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Abstract

In most temperate fruit trees, fruits are located on one-year old shoots. In Prunus species,

flowers and fruits are born in axillary position along those shoots. The axillary bud fate and

branching patterns are thus key components of the cultivar potential fruit production. The

objective of this study was to analyze the branching and bearing behaviors of 1-year-old

shoots of apricot cultivars and clones genetically closely related. Shoot structures were ana-

lyzed in terms of axillary bud fates using hidden semi-Markov chains and compared depend-

ing on the genotype, year and shoot length. The shoots were composed of three successive

zones containing latent buds (basal zone), central flower buds (median zone) and vegeta-

tive buds (distal zone), respectively. The last two zones contained few associated flower

buds. The zones length (in number of metamers) and occurrence strongly depended on

shoot development in the two successive years. With decrease in the number of metamers

per shoot, the last two zones become shorter or may not develop. While the number of

metamers of the basal and distal zones and the number of associated flower buds corre-

lated to the number of metamers of the shoot, the number of metamers of the median zone

and the transition probability from the median to the distal zone were cultivar specific.

Introduction

The architecture of temperate fruit trees is characterized by high-order branching structures

composed of multiple axes of different lengths and complexities. This structure results from

the differentiation and organogenetic activity of axillary meristems located at each metamer

(composed of node its corresponding leaf and axillary bud plus the subtending internode)

along the parent shoot. Axillary buds may have different fates leading to various shoot types

with different rates and timings of outgrowth [1, 2, 3]. The relationship between the bud posi-

tion and fate along the annual shoots determines the branching and flowering patterns [4, 5,

6]. Morphogenetic gradients during tree ontogeny are characterized by a decrease in shoot

growth over successive years and branching orders, leading to a progressive simplification of
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branching pattern within trees [1, 7, 8, 9, 10]. Ontogeny can be tuned by the environmental

stress factors, such as high temperature, water and nutrient availability [11, 12, 13, 14] affecting

bud development [15, 16, 17]. Studying growth and branching patterns are thus crucial to

understand tree bearing behaviors which are of agronomic importance [18, 19]. This knowl-

edge has led to genotype classification [20, 21] and is also useful for breeding. Though the

large majority of fruit are born on short (spurs) or medium (brindles) shoots, cultivar behav-

iors need to be further understood [22, 23, 24, 25].

Hidden semi-Markov chains (HSMCs) have been proposed to analyze branching and axil-

lary flowering patterns over time and space [4, 5, 6, 10]. These models aim at segmenting the

shoots into consecutive zones of homogenous composition in terms of axillary bud fates.

HSMCs have been widely applied to compare different fruit species or cultivars, at different

development stages, including apple [6, 10, 26], apricot [27] peach [28] and almond trees [14].

In Rosaceae fruit trees, branching and axillary flowering patterns largely vary among species

[29]. While all these species are characterized by rhythmic growth [1], they differ in the loca-

tion of reproductive and vegetative buds and therefore in the shoot structure [29]. While flow-

ers are in terminal position in apple tree [30], Prunus species are characterized by axillary

flower bud position along annual shoots [28, 31]. Flowers are located in upper position along

the shoot in apricot, peach and almond trees, whereas they are located at the basis position of

the shoot in cherry trees [29]. Moreover, the majority of Prunus species is able to produce

additional flowers associated to either vegetative or central flower buds. These differences in

axillary bud fates lead to different branching patterns in peach [28], apricot and cherry trees

[32]. In apricot tree, a sympodial branching (i.e. branching from an axillary bud, after the mor-

tality of the terminal meristem; for more detail description of the terminology, see also [1, 33]),

has been related to a frequent terminal bud mortality [34]. While differences in branching pat-

tern can be found among cultivars of a species [6, 10, 31], there is no evidence so far of a possi-

ble variability among clones of a same cultivar.

In the present study, the axillary bud fates were analyzed along annual shoots on a set of

apricot cultivars, including the standard apricot cultivar ‘Velkopavlovická’, that is the most

cultivated in Czech Republic and a set of its clones [35] using HSMCs. The differences in the

shoot structures were analyzed with respect to three effects: genotype, shoot length and succes-

sive years. The objective of the study was to deepen our understanding of branching and flow-

ering patterns in adult apricot trees by the detail description of vegetative and reproductive

bud development along annual shoots in a set of cultivars and clones.

Materials and methods

Plant material and orchard environment

The experimental orchard was planted in spring 2001 at 6 x 3.5 m spacing at the Horticultural

faculty of Mendel University in Lednice (Czech Republic). The orchard was situated in clay-

loam black soils. All trees were grafted on apricot seedlings from cv Yulskiy (with middle

Asian origin). After planting the trees were pruned in open vase. However, during the trial the

trees were not pruned and the orchard was left without irrigation.

Eight genotypes of apricot trees (Prunus armeniaca L.) with similar growth and fruiting

habits were considered for this study. Among them, we considered four cultivars (cvs): ‘Ber-

geron’, LE-97, NS-2 and ‘Velkopavlovická’ (VP), represented by reference clone VP-LE-12/2

[35]. This reference clone was compared with four other VP clones (Doc. Blatny, LE-111, LE-

130 and LE-285). They all belong to Group 5, which corresponds to relatively small trees

which axes bend easily and bear fruit mainly on medium shoots [21]. They are characterized

by equilibrium among different shoot types that all bear fruit and are considered as the most
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suitable for agronomic cultivation. ‘Bergeron’ is a well-known random seedling from Rhône

valley, France. Genotype LE-97 was obtained by random pollination of VP cv and NS-2 origi-

nates from Novi Sad, Serbia as a nature population from Vojvodina region. ‘Velkopavlovická’

is an apricot originating from South Moravia (Czech Republic) near Velké Pavlovice. In previ-

ous studies, ‘Velkopavlovická’ was considered as a clone of the cultivar ‘Magyar Kajszi’ belong-

ing to the group of ‘Hungarian Best’ cultivars [36, 37].

In the two years during which the observed shoots had developed (2010 and 2011), the

maximum, minimum and mean temperatures were 21.4 ˚C, −3.1 ˚C, 9.4 ˚C and 24.3 ˚C,

−0.9 ˚C, 10.6 ˚C, respectively. The dynamics over each year was typical of temperate climate

(S1 Fig). The cumulative rainfalls during these two years were 710.4 mm and 442.4 mm,

respectively with a maximum in May 2010 and in July for 2011.

Shoot observations

Four to six trees per genotype were observed in two consecutive years, 2011 and 2012. Six lat-

eral branches (one or two per tree) per genotype were selected (S2 Fig) according to the follow-

ing rules: (1) the branches were situated on periphery of the trees at 1.5–2.0 m from the

ground, (2) the length of three-year-old part of these branches were in the range of 150–300

mm, (3) their basal angle did not exceed -10 to 45˚ with the horizontal plane, (4) these

branches were at the third branching order at the tree level and (5) the shoot in the continua-

tion of each branch was longer than 10 cm. Along these branches, all annual shoots developed

over three years (from three- to one-year-old shoots) were described retrospectively at the

metamer scale twice, i.e. in 2011 and 2012 (S3 Fig). Moreover, the year during which each

shoot had developed was noted to enable studying the year effect.

Bud fates were described node by node along the shoots. The central buds were coded “L”,

“V” or “F” for latent (i.e. buds that do not outgrow in the next year), vegetative (i.e. buds that

are more developed than latent buds and are expected to outgrow a vegetative shoots in the

next year) or floral fate, respectively and the number of associated flower buds noted (0, 1

or� 2 associated flower buds). During the observation years, the development of flowers into

fruit was assessed as the mean number of fruit per shoot. However, because this number was

low, this variable was not considered afterwards in the modelling approach.

Data analysis and model building

The central bud fate and the number of associated flower buds were organized as bivariate

sequences indexed by node rank. Following previous studies [5, 6, 26], a HSMC was built for

each genotype on the basis of bivariate sequences pooled for the different orders and growing

years considering all shoot together. A HSMC is a two-scale segmentation model whose aim is to

segment observed sequences into successive homogeneous zones both in terms of central bud

fate and number of associated flower buds. In this framework, the succession and length (in num-

ber of metamers) of zones (coarse scale not directly observable) are represented by a non-observ-

able semi-Markov chain, whereas the central bud fate and the number of associated flower buds

within each zone (fine scale) are represented by categorical distributions attached to each state of

the semi-Markov chain. A semi-Markov chain is defined by three subsets of parameters:

1. Initial probabilities to model which is the first zone in the shoot,

2. Transition probabilities to model the succession of zones along the shoot,

3. Occupancy distributions attached to non-absorbing states (a state is said to be absorbing if,

after entering this state, it is impossible to leave it) to model lengths of zones in number of

nodes/metamers.
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A HSMC adds a fourth subset of parameters to the three subsets of parameters previously

defined for the underlying semi-Markov chain:

1. Categorical observation distributions to model either the central bud fate or the number of

associated flower bud. This entails that a probability mass was directly estimated for each

possible category of each observed variable.

A ‘left-right’ HSMC composed of successive transient states followed by a final absorbing

state was built on the basis of bivariate sequences corresponding to a given genotype. A state

is said to be transient if after leaving this state, it is impossible to return to it. In a ‘left-right’

model, the states are thus ordered and each state can be visited at most once. In this study, it

was chosen to assume that the end of an observed sequence systematically coincides with the

transition from the current state to an extra absorbing ‘end’ state modeling implicitly the

growth cessation (no observation model is associated with this end state; see [10]). Hence, at

the end of an observed sequence, the process systematically jumps to the absorbing end

state. In this way, it was possible to model explicitly the length of the most distal zone. Each

estimated model was used to compute the most probable state sequence for each observed

sequence [38]. This restored state sequence can be viewed as the optimal segmentation of

the corresponding observed sequence into sub-sequences, each corresponding to a given

zone. On the basis of the optimal segmentations of the observed sequences, “contextual”

model parameters (e.g. probability of transition between two zones or distribution of the

central bud fate for a given zone) or characteristic distributions (e.g. probability of occur-

rence of a given zone) specific to 2010 or 2011 shoots were extracted [10] in order to com-

pare them.

Comparison of shoots depending on the genotype, year and shoot types

To compare the shoot branching structures among genotypes and years, the shoots were classi-

fied into three types depending on their length: a) short shoots (SS) up to 2 cm, b) medium

shoots (MS) from 2.1–10 cm and c) long shoot (LS) above 10 cm. Such classification was based

on previous studies which considered axes polymorphisms based on the concepts of preforma-

tion and neoformation [33]. Even though overlap between classes remained (S1 Table), this

approach allowed us to compare the “contextual” model outputs with respect of a given class

of shoot length. For each shoot type, the year and genotype effects on the number of metamers

per shoot and per zone, the number of associated flower buds and fruit per shoot were ana-

lyzed using the Kruskal-Wallis test (ANOVA by ranks), and further compared among geno-

types, years or shoot types using the Wilcoxon-Mann-Whitney test. The probabilities of zone

occurrence were compared using a Pearson χ2 test. After the optimal segmentation of all the

observed sequences in successive zones, the relationship between the number of metamers of

two zones as well as between the number of metamers of each zone and the total number of

metamers of the shoot was analyzed using Spearman rank correlation coefficients. Among all

genotypes, the longevity of the lateral shoots along the branches was analyzed depending on

the year of shoot development using the Pearson χ2 test.

The HSMC and all associated statistical methods are implemented in the Structure Analysis

module of the Openalea software platform [39].

Results

Number and types of shoots

The total number of developed shoots on the selected branches ranged from 81 to 153 and 129

to 227 depending on the genotype, in 2010 and 2011, respectively. Considering the relatively
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old tree age, short and medium shoots were in higher proportions than long shoots. In 2010,

the proportion of shoot types ranged from 0.34 to 0.53 of SS, from 0.35 to 0.51 of MS and from

0.08 to 0.17 of LS depending on the genotype (Fig 1), with ‘Bergeron’ exhibiting the highest

proportion of MS and LS. In 2011, all genotypes developed a similar proportion of shoot types,

with a majority of SS, some MS and few LS, even though ‘Bergeron’ had the highest increase of

SS proportion and LE-97 the lowest. This means that the proportion of MS and LS significantly

decreased between 2010 and 2011 whereas SS significantly increased (according to a Pearson’s

χ2 test, p = 8.51E-20).

Estimation of the hidden semi-Markov chains

The shoots varied from 2 to 26 metamers, depending on the type, genotype and year (S1

Table). The HSMC estimated for each genotype were composed of three transient states

modeling three successive zones and a final absorbing end state (see Fig 2). The first (basal)

zone was composed of latent buds, exclusively. The second (median) zone contained mainly

central flower buds with some associated flower buds. The third (distal) zone contained mainly

vegetative shoots sometimes with few associated flower buds. The mean number of metamers

was similar for the basal and distal zones, these zones having a higher mean number of meta-

mers than the median zone. The first zone containing latent buds was always present whereas

the two other zones may be skipped leading to shoots without flowering zone and/or shoots

without distal vegetative zone depending on the genotype.

Fig 1. Proportion of shoot types composing branches of cultivars ‘Bergeron’, NS-2, ‘Velkopavlovická’ (VP-LE-12/2), LE-97 and VP clones Doc.

Blatny, LE-111, LE-130 and LE-285. Branch development were observed in two successive years (2010 and 2011); short shoots (SS), medium shoots (MS),

long shoots (LS).

https://doi.org/10.1371/journal.pone.0235347.g001
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Fig 2. Schematic representation and parameter values of the hidden semi-Markov chains estimated on one-year-

old shoots of cultivars ‘Bergeron’, NS-2, ‘Velkopavlovická’ (VP-LE-12/2), LE-97 and VP clones Doc. Blatny, LE-

111, LE-130 and LE-285 developed in 2010 and 2011. Top part (tables): Observation distributions and proportions of

(A) the central bud fate (L—latent bud, V—vegetative bud, F—flower bud) and (B) number of associated flower buds

(0–no lateral flower bud, 1–one associated flower bud, 2–two or more associated flower buds) in each state; Bottom

part (diagrams): states are represented by colored rectangles whose length is proportional to the mean number of

metamers of the state, when present; initial probabilities are represented by arrows entering in the first state, transition

probabilities are represented by arrows between states, with the transition probability indicated nearby.

https://doi.org/10.1371/journal.pone.0235347.g002
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Comparison of shoot structure among genotypes

The genotypes differed in the mean number of metamers of the basal and median zones exhib-

iting highly significant differences (Table 1). Among cvs, the highest mean number of meta-

mers in the basal zone, over the two years, was observed in NS-2. Among the VP clones, the

variability was relatively large with the highest mean value found in LE-285 and the lowest in

VP-LE-12/2. Despite a relatively low variability in the number of metamers of this zone (less

than 2), the groups overlapped between cvs and clones (Table 1). For the median zone, the

highest mean number of metamers over the two years was observed in ‘Bergeron’ and LE-97

for the cvs, whereas the lowest was in Doc. Blatny among clones, even though similar to all the

VP clones.

Differences among genotypes were also found in the transition probabilities between the

median and distal zones (Fig 2), and consequently in the occurrence of these zones (Table 2).

The median zone occurred more frequently in cvs ‘Bergeron’ and LE-97, while it occurred less

frequently in NS-2 and VP-LE-12/2 over the two years. Among clones of ‘Velkopavlovická’,

the occurrence of the median zone was more frequent in LE-130 and LE-285 than in LE-111

and VP-LE-12/2. Almost all cultivars were characterized by a relatively high frequency of

occurrence of the distal zone except LE-97. The most frequent occurrences of the distal zone

among VP clones were found in VP-LE-12/2 and Doc. Blatny, whereas the less frequent occur-

rences were in LE-111 and LE-285.

The proportions of central flower buds within the median zone differed depending on the

genotype (Fig 2), the highest being observed in NS-2 whereas the lowest were in LE-97. The

metamers with associated flower buds were few and scattered between the median and distal

zones in all genotypes. However, the number of metamers with associated flower buds was

higher in the median zone than in the distal one (Fig 2), especially in cvs ‘Bergeron’ and LE-97.

Table 1. Mean number of metamers in the basal and median zones (when present), mean number of metamers per shoot and mean number of associated flowers

and fruit per shoot depending on the genotype (cvs and VP clones) and year of shoot development. Genotype and year effects were analyzed using a Kruskal-Wallis

test. Comparisons among genotypes and years were performed with a Wilcoxon-Mann-Whitney test. Different letters in a same variable indicate significant difference

(p< 0.05) among cvs and VP clones and between years. The distributions extracted for the two years jointly were compared among genotypes separately.

Genotypes Basal zone Median zone Shoot Associated

flower buds

Fruit

2010 2011 2010–2011 2010 2011 2010–2011 2010 2011 2010 2011 2010 2011

Cultivars Bergeron 4.22 bcde 3.57 fg 3.83 c 2.79 a 1.64 bc 2.50 a 9.75 ab 7.26 c 1.27 a 0.44 bc 0.96 a 0.01 e

LE-97 3.97 cdef 3.68 efg 3.80 c 2.84 a 1.39 cd 2.57 a 9.01 ab 7.37 c 1.32 a 0.01 d 0.63 b 0.02 e

NS-2 3.56 fg 4.94 b 4.38 b 1.88 b - 1.88 b 8.77 b 8.53 b 0.64 b 0.02 d 0.50 bcd 0.00 e

VP reference clone VP-LE-12/2 3.23 h 3.92 def 3.68 c 1.83 bc 1.20 d 1.66 bc 7.84 bc 7.34 c 0.47 bc 0.03 d 0.58 bc 0.00 e

Doc. Blatny 3.88 defg 4.75 bc 4.41 b 1.77 bc 1.27 d 1.56 c 8.83 b 8.72 b 0.55 bc 0.31 bc 0.59 bc 0.01 e

LE-111 4.41 bcd 4.09 cdef 4.22 bc 1.87 b 1.00 d 1.86 bc 9.01 ab 7.29 c 0.16 c 0.00 e 0.53 bcd 0.00 e

LE-130 4.55 bcd 3.42 gh 3.88 c 1.56 bcd 1.71 bc 1.64 bc 8.59 b 7.29 c 0.20 c 0.29 bc 0.22 d 0.00 e

LE-285 5.96 a 4.67 bcd 5.13 a 1.86 bc 1.60 bc 1.71 bc 10.29 a 8.78 b 0.22 c 0.22 c 0.30 cd 0.02 e

Genotypic effect ��� ��� ns. ��� ���

Year effect � ��� � ��� ���

The statistical difference among genotypes and years (particular variable) was signed with different letters (p = 0.05) with the values.

ns. = not significant,

� = significance at α = 0.05,

�� = significance at α = 0.01,

��� = significance at α = 0.001.

https://doi.org/10.1371/journal.pone.0235347.t001
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In all the genotypes, metamers with a single associated flower bud were more numerous than

those with several associated flower buds.

Comparison between the two observed years

By comparing shoots developed in the different years, further differences were found. The

mean number of metamers per shoot decreased significantly between the two years in cvs ‘Ber-

geron’ and LE-97, as well as in VP clones LE-111, LE-130 and LE-285 (Table 1). In contrast, it

remained similar between years in NS-2, VP clones Doc. Blatny and VP-LE-12/2. These

changes impacted the shoot structure, especially, the mean number of metamers per zone. The

length of the basal zone decreased with the years in cvs and clones with a decreasing number

of metamers per shoot, whereas it was higher in those which shoot length remained stable. A

decrease in distal zone length was also slightly significant between the two years, but only

when all genotypes were considered together (p value = 0.04). The mean number of metamers

in the median zone as well as the mean number of associated flower buds and fruit signifi-

cantly decreased in a majority of genotypes between the two years, except in VP clones LE-130

and LE-285 (Table 1), having similar number of flower buds and fruit per shoot in both years.

The changes in shoot length between years also impacted the occurrence of the median and

distal zones. The frequency of occurrence of the median zone varied between years depending

on cvs and VP clones and significantly decreased between the two years in a majority of geno-

types (Table 2). The distal zone occurred less frequently in cv LE-97 whatever the year, and in

VP clones LE-111 and LE-285 when the two years were considered jointly (Table 2). The

occurrence of the distal zone changed only slightly between the two years (Table 2), with sig-

nificant increase between the years in LE-97 only.

Comparison of the shoot organization among different shoot types

The mean number of metamers per shoot mirrors the shoot category, increasing from SS to

MS and from MS to LS. It did not change between the two years in SS and MS, but tend to

Table 2. Frequency of occurrence of the median and distal zones per shoot depending on the genotype and year of shoot development. The year effect was tested by

Pearson χ2 test. Comparisons among genotypes (cvs and VP clones) and between years were performed with a Pearson χ2 test. Different letters in a same variable indicate

significant difference (p< 0.05). The two-year proportion of zone occurrence among cultivars and VP clones was compared separately.

Genotype Median zone Distal zone

2010 2011 2010–2011 2010 2011 2010–2011

Cultivars Bergeron 0.76 a 0.17 f 0.41 b 0.92 ab 0.91 ab 0.91 ab

LE-97 0.74 ab 0.11 fg 0.36 bc 0.66 d 0.86 bc 0.78 d

NS-2 0.66 abc 0.00 h 0.27 de 0.85 abc 0.89 abc 0.87 abc

Velkoplavlovicka clones VP-LE-12/2 0.51 d 0.10 g 0.24 e 0.89 abc 0.94 a 0.92 a

Doc. Blatny 0.62 bc 0.30 e 0.42 b 0.90 abc 0.91 ab 0.91 ab

LE-111 0.75 ab 0.01 h 0.32 cd 0.83 c 0.87 abc 0.85 c

LE-130 0.52 d 0.49 d 0.50 ab 0.87 abc 0.92 ab 0.90 abc

LE-285 0.58 cd 0.48 d 0.51 a 0.83 c 0.88 abc 0.86 bc

Year effect ��� - ��� -

The statistical difference among genotypes and years (particular variable) was signed with different letters (p = 0.05) with the values.

ns. = not significant,

� = significance at α = 0.05,

�� = significance at α = 0.01,

��� = significance at α = 0.001.

https://doi.org/10.1371/journal.pone.0235347.t002
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decrease in LS (S1 Table). There are few significant correlations between the numbers of meta-

mers of each zone. Significant correlations were found negative between the basal and the

median zones and the median and the distal zones while positive between the basal and the

distal zones (Table 3). It should be noted that these significant correlations coefficients are

often in absolute value just slightly above the limit corresponding to no correlation. The total

number of metamers of the shoot correlated with those in the basal and the distal zones but

not the median zone (Table 3), except in the two cultivars Bergeron and LE-97 which exhibited

the highest mean number of metamers per median zone.

The shoot types impacted the mean number of metamers per zone. The basal and median

zone tended to be lower in SS than in MS and LS (Table 4). However, the median zone tended

to have a slightly higher number of metamers in MS than in LS, at least in Doc. Blatny and LE-

130 (Table 4). Consistently with the strong relationship found between the number of meta-

mers per shoot and the number of metamers of the distal zone, the mean number of metamers

in that zone differs significantly among shoot types. The correlation between the total number

of metamers per shoot and the number of associated flower buds per shoot is moderate with

r = 0.37, confirming the increase of the number of associated flower buds per shoot with the

shoot length, with differences among cvs and clones (Table 4). The highest mean number of

associated flower buds in all shoot types was in ‘Bergeron’ whereas, the mean number of asso-

ciated flowers was low in all the VP clones, especially on SS. The mean number of fruit was

usually lower in SS and the genotypes differed in MS and LS only (Table 4).

The shoot types also impacted the frequency of occurrence of the zones. The frequency of

shoots with median and distal zone tended to be lower in SS than in MS and LS, but with dif-

ferences depending on the genotype (Table 5).

Table 3. Spearman rank correlation coefficients between the number of metamers of pairs of zones chosen among basal, median and distal zone, and the number of

metamers of each zone and the total number of metamers of the shoot, depending on the genotypes (cvs and VP clones) and years.

Genotype Year Basal vs. Median Median vs. Distal Basal vs. Distal Basal vs. Shoot Median vs. Shoot Distal vs. Shoot Limits

Cultivars Bergeron 2010 ns. ns. 0.3 0.57 0.36 0.8 ±0.16

Bergeron 2011 ns. ns. 0.18 0.55 0.19 0.83 ±0.13

LE-97 2010 ns. ns. ns. 0.26 0.38 0.73 ±0.17

LE-97 2011 −0.15 ns. ns. 0.3 ns. 0.87 ±0.14

NS-2 2010 ns. −0.2 0.28 0.5 ns. 0.9 ±0.17

NS-2 2011 - - 0.39 0.8 - 0.84 ±0.14

Velkoplavlovicka

clones

VP-LE-12/

2

2010 ns. ns. ns. 0.49 ns. 0.85 ±0.22

VP-LE-12/

2

2011 ns. ns. 0.21 0.7 ns. 0.82 ±0.16

Doc. Blatny 2010 −0.29 ns. ns. 0.47 ns. 0.82 ±0.19

Doc. Blatny 2011 ns. ns. 0.22 0.76 0.2 0.75 ±0.15

LE-111 2010 −0.53 −0.26 ns. 0.53 −0.22 0.86 ±0.2

LE-111 2011 ns. ns. ns. 0.65 ns. 0.64 ±0.17

LE-130 2010 −0.28 ns. 0.3 0.71 ns. 0.81 ±0.16

LE-130 2011 −0.21 −0.3 ns. 0.44 ns. 0.78 ±0.14

LE-285 2010 ns. ns. ns. 0.75 ns. 0.68 ±0.19

LE-285 2011 −0.19 ns. ns. 0.62 ns. 0.64 ±0.14

ns. = correlation coefficients not significantly different from 0 at α = 0.05 which are between the two limits indicated in the last column.

The median zone was not present for cv NS-2 in 2011.

https://doi.org/10.1371/journal.pone.0235347.t003
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Table 4. Mean number of metamers of the basal, median and distal zones (when present), and mean number of associated flower buds and fruit per shoot type

depending on the genotypes (cvs and VP clones) on shoots developed in years 2010 and 2011. Shoot type effect was estimated with a Wilcoxon-Mann-Whitney test.

Comparisons among genotypes and shoot types for a given zone were performed using a Wilcoxon-Mann-Whitney test. Different letters for a given zone indicate signifi-

cant difference (p< 0.05).

Genotype Basal zone Median zone Distal zone Associated flower buds Fruit

SS MS LS SS MS LS SS MS LS SS MS LS SS MS LS

Cultivars Bergeron 3.32 d 4.25 cd 5.09 abc 1.76 c 2.87 ab 2.78 ab 1.99 e 3.88 d 9.94 b 0.06 f 0.89 b 4.55 a 0.15 cde 0.63 ab 0.82 a

LE-97 3.56 cd 4.11 cd 4.00 cd 1.79 c 3.38 a 3.20 a 1.37 e 4.26 cd 11.23 ab 0.01 g 0.65 c 3.29 a 0.15 cde 0.41 ab 0.35 ab

NS-2 3.72 cd 4.98 bc 5.86 ab 1.76 c 1.93 c 2.17 bc 1.63 e 4.74 cd 12.48 a 0.01 g 0.35 d 1.59 b 0.14 cde 0.32 abc 0.14 cde

VP reference clones VP-LE-12/2 3.25 d 4.34 cd 4.59 bcd 1.50 c 1.95 c 1.40 cd 1.95 e 4.97 c 9.59 b 0.02 g 0.18 e 1.53 b 0.10 de 0.30 a-d 0.65 ab

Doc. Blatny 3.96 cd 4.87 bc 4.95 bc 1.46 cd 1.70 c 1.27 d 1.65 e 4.46 cd 12.64 a 0.01 g 0.27 e 3.59 a 0.12 de 0.33 ab 0.50 ab

LE-111 3.66 cd 5.05 bc 4.45 bcd 2.00 bc 1.75 c 1.50 c 1.73 e 4.35 cd 11.36 ab 0.02 g 0.06 f 0.73 bc 0.22 b-e 0.25 a-d 0.09 de

LE-130 3.38 d 4.37 cd 5.17 abc 1.70 c 1.65 c 1.00 d 1.56 e 4.37 cd 9.00 b 0.02 g 0.35 d 1.89 b 0.10 de 0.08 de 0.11 de

LE-285 4.56 bcd 5.74 ab 6.67 a 1.69 c 1.75 c 1.56 c 1.53 e 4.18 cd 12.90 a 0.01 g 0.13 e 3.19 a 0.08 e 0.21 b-e 0.05 e

Shoot type effect ��� �� ��� ��� ���

The statistical difference among genotypes and shoot types (particular variable) was signed with different letters (p = 0.05) with the values.

ns. = not significant,

� = significance at α = 0.05,

�� = significance at α = 0.01,

��� = significance at α = 0.001.

SS—short shoots, MS—medium shoots, LS—long shoots.

https://doi.org/10.1371/journal.pone.0235347.t004

Table 5. Frequency of occurrence of the median and distal zones depending on the shoot type and genotypes (cvs and VP clones) on shoots developed in years 2010

and 2011. The difference among genotypes and shoot types were estimated for each variable with a Pearson χ2 test.

Median zone

Genotype SS MS LS Shoot type effect (SS/MS/LS)

Cultivars Bergeron 0.245 cd1 0.565 ab 0.697 a y/x/x2

LE-97 0.328 c 0.419 bc 0.323 bc x/x/x

NS-2 0.216 d 0.364 c 0.207 c y/x/x

Velkoplavlovicka clones VP-LE-12/2 0.204 d 0.284 c 0.294 bc x/x/x

Doc. Blatny 0.336 bc 0.519 b 0.500 ab y/x/xy

LE-111 0.281 cd 0.376 c 0.364 bc x/x/x

LE-130 0.479 a 0.537 ab 0.444 ab x/x/x

LE-285 0.436 ab 0.657 a 0.429 ab y/x/y

Distal zone

Genotype SS MS LS Shoot type effect (SS/MS/LS)

Cultivars Bergeron 0.840 ab 0.993 a 1 a y/x/x

LE-97 0.635 c 0.960 b 1 a y/x/x

NS-2 0.767 b 0.992 a 1 a y/x/x

Velkoplavlovicka clones VP-LE-12/2 0.871 a 1.000 a 1 a y/x/x

Doc. Blatny 0.832 ab 0.991 ab 1 a y/x/x

LE-111 0.773 b 0.953 b 1 a y/x/x

LE-130 0.819 ab 0.993 a 1 a y/x/x

LE-285 0.761 b 0.990 ab 1 a y/x/x

1The statistical difference among genotypes (columns) is indicated by different letters (p = 0.05).
2Statistical difference among shoot types in each genotype (rows) is indicated by letters as well (x, y, z).

SS—short shoots, MS—medium shoots, LS—long shoots.

https://doi.org/10.1371/journal.pone.0235347.t005
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Shoot life span

In both years (2010 and 2011), the shoots longevity along the observed branches depended on

their length. LS were always alive two years after their development whereas a proportion

between 0.80 and 0.95 of MS was alive one year after their development, whatever the geno-

types and years. In contrast, the proportion of SS remaining alive one year after their develop-

ment was much lower than in MS and LS. SS developed in 2009 remained alive in 2010 with a

proportion ranging from 0.64 (NS-2) to 0.23 (LE-97; Table 6). No significant difference was

observed in VP clones for this trait. SS developed in 2010 remained alive in 2011 with a pro-

portion ranging from 0.79 (VP-LE-12/2) to 0.22 to (LE-97). The reference clone VP-LE-12/2

had a higher proportion of living SS than all other VP clones. The proportion of shoots

remained alive over two years varied from 0.57 (VP-LE-12/2) to 0.17 (LE-97). Here again the

ranking of genotypes with respect to SS survival was similar with VP-LE-12/2 having the high-

est survival and LE-97 the lowest.

Discussion

Characteristics of the shoot structure

The HSMC estimated for each genotype was composed of three successive states modeling

zones with different bud fates from the base to the top of the parent shoot. The relative simplic-

ity in this structure and the low number of zones found is due to the dominance of short and

medium shoots in the dataset. Shoots structured in consecutive zones have been previously

observed in several Prunus [4, 27, 31] and Malus species ([5, 10]; see [29] for a review).

The basal zone contains latent buds which constitute a pool of buds that enables the tree to

react to damages, pruning, and aging by developing epicormics shoots (i.e. shoot that outgrow

from dormant buds) [2, 3]. The median zone is composed of central flower buds, which are

the result of reproductive differentiation of the buds located at the leaf axils along the parent

shoots [23]. The distal zone is composed of vegetative buds as the basal one, but usually those

buds allow shoot growth in the next vegetation season. The preferential development of axil-

lary buds close to the top of the parent shoot contributes to acrotony (i.e. long laterals located

in the upper part of the parent shoot, for terminology see also [1] and [33]) [32]. The presence

of associated flower buds along median and to a lower extent distal zones in adult trees is

Table 6. Proportion of short shoots developed in 2009 and 2010 still alive along the branch axis in 2010 (2009/2010) and 2011 (2010/2011), respectively. The survival

of all shoots, either one and two years old, developed either in 2009 or 2010, and observed in 2011 are represented with (2009-10/2011). Comparisons between cultivars/

clones and survival year for shoots living in the next year were performed using a Pearson χ2 test. The proportion of two-year surviving short shoots among cultivars and

VP clones was compared separately.

Genotype Proportion of living short shoots (development years / observation year)

2009/2010 2010/2011 2009-10/2011

Cultivars Bergeron 0.37 cd 0.36 cd 0.24 bc

LE-97 0.23 cd 0.22 d 0.17 c

NS-2 0.64 ab 0.45 bc 0.36 b

Velkoplavlovicka clones VP-LE-12/2 0.46 bc 0.79 a 0.57 a

Doc. Blatny 0.41 cd 0.47 bc 0.38 ab

LE-111 0.44 bc 0.33 cd 0.38 ab

LE-130 0.45 bc 0.32 cd 0.34 b

LE-285 0.29 cd 0.36 cd 0.30 b

The statistical difference among genotypes and particular years was signed with different letters (p = 0.05) with the values.

https://doi.org/10.1371/journal.pone.0235347.t006
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consistent with previous finding in young apricot, peach and almond trees [27, 28, 29, 31].

This structure was similar for all genotypes and is common for all apricot trees in full bearing

stage.

Differences in shoot structure depending on total shoot length

The analysis of the shoot structure points out differences in the frequency of occurrence and

the number of metamers of particular zones as a function of the total number of metamers of

the shoot. The systematic occurrence of the basal zone is likely related to preformation [1, 4]

building the shoot base [4, 31]. Since the number of preformed organs has been estimated

about 10 foliar primordia in peach tree [9], it is likely that a large part of the shoots observed in

the present study, located at the third or fourth branching orders was preformed within the

winter buds.

The decrease in the number of metamers per shoot mainly from MS to SS or between

years led to the shortening or disappearance of the median and/or distal zones. The progres-

sive disappearance of median zone, skipping the development of central flowers and/or the

shoot vegetative prolongation has been previously pointed out in apple trees [4, 10]. Despite

the lack of correlation between the number of metamers of the shoot and of the median

zone, the number of associated flower buds increased with shoot length. The higher number

of associated flower buds along the neoformed part of medium and long shoots suggests

that these flower buds may differentiate in locations less specific than the central floral buds

and during a longer period along the vegetation season. The correlation between the num-

ber of metamers of the distal zone and the total number of metamers of the shoot likely

results from the timing of growth cessation. The extreme reduction in shoot structure and

the disappearance of the distal zone could lead to the mortality of short shoots. Since apricot

tree has a tendency to sympodial growth due to frequent apical bud mortality [29, 34], such

abortion of apical bud concomitant to the absence of vegetative buds able to regrow in the

next spring is likely leading the shoot mortality. Therefore the maintenance of a pool of veg-

etative buds in the distal zone may be crucial to ensure shoot survival and its growth

continuation.

In this study, the year effect was particularly strong, affecting all zones and the total number

of metamers of the shoot. The reduction in the total number of metamers per shoot can be

partly attributed to tree ontogeny [1, 10]. Moreover, insufficient water or nutrition availability

in 2011 (S1 Fig) could have further limited shoot growth, since these two environmental fac-

tors influence the whole tree growth [11, 14] and bearing [22, 23, 24].

Altogether, our results suggest that the risk of irregular bearing of the trees could be

enhanced when shoot growth is excessively reduced, either by environmental conditions or

high crop load [25]. Consistently with previous studies that have shown that the abundance of

associated and central flowers is linked to total shoot growth [4, 40], we can assume that 10

metamers per shoot, as mean number across the shoot population, could constitute a mini-

mum number of metamers for maintaining the production in apricot trees, in order to avoid

alternate bearing.

Structural differences among the genotypes

The genotypes differed in their ability to develop the median and distal zone, in the number of

metamers of all three zones and in their compositions in terms of central bud fate and number

of associated flower buds. One of the main differences among genotypes concerns the median

zone. The trees of cvs Bergeron and LE-97 showed in a given conditions higher flowering and

bearing potential considering the higher number of central and associated flower buds per
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shoot. However, the higher production of central flowers within the median zone in SS may

negatively affect the distal zone occurrence. Such behavior suggests a different ability of the

cultivars (Table 5) to promote central flower buds formation upon the maintenance of vegeta-

tive growth in spurs. In particular, LE-97 appears prone to a competition between the bearing

potential of the median zone and the distal zone occurrence as it exhibits a long and fruiting

median zone (Fig 2, Tables 1 and 4) while the lowest occurrence of the distal zone and lowest

rate of SS survival (Fig 2, Tables 5 and 6). This reduced distal zone occurrence, that further

promotes the SS mortality rate, can be considered as an additional mechanism controlling the

shoot population, like in almond trees [24].

Due to a significant decrease in the number of metamers and frequency of the median zone

as well as in the mean number of associated flower buds per shoot in most cultivars and clones,

the second year of observation can be considered as an “off” year. The difference among culti-

vars and clones in the occurrence of the median zone, as well as its fluctuation between the

two years is likely to refer, in addition to genetic effect, to several factors such as their physio-

logical reaction to unfavorable environmental conditions in non-irrigated orchard [15, 16]

and the fruit load at the branch or tree level [17, 18, 19, 24].

The mentioned differences among the cultivars and clones could further allow differentiat-

ing among apricots depending on their flowering abundance and shoot mortality rate, comple-

menting the classification of group 5, as defined by [21]. Since our study was performed on

two years only, further analysis of the cultivars at different tree age, in different environmental

and orchard management conditions would be relevant.

Conclusions

In our study, we demonstrated that, in apricot adult trees, shoots are structured in three differ-

ent and successive zones composed of latent buds (basal zone), flower buds (median zone) and

vegetative buds (distal zone). While the basal zone is always present, the last two zones may

not develop leading to no flowering or shoot mortality or even both. The median zone length

and flower abundance increase with shoot length. The higher number of associated flower

buds along the neoformed part of medium and long shoots suggests that these flower buds

may differentiate in locations less specific than the central floral buds and during a longer

period along the vegetation season. The length of the distal zone likely results from the timing

of growth cessation. Our results suggest that the median zone could partly compete with the

distal zone, at least in some genotypes, through its flowering/fruiting potential and crop load

leading to ealier growth cessation. This mechanism strongly affects short shoot longevity and

the maintenance of a minimal shoot length appears crucial to avoid short shoot mortality and

alternate bearing.

Supporting information

S1 Fig. Monthly maximum, minimum and mean temperature as well as the monthly

amount of rainfall during the shoot development in 2010 and 2011.

(TIF)

S2 Fig. Three-years-old branch of cv ‘Velkopavlovická’, clone VP-LE-12/2 spring 2011 [37].

(TIF)

S3 Fig. Scheme of branching organization and sampling of annual shoots for model esti-

mation.

(TIF)
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S1 Table. Number of shoots and minimum-maximum number of metamers (within the

brackets) per shoot type (according to particular length class, i.e. SS, MS and LS), genotype

and year.
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Data curation: Martin Mészáros.
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