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The recurrence of storm aggressiveness and the associated erosivity density are

detrimental hydrological features for soil conservation and planning. The present work

illustrates for the first time downscaled spatial pattern probabilities of erosive density

to identify damaging hydrological hazard-prone areas in Italy. The hydrological hazard

was estimated from the erosivity density exceeded the threshold of 3 MJ ha−1 h−1 at

219 rain gauges in Italy during the three most erosive months of the year, from August

to October. To this end, a lognormal kriging (LNPK) provided a soft description of the

erosivity density in terms of exceedance probabilities at a spatial resolution of 10 km,

which is a way to mitigate the uncertainties associated with the spatial classification of

damaging hydrological hazards. Hazard-prone areas cover 65% of the Italian territory

in the month of August, followed by September and October with 50 and 30% of

the territory, respectively. The geospatial probability maps elaborated with this method

achieved an improved spatial forecast, which may contribute to better land-use planning

and civil protection both in Italy and potentially in Europe.

Keywords: erosive density, hydrological hazard, prone area, geospatial probability map, Italy

INTRODUCTION

Changes in the frequency of severe weather events determine the occurrence of damaging
hydrological events (Diodato et al., 2019; Petrucci et al., 2019), which in turn affect many natural
and human systems (Corella et al., 2016; Sofia et al., 2017). Modeling rainfall intensity can help to
quantifying the effect of these extreme phenomena that involve complex landscape and ecosystem
scenarios within multiple event feedback forms (e.g., Thomas, 2001; Mulligan and Wainwright,
2013; Harris et al., 2018).

Water is certainly a resource for the Earth’s ecosystems, but intense rainfall and overland
flows can also be land disturbing forces. Extreme hydro-meteorological events such as rainstorms
produce high-impact land processes, which increases with their intensity (Toy et al., 2002; Wei
et al., 2009). However, diverse parts of the terrestrial ecosystems respond in different ways
to unequal forcing agents, often non-linear and universal, with threshold-type characteristics
(Thomas, 2001; Arnell, 2011; Knight and Harrison, 2013; Seddon et al., 2016). Simultaneous
mapping of these thresholds, and the processes for developing them, is a challenge in geographical
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information sciences (Srivastava, 2013; Li et al., 2016). The scale
and the relative uncertainty integration of these thresholds, for
which storms drive overland flows, including the soil erosion
by water, are important because they affect the spatial pattern
of damaging hydrological events, and ultimately improve our
mechanistic understanding of ecological responses to climate
extremes (Kayler et al., 2015). An example of rainfall threshold-
driven process is the initiation of landslides (Guzzetti et al.,
2007). Concepts such as thresholds of change and magnitude
are all important since landscapes may be able to resist or
absorb impulses of change as a form of sensitivity or, inversely,
stability (Huggett, 1988; Meyer et al., 2018). The application of
this concept to the way how geomorphological systems respond
to climatic variability and change is nowadays a relevant topic
(Allison and Thomas, 1993; Phillips, 2006). In geomorphology,
the first use of sensitivity has been in the form of a ratio
between resisting to and disturbing forces, inherently changing,
but natural systems generally have a high capacity to absorb
such changes (Brunsden, 2001). Research indicates that distinct
ways in which sensitivity analysis is applied have different
implications, because whereas the ratio of resisting to disturbing
forces is dimensionless, landforms within a landscape may react
differently to environmental events, possibly owing to varied
proximity to a particular threshold, which introduces an element
of probability related to the likelihood of change (Downs and
Gregory, 1993). Thus, in this work the erosivity density (MJ
ha−1 h−1 mm−1), that is, the ratio of rainfall erosivity to
precipitation, is introduced to measure the erosivity per rainfall
unit. The critical value of erosivity density ≥3 MJ ha−1 h−1

has been introduced in storm geomorphology by Dabney et al.
(2011). This hydrological threshold could help identify erosion-
and overland flow-prone areas (Kinnell, 2010; Panagos et al.,
2016). The advantages of using erosivity density over directly
calculated rainfall erosivity are (after Renard et al., 2011): (a)
higher susceptibility to classifying hydrological hazards; (b)
higher stability, achieved with a shorter period of records; and
(c) easier interpolation over large territories owing to its altitude-
independency up to 3,000m a.s.l. (Foster et al., 2003).

Uncertainty in erosivity density thresholds poses challenges
for the spatial analysis since the worst storms may fall in
areas between recording weather stations (e.g., Willmott and
Legates, 1991). The summer season in Mediterranean lands
is characterized by aggressive storms developing the risk for
damaging hydrology and catastrophic events (Pereira et al.,
2010; Diodato et al., 2011; Diakakis et al., 2018; Salvati et al.,
2018). Local interactions between environmental context
and climate variability are provided as comprehensive
explanation for landscape changes and impact evaluation
(Bintliff, 2002). The diverse geomorphology characterizing
the Mediterranean region has important consequences
for the atmospheric and sea circulations, with an uneven
distribution of weather types (Lionello et al., 2006) and a broad
spectrum of hydro-geomorphological hazard potentials across
Italy (Diodato et al., 2019).

Throughout the Mediterranean basin (including Italy),
rainfall is typically concentrated between autumn and
spring (Trigo et al., 2006) but extreme hydrological and

geomorphological events occur mainly in periods of imbalance
of precipitation input, from May to October. Though only a
few studies have explicitly investigated how precipitation affects
the damaging hydrological events in this vulnerable period of
the year (Cevasco et al., 2015), in recent years, a considerable
progress has been made in developing rainfall erosivity
databases from regional (Borrelli et al., 2016) to continental
scale (Panagos et al., 2015) and even to global (Panagos et al.,
2017) scale. However, the development of regional-scale
spatial models of the storm hazard remains a challenge that
scientists face for hydrological, agricultural, and environmental
planning. The spatial uncertainty associated with the danger
of extreme rainfall across a range of scales is an open issue,
which is added to uncertainties associated with downscaling
methods and lack of high temporal resolution data in
many regions.

The present paper has the main objective of demonstrating
to which extent the threshold associated with erosivity densities
depends on hydrological damaging events prediction of. A
coupled GIS and geostatistics model is the tool, applied here,
to continuously map the spatial uncertainty of erosivity density
thresholds and predict prone areas to damaging hydrological
events in Italy. The achieved results are funded on climatic data
and on a probabilistic approach. Other parameters, affecting
the intensity and the frequency of damage in risk-prone areas
as population density, infrastructures, plants density, and low-
intensity rainy periods have not considered as out of the scopus
of the present work.

MATERIALS AND METHODS

Study Area and Data Collection
The Mediterranean has the highest amounts of precipitation
during the period October to March, while mean summer
precipitation is less predictable owing to high rainfall variance
in this season (Xoplaki et al., 2004). Moreover, the period
between end of summer and beginning of autumn results in
considerable percentage of bare and tilled soils (compared to
green cover) across the Mediterranean, including Italy. This
agro-environmental condition accelerates the hazard of severe
erosion and overland flow (Pereira et al., 2010). In this period,
the sparser the plant cover, the more vulnerable the topsoil
is to both dislodgement and removal by raindrop impact
and surface runoff. As with spatial variability, the temporal
variation in precipitation and vegetation response are non-
linearly related, highlighting the existence of threshold behaviors,
which are heterogeneous in dynamic, changing landscapes
(Snyder and Tartowski, 2006).

The Italian territory is characterized by heterogeneous
geographic systems, with sea surface waters around the Italian
peninsula, where vast mountain chains, coexist with valleys and
plains. The most southern part of Italy is an active storm area,
and its orography is an important agent in modifying the track
of cyclones and their synoptic evolution across Europe (Homar
and Stensrud, 2004). Such heterogeneity modifies mesoscale
components of the circulation and generates precipitation
patterns fluctuating greatly in space or time (Luterbacher et al.,
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2012). Convective rainfall events, in particular, cause extreme,
and erosive storms, which are geographically localized in Italy.
Such large spatial and temporal variability can be difficult
to capture accurately with rain gauge networks or remote
sensing observations (Curić and Janc, 2011). Advective rainfall,
in contrast, is characterized by weak rainfall intensity over
large areas.

In this study, data on rainfall erosivity and precipitation
were derived from the Rainfall Erosivity Database on the
European Scale (REDES) (Panagos et al., 2015). 219 uniformly
distributed meteorological stations were selected in order to
cover the different biogeographical and climate zones of Italy
(Figures 1A,B) with an average density of about one station per
1,000 km2: The stations‘ elevation ranges from 0 to 2,541m
a.s.l. with a distribution reflecting the altitudinal gradients of the
country. The frequency of acquisition of precipitation data is
hourly over a period larger than 10 years (2002–2011). The grid-
based map of rainfall erosivity density was created interpolating
the data resources represented by 219 stations.

Erosivity Density Model
In an erosive climate, the magnitude, intensity, and frequency
of a given precipitation has an impact in damaging hydrological
processes as it changes both landform and the equilibrium of
environmental systems. The assumption, in order to model the
erosivity density (ED), is that the environmental system adapts to
changes of the natural hydrological regime. In fact a fluctuation
in such regime, especially when thresholds for an acceptable level
of hydrological disturbance are exceeded, may have damaging
consequences to the environment.

The ED algorithm, which predicts damaging hydrological
hazards, is based on the ratio between storm erosivity and
precipitation (Dabney et al., 2011; Renard et al., 2011):

ED =

1
n

n
∑

i=1

mj
∑

k=1

[

I30 ·
m
∑

r=1

(

0.29 ·
(

1− 0.72e(−0.05ir)
))

· vr

]

· k

f ·

(

1
n

n
∑

i=1
Pj

) (1)

where n is the number of recorded years; mj is the number of

erosive events during a given month j; k is the index of a kth

single event; vr is the rainfall volume (mm) during the rth period
of a storm, which splits intom parts; I30 is the maximum 30-min
rainfall intensity (mm h−1); ir is the rainfall intensity during the
time interval (mm h−1); Pj is the rainfall amount (mm) during a
given month j.

Therefore, the numerator in Equation (1) represents the
mean monthly storm erosivity (MJ mm ha−1 h−1), while the
denominator the relative average precipitation amount (mm)
multiplied by a factor f.

The variables involved can be subjected to large time
fluctuations and set threshold in the natural hydro-
geomorphological regime, in such a case the coefficient f is
a useful parameter to explain the degree of local ecosystem
flexibility, whose estimate is required for the geomorphological
risk assessment within given features (Diodato, 2005). In fact,
natural land-based ecosystems can be quite flexible and capable

of absorbing the stresses provoked by disturbance in a vast
array of processes (Mendoza et al., 2002), including the damages
associated with weather extremes (De Luís et al., 2001), so that
f>1. Contrarily, highly disturbed or degraded landscapes (e.g.,
intensive cropland, chaotic urbanization, post-fire vegetation
dynamics, sparse vegetation), are commonly less flexible, so
that f < 1.

According to Dabney et al. (2011), when ED>3 MJ
ha−1 h−1, storm erosivity accounts for a large percentage
of the rainfall amount in an intense event, highlighting an
increasing erosive hazard (above the critical value for damaging
hydrological events).

Probability kriging and Fit of the Regional
Model
Geostatistical techniques consider that distant data values are
less related to each other than near spatial data values (after
Tobler, 1970). The commonly used ordinary kriging (OK),
in particular, computes an unsampled value (z), knowing its
coordinates (x, y), and neighbor values. OK makes optimal,
unbiased estimates of regionalized variables at unsampled points
from values of the same variables at surrounding stations, using
structural analysis and the initial set of measured data (Journel
and Huijbregts, 1978; Journel, 1983). Kriging-type approaches
are probabilistic in nature because the uncertainty associated
with a local estimate can be calculated. OK of a set of indicator-
transformed values provides a resultant value between 0 and 1
for each point estimate. This is an estimate of the proportion
of the values in the neighborhood, which are greater than
the indicator or threshold value. Probability kriging (PK) was
proposed by Sullivan (1984) to overcome some issues raised
with indicator kriging (IK) which is a non-parametric approach
to estimate data uncertainty and is used to predict conditional
probability (e.g., probability of the occurrence of an event
above/below a threshold) for categorical data of unsampled
location. Probability kriging is a non-linear method, which uses
the information from all the available indicator variables by
using the order relation of observed variables. It represents
an attempt to obtain estimates less sensitive than the ones
obtained with IK to the choice and number of cut-off values
(thresholds). In addition, compared to IK, the estimates of PK
fully reflect local variability (Hohn, 1999). PK can be used
to classify areas under damaging hydrological hazard prone
areas. A straightforward approach is to classify as hazardous all
locations where the probability of exceeding a critical threshold
value, zk, is greater than a critical value of erosivity density
(ED = 3 MJ ha−1 h−1). Kriging methods rely on the notion
of autocorrelation. Correlation is usually thought of as the
tendency for two or more variables to be related. For example,
in climate sciences, weather stations close to each other have
similar climatic values. When weather stations become distant,
then climatic values are different. In the same way, in geo-
statistics, locations distant frommeasured climatic data may have
high prediction uncertainty. The rate at which the correlation
decays can be expressed as a function of distance and at some
distance to weather stations, the pixel values have no correlation
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FIGURE 1 | (A) Overview map of the study area. (B) The spatial pattern of mean annual rainfall amount overlaid with stations location, and (C) Ratio of

maximum-recorded daily rainfall vs. mean annual precipitation for Italy during the period 2002–2011.

with the prediction location. Based on this assumption, a search
neighborhood function (here below cdf) is generally specified
(see result section) that limits the number and the configuration
of the measured data points that will be used in the prediction.
The mechanism controlling the radius of the neighborhood
function shape is mainly driven from the range, which assumes
different shapes in different months. In this way, PK uses more
information than IK because the rank of the datum z(uα)
in the sample cumulative distribution function (cdf) is taken
into account in addition to the indicator value exeeceding
the threshold value zk (Goovaerts, 1997) as in the simplest
IK approach.

Subsequently, the trade-off cost for this conditioning of
the posterior cdf is the inference of the covariance function
CX(h) and the K cross-covariances CCXI(h; zk) of the model
of coregionalization between indicator and uniform transforms
at each threshold value (h is the distance from the station uα).
The coregionalization is the covariance matrices describing the
correlation structure of the set of erosivity density indicator
variable at a characteristic spatial scale. Cross-covariances give
the covariances of variables at pairs of points.

The coindicator transform i(u;zk), using the rank-order
transform x(u) as a secondary variable, is the probability kriging
estimator (Goovaerts, 1997):

[I (u; zk)]
∗
=

n(u)
∑

α=1

λα (u; zk) · I (uα; zk) +

n(u)
∑

α=1

υα (u; zk) · X (uα)

(2)

where the weights λα(u; zk) and υα(u; zk) are determined by
solving the (2n(u) + 2) ordinary cokriging system of equations
referred in Goovaerts (1997). Since erosivity density data presents
a non-Gaussian distribution, a logarithmic transformation was
performed to reduce skewness before applying Equation (2).
Then, logarithms were used for the probability kriging, named
lognormal probability kriging (LNPK). The GeostatisticalWizard
routine used to perform the spatial elaboration is in Johnston
et al. (2001) and runs under ESRI ArcMap (http://desktop.arcgis.
com/fr/arcmap).

In addition, to fit the data to a regional model, a two-
stage iterative procedure developed by Johnston et al.
(2001) has been used. Stage 1 assumes an isotropic and
spherical model and computes empirical covariance
and cross-covariance functions on standard deviation-
scaled data. A covariance distance measures the average
degree of dissimilarity between unsampled values and
nearby values. Empirical indicator covariance function
CX(h;zk) and cross-covariances CCXI(h; zk) are thus
produced (see section Results and discussion). Stage 2,
calibrated interactively the geostastistical parameters wich
include: range (a), number of lag (assumed equal 7),
or lag size h (assumed equal 24 km), model type, nugget
and partial sill.

Finally cross-validation and error assessment procedures
check for the internal consistency of the model and the spatial
correspondence of damaging hydrological events have been
carried out. The error involved during the interpolation of point
data to landscape values through probability kriging is assessed
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through a quantitative estimation of the standard error and of
the cross-validation.

RESULTS AND DISCUSSION

Structural Analysis and Modeling
In the Italian peninsula the summer erosivity density (ED) is, on
average, 2.5 times larger than for the rest of the year (Borrelli
et al., 2016; Panagos et al., 2016). The rainstorm are therefore
considerably higher than the rest of Europe as the mean erosivity
density in Italy is 2.02 MJ ha−1 h−1, compared to 0.92 MJ
ha−1 h−1 in Europe. In addition, although Northern Italy is
particularly stormy, extreme rain events are also common in
Central and Southern Italy (Fiorillo et al., 2016). This manifest
the fact that, as we move from south to the driest hydro-climatic
areas, the storm rainfall intensities remain high. This trend is
reflected by the mean annual precipitation against the ratio
of the maximum recorded daily to mean annual precipitation
(Figure 1C). In fact, the highest ratios correspond to the driest
locations. For instance, in areas where the mean annual rainfall
is below 600mm this ratio is typically around 10%, that is, an
important fraction of the total annual rainfall which fall during
very few storms. As a result, where rain is less abundant, the flood
risk may become higher than in wetter situations where people
are more familiar with frequent rainfall.

Based on the specified neighborhood function cdf (Figure 2),
the months of August and September result in similar ranges i.e.,
a similar mechanism or driving factor controlling the radius of
cdf shape, both reaching a search neighborhood with semi-axis
of about 50 km (Figures 2A,B). The range of October is instead
larger, reaching a search neighborhood with semi-axis of about
100 km (Figure 2C).

Trend analysis shows that only a weak gradient of the erosivity
density data occurs along the northwest to southeast direction.
The non-existence of a non-random (deterministic) component
can be attributed to the persistent rainfall, which is received from
the Atlantic. Based on this finding, the stationarity hypothesis
cannot be rejected both locally and for the whole country.

Then, the implementation of the iterative procedure provides
a satisfactory fit of covariance and cross-covariance models
(Figure 3). This fit results from summing the geostatistical
nugget and an exponential model with the previous estimated
ranges of 50 km, for August and September, and 100 km, for
October (solid curve in Figure 3, respectively). The obtained
covariance and cross-covariance functions have been then
used to train the geospatial tool on how control points act
during the interpolation with LNPK. According to the isotropic
neighborhood of data-points, five points per target-site have been
used for estimation, corresponding to the search circle of the
erosivity density-threshold (zk=3 MJ ha−1 h−1).

More specifically, this exponential model assumes that, at
the monthly scale, the range variations of the erosivity density
threshold are associated with the storm characteristics and
local geographical features. This suggests that the increasing
variability of hydrological events produce a more regular pattern
of spatial variation in October and a spot-mosaic pattern in
August and September. These months suggest that an enhanced

hazard is associated with complex, more localized storm events,
characterized by a strong convective component. In addition,
the nugget ratio is larger for the August month (0.073), than
to the months of September and October (around 0.05). This
represents the random (unexplained) variance caused by the
inherent variability in the data, and the spatial variation at
distance much shorter than sample spacing which cannot be
resolved in August at the scale where sampling is performed (<
20 km), or owing to some measurement errors.

Spatial Patterns of Erosivity Density
Exceeding Threshold Values
As already reported in Ballabio et al. (2017), the most erosive
months in Italy are August (in North Italy), September (in
Central Italy) and October (in Southern Italy). This paper reports
in Figures 4A,B the kriged probability maps exceeding the
erosivity density threshold-value of 3MJ ha−1 h−1 for themonths
of August and September, respectively. Our results extend the
current knowledge about the hydrological risk prone areas
highlighting as ca 65% of the Italian peninsula has a probability
higher than 50% to be subjected to hydrological hazards in
August. The severely affected hydrological prone areas hazard,
in addition to Northern regions already reported by Ballabio
et al. (i.e., Friuli-Venezia Giulia, Lombardy, Veneto and Emilia
Romagna) are Central regions as Tuscany and Umbria. While
Molise, Campania, Basilicata and parts of Sicily are moderately
affected (Figure 4A). In theMediterranean region, circumstances
causing precipitation extremes, besides the inherent probability
of higher data variance, are due to interaction/combination
of different factors acting at local and large scales. Among
these, the Mediterranean Sea Surface Temperature (SST), the
moisture fluxes from North Atlantic, the orographic forcing
factors, and the change of synoptic climatology in different
seasons (Figures 4A,B). In particular the characteristic of the
development and evolution of cyclones in the Mediterranean
have both a smaller spatial and temporal scale than North
Atlantic systems, with generally shorter life (Trigo et al., 1999).
Our results have clearly highlighted the effects on the Italian
peninsula, of this strong seasonal signal of the Mediterranean
cyclones distribution during precipitation extremes.

In August, Figure 4A reports, over our peninsula, the effect
of extreme precipitation events caused by pressure anomalies
associated with conditions favoring intense North-Atlantic
cyclones (i.e., the cyclogenesis pattern with the cyclone centered
North-Western out of the coasts of Ireland and with the low
extending south-eastward over the Gulf of Genoa affecting
the Alpine region, Tuscany, Umbria regions and the Adriatic
sea and the North-Eastern Coast of Sicily. While the extreme
precipitation highlighted in September and October (Figures 4B,
5A) are associated to the Cyprus low (i.e., the cyclogenesis
pattern common in the Mediterranean area during Autumn
(SON) and Winter (DJF), which north-westward affects Sicily,
Puglia, Ioanian Calabria, Campania and Latium and then the
regions northward.

The characteristic depth of Cyprus cyclones, with enhanced
(negative) geopotential height anomalies, the intensity (“depth”)
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FIGURE 2 | Isotropic neighboring circle for erosivity density during (A) August, (B) September, and (C) October. The colured bands in the corner represent the

patterns of station-points inside of any neighboring circle with the related percentage weighted given for any data-points.

FIGURE 3 | Covariance function CX (h) at threshold zk (ED>3 MJ ha−1 h−1) for (A) August, (B) September, and (C) October month, with respective model of

co-regionalization between indicator and uniform transforms [cross-covariance CCXI(h; zk )], (a1), (b1), and (c1).

and its location is the driving factor of the effect of visible heavy
precipitations in autumns and winter (Maheras et al., 2002). The
“depth” of a cyclone is the pressure difference between its center
and periphery. Our results show this situation. In September,
the area hit by storm erosive events (erosivity density >3 MJ
ha−1 h−1) drops to around 50% of the peninsula. However, the
probability of erosive events is still high in along the coastal and
insular areas. Veneto, Westerly Umbria, some areas of Liguria,
Tuscany and Campania coast still can face hydrological hazard
in September (Figure 4B) but the effect of the cyclogenesis
characteristics are evident in this month on the coasts and
mainland of the Latium, Northern Campania, Puglia Garganica,
Ionian Calabria, Sicily and Eastern Sardinia which all are facing
higher hydrological hazard as consequence of the Northwestward
exstension of the Cyprus Low.

October presents a smaller hydrological hazard, with areas
prone to erosive events falling to about 30% of Italian territory;

mainly located in the Campania coastal, Southern Basilicata,
Sicily, Eastern Sardinia and Latium (Figure 5A).

Taking into account the whole period August-October, the
regions Campania, Latium and Sicily are more affected than
others. In particular, the months of August and September
represent a vulnerable timespan of the year, where both storm
are the most erosive and lands are bare. This combination
drives to hydrological hazards events across to more than
50% of the Italian territory. Focusing in Latium region, we
find that lower Tiber river basin of the Rome metropolitan
area (Latina Province) is at a high hazard (Figure 5B). In
particular, we can observe the Latina landscape (black square
in Figure 5B) concerned in a 3-D view with the erosivity
density threshold-value zk of 3 MJ ha−1h−1 for the October
month (Figure 6).

The pink color area in this figure represents the zones
where the 3 MJ ha−1 h−1 threshold value has a probability
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FIGURE 4 | Spatial patterns of kriged-probability maps exceeding the erosivity density threshold-value zk of 3 MJ ha−1 h−1 for (A) August and (B) September across

Italy for the period 2002–2011.

FIGURE 5 | Spatial patterns of kriged-probability maps exceeding the erosivity density threshold-value zk of 3 MJ ha−1 h−1 for (A), October across Italy for the period

2002–2011 and (B) zoomed area in Central Italy where boundaries of river basin and main cities are over-imposed. The rectangular shape indicates the area for which

the perspective view of Figure 6 was made.

higher than 50%, and thus are the places mostly prone to
damaging hydrological hazard at beginning of the autumn. These
areas are included among the Villages of Cori, Pontenuovo,
Sermoneta, Bassiano, Carpineto Romano and Sezze. This
suggests several hydrological implications, which must be taken
into account when, for instance, the effects of land use like
urbanization and deforestation are examined, or when the

relation between climate change and flash-flood occurrence is
studied (Marchi et al., 2010).

Vulnerable timespan keeps is very active also for the
Sicily island in the month of October. Sicily presents geo-
climatic characteristics that make its territory prone to flash-
flood, especially in September and October, as demonstrated
by some recent events (Diodato and Bellocchi, 2010; Aronica
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FIGURE 6 | Spatial patterns of kriged-probability perspective view exceeding the erosivity density threshold-value zk of 3 MJ ha−1 h−1 with probability >50% (pink

color) for October across the Latina Province (Southern Latium) for the period 2002–2011. Wood areas are in green color.

et al., 2012; Fiorillo et al., 2016; Candela and Aronica,
2017). On the other hand, from the specific analysis of
the extreme rainfall occurred in Sicily, it emerges that
precipitations are nearly always associated with particularly
intense storm (Caccamo et al., 2016). These finding agree
with the results of Messeri et al. (2015), who showed the
most perturbed flows in Italy, associated with the highest
impact in terms of damaging hydrological events, are observed
in autumn. These cyclonic perturbations tend to have short
life cycles, with average radii in the range 300 to 500 km
in this period of the year (Lionello et al., 2006), and a
predominance of convective storms. Convective storms can have,
however, smaller radii (around 10-50 km), as suggested by the
small kriged-ranges obtained with the covariance functions.
These are the highest erosive storms that may occur in
major part of Italy, characterized by a complex property in
transferring erosive energy to lands. In these localities, sub-
grid scale convection and intensification phenomena dominate
rain-producing processes (e.g. Mazzarella, 1999; Dünkeloh
and Jacobeit, 2003), accompanied by several rain episodes
releasing in a few hours as much energy as in an average
year or more. These changes capture the shift toward
autumn of some flash-flood conditions typical of summer
(Gaume et al., 2009). Delayed effects show that the warmer
Mediterranean period taking place from end-summer to early
autumn is leading to more frequent and intense torrential
rains (Millán et al., 2005).

Cross-Validation and Error Assessment
The results from the cross-validation and error assessment
procedures check have been presented with joint
statistical errors and as monthly scatter diagrams
(Figures 7A–C). They show that the measured values
of erosivity density are in agreement with the predicted
probability indicators.

In this way, mean values of 0.006 in August and September,
and 0.01 in October, make evident that there is no systematic

error because the root mean square error is close to the
average standard errors. The mean thus correctly assesses
the variability in predictions. In addition, the Root Mean
Square Standardized (RMSS) error variance is the same and
close the 1.0 as compared to the theoretical variance of the
kriging variance.

At sub-regional scale, we performed a qualitative error
assessment by comparing kriged-probability erosivity density
>3 MJ ha−1 h−1 (Figure 8A) to previously published
damaging hydrological risk maps (joint probability of
landslides and floods, Figure 8B, Guzzetti et al., 2002) for the
Sicily island.

The comparison of kriged probability erosivity density
higher than the threshold (orange colors in Figure 8A) is
in agreement with probability hydrological risk areas (blue
colors in Figure 8B), except for the extreme westernmost
part of the island. However, a strict parallelism between the
two maps is not to be expected considering the multifaceted
nature of the involved phenomena and the different time
periods covered.

CONCLUSION

The widespread availability of high-temporal resolution rainfall
records for large areas and the development of climate models
opens new opportunities for using geostatistical methods
for large scale planning and hazard prevention. This paper
presents a geostatistical modeling framework, which uses a
probabilistic approach to assess the spatial variability of storm
erosivity density throughout the Italian regions. The results so
obtained suggest the possibility of using geostatistical spatial
modeling to determine the probability of exceeding high
erosivity density thresholds and generate probability maps to
delineate the most sensitive areas. These areas, highly vulnerable,
may result in catastrophic regime shifts connected with the
occurrence of damaging hydrological events. We offer the
results of this work as a springboard to support policy-makers,
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FIGURE 7 | Scatterplot of cross-validation between storm erosivity measured and indicator probability kriging for the erosivity-thresholds zk (ED>3 MJ ha−1 h−1), for

(A) August, (B) September, and (C) October month. The blue vertical lines in both the graphs represent the respective ED thresholds, while the gray horizontal lines

separate the kriged-prediction indicator with probability above 0.50 from those below 0.50.

FIGURE 8 | Comparison of (A) kriged probability for erosivity density (ED>3 MJ ha−1 h−1) for October with (B) damaging hydrological risk maps (joint probability of

landslides and floods occurrence) with 5-years return period (Guzzetti et al., 2002) for the Sicily region.

local authorities and civil protection in planning actions, in
the medium and long term, aimed at reducing hydrological
disasters. In fact, such a soft-computing model represents
a paradigm shift on how to provide timely, accurate and
actionable hydrologic hazard information. Relying on credible
information regarding erosivity density and its environmental
drivers, this study shows how geostatistical methods can be
practically implemented to create countrywide spatially explicit
probabilistic maps capable to describe the seasonal effect
of cyclogenesis‘ modification as the case of the highlighted
seasonal variation of the North Atlantic and Cyprus Low
systems during extreme events. These probabilistic maps
can therefore be of great help in studying erosive hazards
or the effects over Italy, of the generation and growth
of Mediterranean cyclones, which however depends on the
relationship of several factors among others, the complex
orography, large scale air flow, and SST. In addition, these
probabilistic maps refer not only to a possible check of the
physical understanding of some processes, but also to the
possibility to gain information where data or measurements

actually do not exist. In fact, without giving the value in each
point but returning a map of probabilities, this approach can
support decision-making because it identifies the hydrologic
danger associated with the probability to exceed an erosivity
density threshold.

ED–outputs have the advantage to be developed based
on more available data and can be scaled up for producing
weather hazard maps. Vice versa, the disadvantage is that the
same probability to overcome a specific ED threshold may
have different meanings when superimposed to areas with
different combinations of morphology, soil erodibility, land use,
plant density, and management. In addition, these findings are
purely geostatistical, with no explicit mechanistic modeling of
erosivity density.

This study has also some limitations because it does not
consider that population density, infrastructures, plant density,
and other factors also influence the occurrence of a damage. In
addition, the particularly prolonged low-intensity rainy periods,
which can condition landslide fatalities, are not accounted in this
probability calculation.
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