I. Van-den-berg, D. Boichard, B. Guldbrandtsen, and M. S. Lund, Using sequence variants in linkage disequilibrium with causative mutations to improve across-breed prediction in dairy cattle: a simulation study, G3 (Bethesda), vol.6, pp.2553-61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02630862

I. Van-den-berg, D. Boichard, and M. S. Lund, Sequence variants selected from a multi-breed GWAS can improve the reliability of genomic predictions in dairy cattle, Genet Sel Evol, vol.48, p.83, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479248

F. Begum, D. Ghosh, G. C. Tseng, and E. Feingold, Comprehensive literature review and statistical considerations for GWAS meta-analysis, Nucleic Acids Res, vol.40, pp.3777-84, 2012.

E. Evangelou and J. P. Ioannidis, Meta-analysis methods for genome-wide association studies and beyond, Nat Rev Genet, vol.14, pp.379-89, 2013.

A. C. Bouwman, H. D. Daetwyler, A. J. Chamberlain, C. H. Ponce, M. Sargolzaei et al., Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals, Nat Genet, vol.50, pp.362-369, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628780

I. Van-den-berg, D. Boichard, and M. S. Lund, Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds, J Dairy Sci, vol.99, pp.8932-8977, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533908

H. Pausch, R. Emmerling, B. Gredler-grandl, R. Fries, H. D. Daetwyler et al., Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution, BMC Genomics, vol.18, p.853, 2017.

M. Teissier, M. P. Sanchez, M. Boussaha, A. Barbat, C. Hoze et al., Use of meta-analyses and joint analyses to select variants in whole genome sequences for genomic evaluation: an application in milk production of French dairy cattle breeds, J Dairy Sci, vol.101, pp.3126-3165, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02623397

A. G. Marete, B. Guldbrandtsen, M. S. Lund, S. Fritz, G. Sahana et al., A meta-analysis including pre-selected sequence variants associated with seven traits in three French dairy cattle populations, Front Genet, vol.9, p.522, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625793

A. De-roos, B. J. Hayes, R. J. Spelman, and M. E. Goddard, Linkage disequilibrium and persistence of phase in Holstein-Friesian. Jersey and Angus cattle, Genetics, vol.179, pp.1503-1515, 2008.

C. C. Ekine, S. J. Rowe, S. C. Bishop, and D. De-koning, Why breeding values estimated using familial data should not be used for genome-wide association studies, G3, vol.4, pp.341-348, 2014.

R. Xiang, I. Van-den-berg, I. M. Macleod, H. D. Daetwyler, and M. E. Goddard, Effect direction meta-analysis of GWAS identifies extreme, prevalent and shared pleiotropy in a large mammal, Commun Biol, vol.3, p.88, 2020.

H. D. Daetwyler, A. Capitan, H. Pausch, P. Stothard, R. Binsbergen et al., Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle, Nat Genet, vol.46, pp.858-65, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193853

S. Das, L. Forer, S. Schönherr, C. Sidore, A. E. Locke et al., Nextgeneration genotype imputation service and methods, Nat Genet, vol.48, pp.1284-1291, 2016.

M. Sargolzaei, J. P. Chesnais, and F. S. Schenkel, A new approach for efficient genotype imputation using information from relatives, BMC Genomics, vol.15, p.478, 2014.

J. Yang, S. H. Lee, M. E. Goddard, and P. M. Visscher, GCTA: a tool for genome-wide complex trait analysis, Am J Hum Genet, vol.88, pp.76-82, 2011.

H. M. Kang, J. H. Sul, S. K. Service, N. A. Zaitlen, S. Y. Kong et al., Variance component model to account for sample structure in genomewide association studies, Nat Genet, vol.42, pp.348-54, 2010.

C. J. Willer, Y. Li, and G. R. Abecasis, METAL: fast and efficient meta-analysis of genomewide association scans, Bioinformatics, vol.26, pp.2190-2191, 2010.

J. Yang, T. Ferreira, A. P. Morris, and S. E. Medland, Genetic Investigation of ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium Madden PA. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits, Nat Genet, vol.44, pp.369-75, 2012.

M. P. Sanchez, A. Govignon-gion, P. Croiseau, S. Fritz, C. Hozé et al., Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle, Genet Sel Evol, vol.49, p.68, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589691

W. Mclaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. Ritchie et al., The ensembl variant effect predictor, Genome Biol, vol.17, p.122, 2016.

J. R. Grant, A. S. Arantes, X. Liao, and P. Stothard, In-depth annotation of SNPs arising from resequencing projects using NGS-SNP, Bioinformatics, vol.27, pp.2300-2301, 2011.

I. Van-den-berg, B. Hayes, A. Chamberlain, and M. Goddard, Overlap between eQTL and QTL associated with production traits and fertility in dairy cattle, BMC Genomics, vol.20, p.291, 2019.

A. Chamberlain, B. Hayes, R. Xiang, V. Jagt, C. Reich et al., Identification of regulatory variation in dairy cattle with RNA sequence data, Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, pp.11-16, 2018.

R. Xiang, B. J. Hayes, V. Jagt, C. J. Macleod, I. M. Khansefid et al., Genome variants associated with RNA splicing variations in bovine are extensively shared between tissues, BMC Genomics, vol.19, p.521, 2018.

B. S. Weir and C. Cockerham, Genetic data analysis II: Methods for discrete population genetic data, 1996.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, pp.44-57, 2009.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res, vol.37, pp.1-13, 2008.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc B, vol.57, pp.289-300, 1995.

A. B. Gjuvsland, Y. Wang, E. Plahte, and S. W. Omholt, Monotonicity is a key feature of genotype-phenotype maps, Front Genet, vol.4, p.216, 2013.

M. D. Littlejohn, K. Tiplady, T. A. Fink, K. Lehnert, T. Lopdell et al., Sequence-based association analysis reveals an MGST1 eQTL with pleiotropic effects on bovine milk composition, Sci Rep, vol.6, p.25376, 2016.

M. Cohen-zinder, E. Seroussi, D. M. Larkin, J. J. Loor, A. Everts-van-der-wind et al., Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle, Genome Res, vol.15, pp.936-980, 2005.

L. A. Raven, B. G. Cocks, K. E. Kemper, A. J. Chamberlain, V. Jagt et al., Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle, Mamm Genome, vol.27, pp.81-97, 2016.

B. Grisart, F. Farnir, L. Karim, N. Cambisano, J. J. Kim et al., Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition, Proc Natl Acad Sci USA, vol.101, pp.2398-403, 2004.

S. Blott, J. J. Kim, S. Moisio, A. Schmidt-küntzel, A. Cornet et al., Molecular dissection of a quantitative trait locus: a phenylalanine-totyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition, Genetics, vol.163, pp.253-66, 2003.

J. Jiang, J. B. Cole, E. Freebern, Y. Da, P. M. Vanraden et al., Functional annotation and Bayesian fine-mapping reveals candidate genes for important agronomic traits in Holstein bulls, Commun Biol, vol.2, p.212, 2019.

H. Pausch, R. Emmerling, H. Schwarzenbacher, and R. Fries, A multi-trait metaanalysis with imputed sequence variants reveals 12 QTL for mammary gland morphology in Fleckvieh cattle, Genet Sel Evol, vol.48, p.14, 2016.

J. Zeng, D. Vlaming, R. Wu, Y. Robinson, M. R. et al., Signatures of negative selection in the genetic architecture of human complex traits, Nat Genet, vol.50, pp.746-53, 2018.

K. E. Kemper, B. J. Hayes, H. D. Daetwyler, and M. E. Goddard, How old are quantitative trait loci and how widely do they segregate?, J Anim Breed Genet, vol.132, pp.121-155, 2015.

R. Xiang, I. Van-den-berg, I. M. Macleod, B. J. Hayes, C. P. Prowse-wilkins et al., Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits, Proc Natl Acad Sci, vol.116, pp.19398-408, 2019.

L. Koufariotis, Y. Chen, S. Bolormaa, and B. J. Hayes, Regulatory and coding genome regions are enriched for trait associated variants in dairy and beef cattle, BMC Genomics, vol.15, p.436, 2014.

M. P. Sanchez, Y. Ramayo-caldas, V. Wolf, C. Laithier, E. Jabri et al., Sequence-based GWAS, network and pathway analyses reveal genes co-associated with milk cheese-making properties and milk composition in Montbéliarde cows, Genet Sel Evol, vol.51, p.34, 2019.

J. Ogorevc, T. Kunej, A. Razpet, and P. Dovc, Database of cattle candidate genes and genetic markers for milk production and mastitis, Anim Genet, vol.40, pp.832-51, 2009.

K. Ng-kwai-hang, H. Monardes, and J. Hayes, Association between genetic polymorphism of milk proteins and production traits during three lactations, J Dairy Sci, vol.73, pp.3414-3434, 1990.

E. M. Ibeagha-awemu, S. O. Peters, K. A. Akwanji, I. G. Imumorin, and X. Zhao, High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits, Sci Rep, vol.6, p.31109, 2016.

A. Schennink, H. Bovenhuis, K. M. Léon-kloosterziel, J. A. Van-arendonk, and M. H. Visker, Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition, Anim Genet, vol.40, pp.909-925, 2009.

M. Mele, G. Conte, B. Castiglioni, S. Chessa, N. Macciotta et al., Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins, J Dairy Sci, vol.90, pp.4458-65, 2007.

X. Wang, C. Wurmser, H. Pausch, S. Jung, F. Reinhardt et al., Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population, PLoS One, vol.7, p.40711, 2012.

L. Florea, A. Souvorov, T. S. Kalbfleisch, and S. L. Salzberg, Genome assembly has a major impact on gene content: a comparison of annotation in two Bos taurus assemblies, PLoS One, vol.6, p.21400, 2011.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations