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Abstract

In most temperate fruit trees, fruits are located on one-year old shoots. In Prunus species,
flowers and fruits are born in axillary position along those shoots. The axillary bud fate and
branching patterns are thus key components of the cultivar potential fruit production. The
objective of this study was to analyze the branching and bearing behaviors of 1-year-old
shoots of apricot cultivars and clones genetically closely related. Shoot structures were ana-
lyzed in terms of axillary bud fates using hidden semi-Markov chains and compared depend-
ing on the genotype, year and shoot length. The shoots were composed of three successive
zones containing latent buds (basal zone), central flower buds (median zone) and vegeta-
tive buds (distal zone), respectively. The last two zones contained few associated flower
buds. The zones length (in number of metamers) and occurrence strongly depended on
shoot development in the two successive years. With decrease in the number of metamers
per shoot, the last two zones become shorter or may not develop. While the number of
metamers of the basal and distal zones and the number of associated flower buds corre-
lated to the number of metamers of the shoot, the number of metamers of the median zone
and the transition probability from the median to the distal zone were cultivar specific.

Introduction

The architecture of temperate fruit trees is characterized by high-order branching structures
composed of multiple axes of different lengths and complexities. This structure results from
the differentiation and organogenetic activity of axillary meristems located at each metamer
(composed of node its corresponding leaf and axillary bud plus the subtending internode)
along the parent shoot. Axillary buds may have different fates leading to various shoot types
with different rates and timings of outgrowth [1, 2, 3]. The relationship between the bud posi-
tion and fate along the annual shoots determines the branching and flowering patterns [4, 5,
6]. Morphogenetic gradients during tree ontogeny are characterized by a decrease in shoot
growth over successive years and branching orders, leading to a progressive simplification of

PLOS ONE | https://doi.org/10.1371/journal.pone.0235347  July 9, 2020

1/16


http://orcid.org/0000-0003-1335-496X
https://doi.org/10.1371/journal.pone.0235347
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235347&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235347&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235347&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235347&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235347&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235347&domain=pdf&date_stamp=2020-07-09
https://doi.org/10.1371/journal.pone.0235347
https://doi.org/10.1371/journal.pone.0235347
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/YJN3EK
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YJN3EK
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YJN3EK

PLOS ONE

Modelling the bearing and branching behaviors in apricots

Funding: The research was supported by the
National Program on Plant Genetic Resources,
Agrobiodiversity Conservation and Utilization of the
Ministry of Agriculture of Czech Republic, No.
20139/2006-13020, the infrastructure of the
project No. CZ.1.05/2.1.00/03.0116. of Pomology
Research Institute within the Operation Program
Research and Development for Innovations and
L01608 — Pomology Research Center within the
National Sustainable Development Strategy, both
supported by Ministry of Education, Youth and
Sports. The funding agencies had no role in the
study design, data collection, analysis and
publishing.

Competing interests: The authors declare that they
have no competing interest.

Abbreviations: cv/cvs, cultivar/cultivars; HSMC,
Hidden semi-Markov chains; LS, long shoot above
10 cm; MS, medium shoots from 2.1-10 cm; SS,
short shoot up to 2 cm; VP, Velkopavlovicka.

branching pattern within trees [1, 7, 8, 9, 10]. Ontogeny can be tuned by the environmental
stress factors, such as high temperature, water and nutrient availability [11, 12, 13, 14] affecting
bud development [15, 16, 17]. Studying growth and branching patterns are thus crucial to
understand tree bearing behaviors which are of agronomic importance [18, 19]. This knowl-
edge has led to genotype classification [20, 21] and is also useful for breeding. Though the
large majority of fruit are born on short (spurs) or medium (brindles) shoots, cultivar behav-
iors need to be further understood [22, 23, 24, 25].

Hidden semi-Markov chains (HSMCs) have been proposed to analyze branching and axil-
lary flowering patterns over time and space [4, 5, 6, 10]. These models aim at segmenting the
shoots into consecutive zones of homogenous composition in terms of axillary bud fates.
HSMC:s have been widely applied to compare different fruit species or cultivars, at different
development stages, including apple [6, 10, 26], apricot [27] peach [28] and almond trees [14].

In Rosaceae fruit trees, branching and axillary flowering patterns largely vary among species
[29]. While all these species are characterized by rhythmic growth [1], they differ in the loca-
tion of reproductive and vegetative buds and therefore in the shoot structure [29]. While flow-
ers are in terminal position in apple tree [30], Prunus species are characterized by axillary
flower bud position along annual shoots [28, 31]. Flowers are located in upper position along
the shoot in apricot, peach and almond trees, whereas they are located at the basis position of
the shoot in cherry trees [29]. Moreover, the majority of Prunus species is able to produce
additional flowers associated to either vegetative or central flower buds. These differences in
axillary bud fates lead to different branching patterns in peach [28], apricot and cherry trees
[32]. In apricot tree, a sympodial branching (i.e. branching from an axillary bud, after the mor-
tality of the terminal meristem; for more detail description of the terminology, see also [1, 33]),
has been related to a frequent terminal bud mortality [34]. While differences in branching pat-
tern can be found among cultivars of a species [6, 10, 31], there is no evidence so far of a possi-
ble variability among clones of a same cultivar.

In the present study, the axillary bud fates were analyzed along annual shoots on a set of
apricot cultivars, including the standard apricot cultivar ‘Velkopavlovicka’, that is the most
cultivated in Czech Republic and a set of its clones [35] using HSMCs. The differences in the
shoot structures were analyzed with respect to three effects: genotype, shoot length and succes-
sive years. The objective of the study was to deepen our understanding of branching and flow-
ering patterns in adult apricot trees by the detail description of vegetative and reproductive
bud development along annual shoots in a set of cultivars and clones.

Materials and methods
Plant material and orchard environment

The experimental orchard was planted in spring 2001 at 6 x 3.5 m spacing at the Horticultural
faculty of Mendel University in Lednice (Czech Republic). The orchard was situated in clay-
loam black soils. All trees were grafted on apricot seedlings from cv Yulskiy (with middle
Asian origin). After planting the trees were pruned in open vase. However, during the trial the
trees were not pruned and the orchard was left without irrigation.

Eight genotypes of apricot trees (Prunus armeniaca L.) with similar growth and fruiting
habits were considered for this study. Among them, we considered four cultivars (cvs): ‘Ber-
geron’, LE-97, NS-2 and ‘Velkopavlovicka’ (VP), represented by reference clone VP-LE-12/2
[35]. This reference clone was compared with four other VP clones (Doc. Blatny, LE-111, LE-
130 and LE-285). They all belong to Group 5, which corresponds to relatively small trees
which axes bend easily and bear fruit mainly on medium shoots [21]. They are characterized
by equilibrium among different shoot types that all bear fruit and are considered as the most
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suitable for agronomic cultivation. ‘Bergeron’ is a well-known random seedling from Rhone
valley, France. Genotype LE-97 was obtained by random pollination of VP cv and NS-2 origi-
nates from Novi Sad, Serbia as a nature population from Vojvodina region. ‘Velkopavlovicka’
is an apricot originating from South Moravia (Czech Republic) near Velké Pavlovice. In previ-
ous studies, ‘Velkopavlovicka’ was considered as a clone of the cultivar ‘Magyar Kajszi’ belong-
ing to the group of ‘Hungarian Best’ cultivars [36, 37].

In the two years during which the observed shoots had developed (2010 and 2011), the
maximum, minimum and mean temperatures were 21.4 °C, -3.1 °C, 9.4 *Cand 24.3 °C,
-0.9 °C, 10.6 °C, respectively. The dynamics over each year was typical of temperate climate
(S1 Fig). The cumulative rainfalls during these two years were 710.4 mm and 442.4 mm,
respectively with a maximum in May 2010 and in July for 2011.

Shoot observations

Four to six trees per genotype were observed in two consecutive years, 2011 and 2012. Six lat-
eral branches (one or two per tree) per genotype were selected (S2 Fig) according to the follow-
ing rules: (1) the branches were situated on periphery of the trees at 1.5-2.0 m from the
ground, (2) the length of three-year-old part of these branches were in the range of 150-300
mm, (3) their basal angle did not exceed -10 to 45° with the horizontal plane, (4) these
branches were at the third branching order at the tree level and (5) the shoot in the continua-
tion of each branch was longer than 10 cm. Along these branches, all annual shoots developed
over three years (from three- to one-year-old shoots) were described retrospectively at the
metamer scale twice, i.e. in 2011 and 2012 (S3 Fig). Moreover, the year during which each
shoot had developed was noted to enable studying the year effect.

Bud fates were described node by node along the shoots. The central buds were coded “L”,
“V” or “F” for latent (i.e. buds that do not outgrow in the next year), vegetative (i.e. buds that
are more developed than latent buds and are expected to outgrow a vegetative shoots in the
next year) or floral fate, respectively and the number of associated flower buds noted (0, 1
or > 2 associated flower buds). During the observation years, the development of flowers into
fruit was assessed as the mean number of fruit per shoot. However, because this number was
low, this variable was not considered afterwards in the modelling approach.

Data analysis and model building

The central bud fate and the number of associated flower buds were organized as bivariate
sequences indexed by node rank. Following previous studies [5, 6, 26], a HSMC was built for
each genotype on the basis of bivariate sequences pooled for the different orders and growing
years considering all shoot together. A HSMC is a two-scale segmentation model whose aim is to
segment observed sequences into successive homogeneous zones both in terms of central bud
fate and number of associated flower buds. In this framework, the succession and length (in num-
ber of metamers) of zones (coarse scale not directly observable) are represented by a non-observ-
able semi-Markov chain, whereas the central bud fate and the number of associated flower buds
within each zone (fine scale) are represented by categorical distributions attached to each state of
the semi-Markov chain. A semi-Markov chain is defined by three subsets of parameters:

1. Initial probabilities to model which is the first zone in the shoot,
2. Transition probabilities to model the succession of zones along the shoot,

3. Occupancy distributions attached to non-absorbing states (a state is said to be absorbing if,
after entering this state, it is impossible to leave it) to model lengths of zones in number of
nodes/metamers.
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A HSMC adds a fourth subset of parameters to the three subsets of parameters previously
defined for the underlying semi-Markov chain:

1. Categorical observation distributions to model either the central bud fate or the number of
associated flower bud. This entails that a probability mass was directly estimated for each
possible category of each observed variable.

A “left-right’ HSMC composed of successive transient states followed by a final absorbing
state was built on the basis of bivariate sequences corresponding to a given genotype. A state
is said to be transient if after leaving this state, it is impossible to return to it. In a ‘left-right’
model, the states are thus ordered and each state can be visited at most once. In this study, it
was chosen to assume that the end of an observed sequence systematically coincides with the
transition from the current state to an extra absorbing ‘end’ state modeling implicitly the
growth cessation (no observation model is associated with this end state; see [10]). Hence, at
the end of an observed sequence, the process systematically jumps to the absorbing end
state. In this way, it was possible to model explicitly the length of the most distal zone. Each
estimated model was used to compute the most probable state sequence for each observed
sequence [38]. This restored state sequence can be viewed as the optimal segmentation of
the corresponding observed sequence into sub-sequences, each corresponding to a given
zone. On the basis of the optimal segmentations of the observed sequences, “contextual”
model parameters (e.g. probability of transition between two zones or distribution of the
central bud fate for a given zone) or characteristic distributions (e.g. probability of occur-
rence of a given zone) specific to 2010 or 2011 shoots were extracted [10] in order to com-
pare them.

Comparison of shoots depending on the genotype, year and shoot types

To compare the shoot branching structures among genotypes and years, the shoots were classi-
fied into three types depending on their length: a) short shoots (SS) up to 2 cm, b) medium
shoots (MS) from 2.1-10 cm and c) long shoot (LS) above 10 cm. Such classification was based
on previous studies which considered axes polymorphisms based on the concepts of preforma-
tion and neoformation [33]. Even though overlap between classes remained (S1 Table), this
approach allowed us to compare the “contextual” model outputs with respect of a given class
of shoot length. For each shoot type, the year and genotype effects on the number of metamers
per shoot and per zone, the number of associated flower buds and fruit per shoot were ana-
lyzed using the Kruskal-Wallis test (ANOVA by ranks), and further compared among geno-
types, years or shoot types using the Wilcoxon-Mann-Whitney test. The probabilities of zone
occurrence were compared using a Pearson ” test. After the optimal segmentation of all the
observed sequences in successive zones, the relationship between the number of metamers of
two zones as well as between the number of metamers of each zone and the total number of
metamers of the shoot was analyzed using Spearman rank correlation coefficients. Among all
genotypes, the longevity of the lateral shoots along the branches was analyzed depending on
the year of shoot development using the Pearson y test.

The HSMC and all associated statistical methods are implemented in the Structure Analysis
module of the Openalea software platform [39].

Results
Number and types of shoots

The total number of developed shoots on the selected branches ranged from 81 to 153 and 129
to 227 depending on the genotype, in 2010 and 2011, respectively. Considering the relatively
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Fig 1. Proportion of shoot types composing branches of cultivars ‘Bergeron’, NS-2, ‘Velkopavlovicka’ (VP-LE-12/2), LE-97 and VP clones Doc.
Blatny, LE-111, LE-130 and LE-285. Branch development were observed in two successive years (2010 and 2011); short shoots (SS), medium shoots (MS),

long shoots (LS).

https://doi.org/10.1371/journal.pone.0235347.9001

old tree age, short and medium shoots were in higher proportions than long shoots. In 2010,
the proportion of shoot types ranged from 0.34 to 0.53 of SS, from 0.35 to 0.51 of MS and from
0.08 to 0.17 of LS depending on the genotype (Fig 1), with ‘Bergeron’ exhibiting the highest
proportion of MS and LS. In 2011, all genotypes developed a similar proportion of shoot types,
with a majority of SS, some MS and few LS, even though ‘Bergeron’ had the highest increase of
SS proportion and LE-97 the lowest. This means that the proportion of MS and LS significantly
decreased between 2010 and 2011 whereas SS significantly increased (according to a Pearson’s
x” test, p = 8.51E%°).

Estimation of the hidden semi-Markov chains

The shoots varied from 2 to 26 metamers, depending on the type, genotype and year (S1
Table). The HSMC estimated for each genotype were composed of three transient states
modeling three successive zones and a final absorbing end state (see Fig 2). The first (basal)
zone was composed of latent buds, exclusively. The second (median) zone contained mainly
central flower buds with some associated flower buds. The third (distal) zone contained mainly
vegetative shoots sometimes with few associated flower buds. The mean number of metamers
was similar for the basal and distal zones, these zones having a higher mean number of meta-
mers than the median zone. The first zone containing latent buds was always present whereas
the two other zones may be skipped leading to shoots without flowering zone and/or shoots
without distal vegetative zone depending on the genotype.
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Fig 2. Schematic representation and parameter values of the hidden semi-Markov chains estimated on one-year-
old shoots of cultivars ‘Bergeron’, NS-2, ‘Velkopavlovicka’ (VP-LE-12/2), LE-97 and VP clones Doc. Blatny, LE-
111, LE-130 and LE-285 developed in 2010 and 2011. Top part (tables): Observation distributions and proportions of
(A) the central bud fate (L—latent bud, V—vegetative bud, F—flower bud) and (B) number of associated flower buds
(0-no lateral flower bud, 1-one associated flower bud, 2-two or more associated flower buds) in each state; Bottom
part (diagrams): states are represented by colored rectangles whose length is proportional to the mean number of
metamers of the state, when present; initial probabilities are represented by arrows entering in the first state, transition
probabilities are represented by arrows between states, with the transition probability indicated nearby.

https://doi.org/10.1371/journal.pone.0235347.9002
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Comparison of shoot structure among genotypes

The genotypes differed in the mean number of metamers of the basal and median zones exhib-
iting highly significant differences (Table 1). Among cvs, the highest mean number of meta-
mers in the basal zone, over the two years, was observed in NS-2. Among the VP clones, the
variability was relatively large with the highest mean value found in LE-285 and the lowest in
VP-LE-12/2. Despite a relatively low variability in the number of metamers of this zone (less
than 2), the groups overlapped between cvs and clones (Table 1). For the median zone, the
highest mean number of metamers over the two years was observed in ‘Bergeron’ and LE-97
for the cvs, whereas the lowest was in Doc. Blatny among clones, even though similar to all the
VP clones.

Differences among genotypes were also found in the transition probabilities between the
median and distal zones (Fig 2), and consequently in the occurrence of these zones (Table 2).
The median zone occurred more frequently in cvs ‘Bergeron’ and LE-97, while it occurred less
frequently in NS-2 and VP-LE-12/2 over the two years. Among clones of ‘Velkopavlovicka’,
the occurrence of the median zone was more frequent in LE-130 and LE-285 than in LE-111
and VP-LE-12/2. Almost all cultivars were characterized by a relatively high frequency of
occurrence of the distal zone except LE-97. The most frequent occurrences of the distal zone
among VP clones were found in VP-LE-12/2 and Doc. Blatny, whereas the less frequent occur-
rences were in LE-111 and LE-285.

The proportions of central flower buds within the median zone differed depending on the
genotype (Fig 2), the highest being observed in NS-2 whereas the lowest were in LE-97. The
metamers with associated flower buds were few and scattered between the median and distal
zones in all genotypes. However, the number of metamers with associated flower buds was
higher in the median zone than in the distal one (Fig 2), especially in cvs ‘Bergeron’ and LE-97.

Table 1. Mean number of metamers in the basal and median zones (when present), mean number of metamers per shoot and mean number of associated flowers
and fruit per shoot depending on the genotype (cvs and VP clones) and year of shoot development. Genotype and year effects were analyzed using a Kruskal-Wallis
test. Comparisons among genotypes and years were performed with a Wilcoxon-Mann-Whitney test. Different letters in a same variable indicate significant difference
(p < 0.05) among cvs and VP clones and between years. The distributions extracted for the two years jointly were compared among genotypes separately.

Genotypes Basal zone Median zone Shoot Associated Fruit
flower buds

2010 2011 2010-2011 2010 2011 | 2010-2011 | 2010 | 2011 2010 2011 2010 2011
Cultivars Bergeron 4.22bcde | 3.57fg 3.83¢ 2.79a | 1.64bc 2.50a 9.75ab | 7.26 ¢ | 1.27a | 044bc | 096a | 0.0le
LE-97 3.97 cdef | 3.68 efg 3.80c 2.84a | 1.39cd 2.57a 9.0lab | 7.37c | 1.32a | 0.01d 0.63b | 0.02¢
NS-2 3.56 fg 4.94b 4.38b 1.88b - 1.88b 8.77b | 853b | 0.64b | 0.02d | 0.50 bcd | 0.00 e
VP reference clone | VP-LE-12/2 323h 3.92 def 3.68 ¢ 1.83bc | 1.20d 1.66bc | 7.84bc | 7.34c | 0.47bc | 0.03d | 0.58bc | 0.00e
Doc. Blatny 3.88 defg | 4.75bc 441b 1.77bc | 1.27d 1.56 ¢ 8.83b | 8.72b | 0.55bc | 0.31bc | 0.59bc | 0.01e
LE-111 4.41 bed | 4.09 cdef 4.22 bc 1.87b 1.00d 1.86 bc 9.0lab | 7.29¢ | 0.16c | 0.00e | 0.53bcd | 0.00 e
LE-130 4.55bcd | 3.42gh 3.88¢ 1.56 bed | 1.71 be 1.64 bc 8.59b | 729¢ | 020c | 029bc | 0.22d |0.00e
LE-285 5.96 a 4.67 bed 5.13a 1.86 bc | 1.60 bc 1.71 be 10.29a | 8.78b | 0.22¢ | 0.22c | 0.30cd | 0.02e

Genotypic effect o o ns. o o

Year effect * xx * xx xx

The statistical difference among genotypes and years (particular variable) was signed with different letters (p = 0.05) with the values.
ns. = not significant,

* = significance at o = 0.05,

** = significance at o. = 0.01,

*** = significance at o. = 0.001.

https://doi.org/10.1371/journal.pone.0235347.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0235347  July 9, 2020 7/16


https://doi.org/10.1371/journal.pone.0235347.t001
https://doi.org/10.1371/journal.pone.0235347

PLOS ONE

Modelling the bearing and branching behaviors in apricots

Table 2. Frequency of occurrence of the median and distal zones per shoot depending on the genotype and year of shoot development. The year effect was tested by
Pearson y2 test. Comparisons among genotypes (cvs and VP clones) and between years were performed with a Pearson 2 test. Different letters in a same variable indicate
significant difference (p < 0.05). The two-year proportion of zone occurrence among cultivars and VP clones was compared separately.

Genotype

Cultivars Bergeron

LE-97
NS-2

Velkoplavlovicka clones VP-LE-12/2
Doc. Blatny
LE-111
LE-130
LE-285
Year effect

Median zone Distal zone

2010 2011 2010-2011 2010 2011 2010-2011

0.76 a 0.17 f 0.41b 0.92 ab 0.91 ab 0.91 ab
0.74 ab 0.11 fg 0.36 be 0.66 d 0.86 bc 0.78d
0.66 abc 0.00 h 0.27 de 0.85 abc 0.89 abc 0.87 abc

0.51d 0.10g 0.24e 0.89 abc 0.94a 0.92a
0.62 bc 0.30e 0.42b 0.90 abc 0.91 ab 0.91 ab
0.75 ab 0.01h 0.32cd 0.83 ¢ 0.87 abc 0.85¢

0.52d 0.49d 0.50 ab 0.87 abc 0.92 ab 0.90 abc
0.58 cd 0.48d 0.51a 0.83 ¢ 0.88 abc 0.86 bc

The statistical difference among genotypes and years (particular variable) was signed with different letters (p = 0.05) with the values.

ns. = not significant,
* = significance at o. = 0.05,
** = significance at 0. = 0.01,

*** = significance at o = 0.001.

https://doi.org/10.1371/journal.pone.0235347.t1002

In all the genotypes, metamers with a single associated flower bud were more numerous than
those with several associated flower buds.

Comparison between the two observed years

By comparing shoots developed in the different years, further differences were found. The
mean number of metamers per shoot decreased significantly between the two years in cvs ‘Ber-
geron’ and LE-97, as well as in VP clones LE-111, LE-130 and LE-285 (Table 1). In contrast, it
remained similar between years in NS-2, VP clones Doc. Blatny and VP-LE-12/2. These
changes impacted the shoot structure, especially, the mean number of metamers per zone. The
length of the basal zone decreased with the years in cvs and clones with a decreasing number
of metamers per shoot, whereas it was higher in those which shoot length remained stable. A
decrease in distal zone length was also slightly significant between the two years, but only
when all genotypes were considered together (p value = 0.04). The mean number of metamers
in the median zone as well as the mean number of associated flower buds and fruit signifi-
cantly decreased in a majority of genotypes between the two years, except in VP clones LE-130
and LE-285 (Table 1), having similar number of flower buds and fruit per shoot in both years.

The changes in shoot length between years also impacted the occurrence of the median and
distal zones. The frequency of occurrence of the median zone varied between years depending
on cvs and VP clones and significantly decreased between the two years in a majority of geno-
types (Table 2). The distal zone occurred less frequently in cv LE-97 whatever the year, and in
VP clones LE-111 and LE-285 when the two years were considered jointly (Table 2). The
occurrence of the distal zone changed only slightly between the two years (Table 2), with sig-
nificant increase between the years in LE-97 only.

Comparison of the shoot organization among different shoot types

The mean number of metamers per shoot mirrors the shoot category, increasing from SS to
MS and from MS to LS. It did not change between the two years in SS and MS, but tend to

PLOS ONE | https://doi.org/10.1371/journal.pone.0235347  July 9, 2020 8/16


https://doi.org/10.1371/journal.pone.0235347.t002
https://doi.org/10.1371/journal.pone.0235347

PLOS ONE Modelling the bearing and branching behaviors in apricots

Table 3. Spearman rank correlation coefficients between the number of metamers of pairs of zones chosen among basal, median and distal zone, and the number of
metamers of each zone and the total number of metamers of the shoot, depending on the genotypes (cvs and VP clones) and years.

Genotype |Year |Basal vs. Median | Median vs. Distal | Basal vs. Distal | Basal vs. Shoot | Median vs. Shoot | Distal vs. Shoot | Limits

Cultivars Bergeron 2010 ns. ns. 0.3 0.57 0.36 0.8 +0.16

Bergeron 2011 ns. ns. 0.18 0.55 0.19 0.83 +0.13

LE-97 2010 ns. ns. ns. 0.26 0.38 0.73 +0.17

LE-97 2011 -0.15 ns. ns. 0.3 ns. 0.87 +0.14

NS-2 2010 ns. -0.2 0.28 0.5 ns. 0.9 +0.17

NS-2 2011 - - 0.39 0.8 - 0.84 +0.14

Velkoplavlovicka VP-LE-12/ | 2010 ns. ns. ns. 0.49 ns. 0.85 +0.22
clones 2

VP-LE-12/ | 2011 ns. ns. 0.21 0.7 ns. 0.82 +0.16
2

Doc. Blatny | 2010 -0.29 ns. ns. 0.47 ns. 0.82 +0.19

Doc. Blatny | 2011 ns. ns. 0.22 0.76 0.2 0.75 +0.15

LE-111 2010 -0.53 -0.26 ns. 0.53 -0.22 0.86 0.2

LE-111 2011 ns. ns. ns. 0.65 ns. 0.64 +0.17

LE-130 2010 -0.28 ns. 0.3 0.71 ns. 0.81 +0.16

LE-130 2011 -0.21 -0.3 ns. 0.44 ns. 0.78 +0.14

LE-285 2010 ns. ns. ns. 0.75 ns. 0.68 +0.19

LE-285 2011 -0.19 ns. ns. 0.62 ns. 0.64 +0.14

ns. = correlation coefficients not significantly different from 0 at o. = 0.05 which are between the two limits indicated in the last column.

The median zone was not present for cv NS-2 in 2011.

https://doi.org/10.1371/journal.pone.0235347.t1003

decrease in LS (S1 Table). There are few significant correlations between the numbers of meta-
mers of each zone. Significant correlations were found negative between the basal and the
median zones and the median and the distal zones while positive between the basal and the
distal zones (Table 3). It should be noted that these significant correlations coefficients are
often in absolute value just slightly above the limit corresponding to no correlation. The total
number of metamers of the shoot correlated with those in the basal and the distal zones but
not the median zone (Table 3), except in the two cultivars Bergeron and LE-97 which exhibited
the highest mean number of metamers per median zone.

The shoot types impacted the mean number of metamers per zone. The basal and median
zone tended to be lower in SS than in MS and LS (Table 4). However, the median zone tended
to have a slightly higher number of metamers in MS than in LS, at least in Doc. Blatny and LE-
130 (Table 4). Consistently with the strong relationship found between the number of meta-
mers per shoot and the number of metamers of the distal zone, the mean number of metamers
in that zone differs significantly among shoot types. The correlation between the total number
of metamers per shoot and the number of associated flower buds per shoot is moderate with
r=0.37, confirming the increase of the number of associated flower buds per shoot with the
shoot length, with differences among cvs and clones (Table 4). The highest mean number of
associated flower buds in all shoot types was in ‘Bergeron’ whereas, the mean number of asso-
ciated flowers was low in all the VP clones, especially on SS. The mean number of fruit was
usually lower in SS and the genotypes differed in MS and LS only (Table 4).

The shoot types also impacted the frequency of occurrence of the zones. The frequency of
shoots with median and distal zone tended to be lower in SS than in MS and LS, but with dif-
ferences depending on the genotype (Table 5).
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Table 4. Mean number of metamers of the basal, median and distal zones (when present), and mean number of associated flower buds and fruit per shoot type
depending on the genotypes (cvs and VP clones) on shoots developed in years 2010 and 2011. Shoot type effect was estimated with a Wilcoxon-Mann-Whitney test.
Comparisons among genotypes and shoot types for a given zone were performed using a Wilcoxon-Mann-Whitney test. Different letters for a given zone indicate signifi-
cant difference (p < 0.05).

Genotype Basal zone Median zone Distal zone Associated flower buds Fruit
SS MS LS SS MS LS SS MS LS SS MS LS SS MS LS
Cultivars Bergeron 3.32d | 425cd | 5.09abc | 1.76¢ | 2.87ab | 2.78ab | 1.99¢ | 3.88d | 9.94b | 0.06f | 0.89b | 455a | 0.15cde | 0.63ab | 0.82a
LE-97 356cd | 4.11cd | 400cd | 1.79¢ | 3.38a | 3.20a | 1.37e | 426cd | 11.23ab | 0.01g | 0.65¢ | 3.29a | 0.15cde | 0.41ab | 0.35ab
NS-2 372cd | 498bc | 586ab | 1.76¢ | 1.93¢c | 2.17bc | 1.63e | 474cd | 12.48a | 0.01g | 0.35d | 1.59b | 0.14 cde | 0.32 abc | 0.14 cde
VP reference clones | VP-LE-12/2 325d | 434cd | 459bcd | 1.50c | 1.95¢ | 140cd | 1.95e | 497c | 9.59b | 0.02g | 0.18e | 1.53b | 0.10de | 0.30a-d | 0.65ab
Doc. Blatny 396cd | 4.87bc | 495bc | 146cd | 1.70c | 1.27d | 1.65e | 446cd | 12.64a | 0.01g | 0.27e | 3.59a | 0.12de | 0.33ab | 0.50 ab
LE-111 3.66cd | 5.05bc | 4.45bcd | 2.00bc | 1.75¢ 1.50c | 1.73e | 435cd | 11.36ab | 0.02g | 0.06f | 0.73bc | 0.22b-e | 0.25a-d | 0.09 de
LE-130 3.38d |4.37cd | 5.17abc | 1.70¢ 1.65¢ 1.00d | 1.56e | 437cd | 9.00b | 0.02g |035d | 1.89b | 0.10de | 0.08de | 0.11de
LE-285 4.56bcd | 5.74ab | 6.67 a 1.69 ¢ 1.75¢ 1.56c¢ | 1.53e | 4.18cd | 12.90a | 0.01g | 0.13e | 3.19a 0.08e | 0.21b-e | 0.05e
Shoot type effect o o o o e

The statistical difference among genotypes and shoot types (particular variable) was signed with different letters (p = 0.05) with the values.
ns. = not significant,

* = significance at o. = 0.05,

** = significance at 0. = 0.01,

*** = significance at o = 0.001.

SS—short shoots, MS—medium shoots, LS—long shoots.

https://doi.org/10.1371/journal.pone.0235347.t1004

Table 5. Frequency of occurrence of the median and distal zones depending on the shoot type and genotypes (cvs and VP clones) on shoots developed in years 2010
and 2011. The difference among genotypes and shoot types were estimated for each variable with a Pearson x2 test.

Median zone
Genotype SS MS LS Shoot type effect (SS/MS/LS)
Cultivars Bergeron 0.245 cd’ 0.565 ab 0.697 a y/x/x>
LE-97 0.328 ¢ 0.419 bc 0.323 be X/X/x
NS-2 0.216d 0.364 ¢ 0.207 ¢ y/x/x
Velkoplavlovicka clones VP-LE-12/2 0.204d 0.284 ¢ 0.294 be X/x/x
Doc. Blatny 0.336 bc 0.519b 0.500 ab y/x/xy
LE-111 0.281 cd 0.376 ¢ 0.364 bc X/x/x
LE-130 0.479 a 0.537 ab 0.444 ab X/x/x
LE-285 0.436 ab 0.657 a 0.429 ab y/xly
Distal zone
Genotype SS MS LS Shoot type effect (SS/MS/LS)
Cultivars Bergeron 0.840 ab 0.993 a la y/x/x
LE-97 0.635c¢ 0.960 b la y/x/x
NS-2 0.767 b 0.992a la y/x/x
Velkoplavlovicka clones VP-LE-12/2 0.871a 1.000 a la y/x/x
Doc. Blatny 0.832 ab 0.991 ab la y/x/x
LE-111 0.773 b 0.953 b la y/x/x
LE-130 0.819 ab 0.993 a la y/x/x
LE-285 0.761b 0.990 ab la y/x/x

"The statistical difference among genotypes (columns) is indicated by different letters (p = 0.05).
“Statistical difference among shoot types in each genotype (rows) is indicated by letters as well (x, y, z).
SS—short shoots, MS—medium shoots, LS—long shoots.

https://doi.org/10.1371/journal.pone.0235347.t005
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Table 6. Proportion of short shoots developed in 2009 and 2010 still alive along the branch axis in 2010 (2009/2010) and 2011 (2010/2011), respectively. The survival
of all shoots, either one and two years old, developed either in 2009 or 2010, and observed in 2011 are represented with (2009-10/2011). Comparisons between cultivars/
clones and survival year for shoots living in the next year were performed using a Pearson x2 test. The proportion of two-year surviving short shoots among cultivars and

VP clones was compared separately.

Cultivars

Velkoplavlovicka clones

Genotype Proportion of living short shoots (development years / observation year)
2009/2010 2010/2011 2009-10/2011
Bergeron 0.37 cd 0.36 cd 0.24 be
LE-97 0.23 cd 0.22d 0.17 ¢
NS-2 0.64 ab 0.45 be 0.36b
VP-LE-12/2 0.46 be 0.79a 0.57 a
Doc. Blatny 0.41 cd 0.47 be 0.38 ab
LE-111 0.44 be 0.33 cd 0.38 ab
LE-130 0.45 be 0.32cd 0.34b
LE-285 0.29cd 0.36 cd 0.30b

The statistical difference among genotypes and particular years was signed with different letters (p = 0.05) with the values.

https://doi.org/10.1371/journal.pone.0235347.t1006

Shoot life span

In both years (2010 and 2011), the shoots longevity along the observed branches depended on
their length. LS were always alive two years after their development whereas a proportion
between 0.80 and 0.95 of MS was alive one year after their development, whatever the geno-
types and years. In contrast, the proportion of SS remaining alive one year after their develop-
ment was much lower than in MS and LS. SS developed in 2009 remained alive in 2010 with a
proportion ranging from 0.64 (NS-2) to 0.23 (LE-97; Table 6). No significant difference was
observed in VP clones for this trait. SS developed in 2010 remained alive in 2011 with a pro-
portion ranging from 0.79 (VP-LE-12/2) to 0.22 to (LE-97). The reference clone VP-LE-12/2
had a higher proportion of living SS than all other VP clones. The proportion of shoots
remained alive over two years varied from 0.57 (VP-LE-12/2) to 0.17 (LE-97). Here again the
ranking of genotypes with respect to SS survival was similar with VP-LE-12/2 having the high-
est survival and LE-97 the lowest.

Discussion
Characteristics of the shoot structure

The HSMC estimated for each genotype was composed of three successive states modeling
zones with different bud fates from the base to the top of the parent shoot. The relative simplic-
ity in this structure and the low number of zones found is due to the dominance of short and
medium shoots in the dataset. Shoots structured in consecutive zones have been previously
observed in several Prunus [4, 27, 31] and Malus species ([5, 10]; see [29] for a review).

The basal zone contains latent buds which constitute a pool of buds that enables the tree to
react to damages, pruning, and aging by developing epicormics shoots (i.e. shoot that outgrow
from dormant buds) [2, 3]. The median zone is composed of central flower buds, which are
the result of reproductive differentiation of the buds located at the leaf axils along the parent
shoots [23]. The distal zone is composed of vegetative buds as the basal one, but usually those
buds allow shoot growth in the next vegetation season. The preferential development of axil-
lary buds close to the top of the parent shoot contributes to acrotony (i.e. long laterals located
in the upper part of the parent shoot, for terminology see also [1] and [33]) [32]. The presence
of associated flower buds along median and to a lower extent distal zones in adult trees is
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consistent with previous finding in young apricot, peach and almond trees [27, 28, 29, 31].
This structure was similar for all genotypes and is common for all apricot trees in full bearing
stage.

Differences in shoot structure depending on total shoot length

The analysis of the shoot structure points out differences in the frequency of occurrence and
the number of metamers of particular zones as a function of the total number of metamers of
the shoot. The systematic occurrence of the basal zone is likely related to preformation [1, 4]
building the shoot base [4, 31]. Since the number of preformed organs has been estimated
about 10 foliar primordia in peach tree [9], it is likely that a large part of the shoots observed in
the present study, located at the third or fourth branching orders was preformed within the
winter buds.

The decrease in the number of metamers per shoot mainly from MS to SS or between
years led to the shortening or disappearance of the median and/or distal zones. The progres-
sive disappearance of median zone, skipping the development of central flowers and/or the
shoot vegetative prolongation has been previously pointed out in apple trees [4, 10]. Despite
the lack of correlation between the number of metamers of the shoot and of the median
zone, the number of associated flower buds increased with shoot length. The higher number
of associated flower buds along the neoformed part of medium and long shoots suggests
that these flower buds may differentiate in locations less specific than the central floral buds
and during a longer period along the vegetation season. The correlation between the num-
ber of metamers of the distal zone and the total number of metamers of the shoot likely
results from the timing of growth cessation. The extreme reduction in shoot structure and
the disappearance of the distal zone could lead to the mortality of short shoots. Since apricot
tree has a tendency to sympodial growth due to frequent apical bud mortality [29, 34], such
abortion of apical bud concomitant to the absence of vegetative buds able to regrow in the
next spring is likely leading the shoot mortality. Therefore the maintenance of a pool of veg-
etative buds in the distal zone may be crucial to ensure shoot survival and its growth
continuation.

In this study, the year effect was particularly strong, affecting all zones and the total number
of metamers of the shoot. The reduction in the total number of metamers per shoot can be
partly attributed to tree ontogeny [1, 10]. Moreover, insufficient water or nutrition availability
in 2011 (S1 Fig) could have further limited shoot growth, since these two environmental fac-
tors influence the whole tree growth [11, 14] and bearing [22, 23, 24].

Altogether, our results suggest that the risk of irregular bearing of the trees could be
enhanced when shoot growth is excessively reduced, either by environmental conditions or
high crop load [25]. Consistently with previous studies that have shown that the abundance of
associated and central flowers is linked to total shoot growth [4, 40], we can assume that 10
metamers per shoot, as mean number across the shoot population, could constitute a mini-
mum number of metamers for maintaining the production in apricot trees, in order to avoid
alternate bearing.

Structural differences among the genotypes

The genotypes differed in their ability to develop the median and distal zone, in the number of
metamers of all three zones and in their compositions in terms of central bud fate and number
of associated flower buds. One of the main differences among genotypes concerns the median
zone. The trees of cvs Bergeron and LE-97 showed in a given conditions higher flowering and
bearing potential considering the higher number of central and associated flower buds per
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shoot. However, the higher production of central flowers within the median zone in SS may
negatively affect the distal zone occurrence. Such behavior suggests a different ability of the
cultivars (Table 5) to promote central flower buds formation upon the maintenance of vegeta-
tive growth in spurs. In particular, LE-97 appears prone to a competition between the bearing
potential of the median zone and the distal zone occurrence as it exhibits a long and fruiting
median zone (Fig 2, Tables 1 and 4) while the lowest occurrence of the distal zone and lowest
rate of SS survival (Fig 2, Tables 5 and 6). This reduced distal zone occurrence, that further
promotes the SS mortality rate, can be considered as an additional mechanism controlling the
shoot population, like in almond trees [24].

Due to a significant decrease in the number of metamers and frequency of the median zone
as well as in the mean number of associated flower buds per shoot in most cultivars and clones,
the second year of observation can be considered as an “off” year. The difference among culti-
vars and clones in the occurrence of the median zone, as well as its fluctuation between the
two years is likely to refer, in addition to genetic effect, to several factors such as their physio-
logical reaction to unfavorable environmental conditions in non-irrigated orchard [15, 16]
and the fruit load at the branch or tree level [17, 18, 19, 24].

The mentioned differences among the cultivars and clones could further allow differentiat-
ing among apricots depending on their flowering abundance and shoot mortality rate, comple-
menting the classification of group 5, as defined by [21]. Since our study was performed on
two years only, further analysis of the cultivars at different tree age, in different environmental
and orchard management conditions would be relevant.

Conclusions

In our study, we demonstrated that, in apricot adult trees, shoots are structured in three differ-
ent and successive zones composed of latent buds (basal zone), flower buds (median zone) and
vegetative buds (distal zone). While the basal zone is always present, the last two zones may
not develop leading to no flowering or shoot mortality or even both. The median zone length
and flower abundance increase with shoot length. The higher number of associated flower
buds along the neoformed part of medium and long shoots suggests that these flower buds
may differentiate in locations less specific than the central floral buds and during a longer
period along the vegetation season. The length of the distal zone likely results from the timing
of growth cessation. Our results suggest that the median zone could partly compete with the
distal zone, at least in some genotypes, through its flowering/fruiting potential and crop load
leading to ealier growth cessation. This mechanism strongly affects short shoot longevity and
the maintenance of a minimal shoot length appears crucial to avoid short shoot mortality and
alternate bearing.

Supporting information

S1 Fig. Monthly maximum, minimum and mean temperature as well as the monthly
amount of rainfall during the shoot development in 2010 and 2011.
(TIF)

S2 Fig. Three-years-old branch of cv ‘Velkopavlovicka’, clone VP-LE-12/2 spring 2011 [37].
(TIF)

$3 Fig. Scheme of branching organization and sampling of annual shoots for model esti-
mation.
(TIF)
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S1 Table. Number of shoots and minimum-maximum number of metamers (within the
brackets) per shoot type (according to particular length class, i.e. SS, MS and LS), genotype
and year.
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