged, as the few existing
examples clearly demonstrated their added value. However, increasing
model complexity should be carefully balanced by affordable data.
Models are usually built while few data are available and many pro-
cesses are incompletely and noisily observed. Although the model
structure is guided by epidemiological and biological knowledge,
parameterisation remains puzzling, and should benefit from experi-
mental trials and from relevant statistical methods. As in many other
fields, ensuring FAIR data (Findable, Accessible, Interoperable,
Reusable) is a challenge in animal health, notably because data are
largely heterogeneous and often owned by many different actors. To
further develop models for enzootics, numerous and complementary
skills should be mobilised in modelling, statistics, computer science,
infectious diseases, immunology, epidemiology, and economics. The
main challenges are: (1) to capture the complex behaviour of the bio-
logical system as well as stakeholders’ decisions by integrating the ne-
cessary components and interactions in order to produce useful pre-
dictions; (2) to convert simulated outcomes into integrated knowledge
that can be used by stakeholders in specific contexts for disease control;
(3) to favour the spread of knowledge and the adoption of produced
guidelines and recommended control options by keeping models and
outcomes as realistic and practical as possible. Model transparency and
flexibility should be improved to enhance relationships among dis-
ciplines, and between academics and stakeholders (Picault et al.,
2019b). Research models are generally far too complex to be directly
transferred to health managers. The latter are more eager nowadays to
account for in silico outcomes in their decision making (Sutherland and
Freckleton, 2012; Thulke et al., 2018). Therefore, there is also a need to
develop further, together with end-users, appropriate support decision
tools - based on research models - to help prioritizing alternative stra-
tegies. Epidemiological models thus should be flexible enough to re-
present a wide range of realistic scenarios. Territorial anchorage is
needed, fed by field data, to ensure the realism and robustness of the
modelling tools.
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