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A well known issue regarding PLS lies in the difficulty to apprehend nonlinearities. As a 

solution, an extension of the method, “KNN-PLS”, was developed. However, this solution is 

based on a neighbourhood selection algorithm whose execution time is highly dependent on 

the size of the database, leading to prohibitive response times. This article proposes, as an 

alternative, a new method designed to process large data volumes: “parSketch-PLS”. This 

method combines a “big-data domain” neighbour selection method, called "parSketch", and 

the PLS method. Essentially, this paper presents a feasibility study, regarding the adaptation 

of big-data principles for spectral datasets, in non-linear contexts. The parSketch method has 

not been studied in the context of chemometrics and considering the specific properties of 

spectral data. This method is based on the approximation of sample neighbourhoods, based 

on spectral distances. It is then necessary to investigate the relevance of these 

neighbourhoods for PLS models and predictions. This article compares PLS and KNN-PLS 

methods with the parSketch-PLS method. In this context, PLS allows to process large volumes 

of data quickly but performs poorly in prediction while the KNN-PLS method returns accurate 

predictions, yet with much higher computational time. This paper shows that the proposed 

pairing offers a good operational trade-off between prediction performances and 

computational cost. In addition a comprehensive study of the input parameters of parSketch-

PLS is conducted. The objective is to understand the influence of these parameters on the 

prediction performances. This article proposes a framework to interpret the neighbourhoods 

returned by comparing their relative sizes with the evolution of performances and the input 

parameters of parSketch.  

1.        Introduction 

Chemometrics exploits a wide range of tools for the analysis and interpretation of 

spectroscopic data. One of the objectives of these tools is to associate spectral information 

with physicochemical properties in order to predict these properties. Among them, a  reference 

method is PLSR (Partial Least Squares Regression) [1]. It is a relevant method in various 

https://www.zotero.org/google-docs/?ukfG5C
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fields such as bioinformatics and social sciences. PLSR enables to realise very efficient 

predictive models when there is a linear relationship between the spectra and the 

physicochemical property(ies) of interest. PLSR is composed of a dimension reduction step 

(PLS) followed by a regression on the scores produced. Similarly, it is possible to carry out a 

discrimination calculating a discrimination model on the PLS scores. This article focuses on 

the two methods, under the term PLS. Due to the diversity of applications in the field, it is 

common to be confronted with data resulting from the aggregation of measurements carried 

out on samples of different natures. This aggregation often introduces non-linearities in the 

data (curvatures, clustering). These nonlinearities can significantly alter the quality of the 

predictions [2]–[4]. A solution to this problem is the use of "local" methods [2], [5]–[10]. One of 

the most common local methods is "KNN-PLS" (K Nearest Neighbours - PLS) [2], [5], [9], [11]–

[19]. The KNN-PLS method consists in determining a neighbourhood of the sample to be 

predicted, using a similarity criterion, and then calculating a PLS model on the neighbourhood 

of this sample. This method solves regression problems by computing a PLSR model on each 

neighbourhood. This method can also be applied to classification problems by computing a 

PLSDA (PLS Discriminant Analysis) model [20] on the neighbourhood. Similarity criteria is one 

of the most studied issues regarding implementations of KNN-PLS models [21], [22]. However, 

paradoxically, only a few studies have been conducted on neighbours selection and on the 

associated algorithms. Current KNN-PLS methods are all implementations of the “brute-force” 

algorithm, which consists in calculating all dissimilarities between the sample to be predicted 

and all the samples in the database, then ordering these samples according to the 

dissimilarities. The "brute-force" algorithm has the advantage of being a straightforward and 

accurate calculus. However, it is fastidious or even unfeasible to process large databases 

using this method. 

Recent developments in spectroscopic instrumentation (especially hyperspectral imaging) 

make it possible to acquire large volumes of data. It becomes then unreasonable to apply 

methods as computationally intensive as the "brute-force" algorithm on these data. An 

https://www.zotero.org/google-docs/?FxkC5F
https://www.zotero.org/google-docs/?Kwh5gY
https://www.zotero.org/google-docs/?knEZci
https://www.zotero.org/google-docs/?knEZci
https://www.zotero.org/google-docs/?klfSEH
https://www.zotero.org/google-docs/?klfSEH
https://www.zotero.org/google-docs/?4iZHnE
https://www.zotero.org/google-docs/?4iZHnE
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alternative is the use of "big-data" methods. Numerous methods have been developed in this 

field in order to accelerate the search for neighbours. All these methods share the central 

notion of indexation [23]–[27]. An index is a data structure that enables the search for samples 

in a time that is sub-linear (often logarithmic) to the size of the database. Therefore, indexing 

a database consists in adding its data to the index structure to be able to find them quickly. 

However, the conventional indexing structures are not suitable for spectral data, as they 

contain large numbers of highly inter-correlated variables. Recently, indexing methods have 

been developed to deal with time series [28]–[35] which present similar issues with spectral 

data. However, only a few time series indexing methods are suitable for large volumes of data. 

Two methods have recently been developed to be processed with extensively parallel 

architectures in order to process quickly large databases: DPiSAX (Distributed Partitioned 

indexed Symbolic Aggregate approXimation) [36] and parSketch [37], [38]. 

 

 

In chemometrics, these algorithms have not been tested yet and would solve some major 

methodological issues, such as finding a fast and reliable  neighbour search in the KNN-PLS 

framework. In this work, it is proposed to study parSketch in the context of chemometrics in 

order to evaluate the potential of this method to realise applications in chemometrics. The 

parSketch method combines dimension reduction, achieved by projection on random vectors 

[37] , with the creation of lists of samples based on grids. ParSketch’s efficiency has been 

illustrated in terms of calculation cost compared to the "brute-force" method [37], [38]. 

In this paper, it is proposed  to conduct a feasibility study of the parSketch method on spectral 

data. For that, parSketch has been evaluated to replace the "brute-force" algorithm in the 

KNN-PLS method, i.e. to use the parSketch method and then compute a PLS model on the 

resulting neighbourhood ("parSketch-PLS"). However, parSketch approximates a 

https://www.zotero.org/google-docs/?JHuvQm
https://www.zotero.org/google-docs/?JHuvQm
https://www.zotero.org/google-docs/?L4wdOx
https://www.zotero.org/google-docs/?L4wdOx
https://www.zotero.org/google-docs/?OsS0hO
https://www.zotero.org/google-docs/?OsS0hO
https://www.zotero.org/google-docs/?JB4b1O
https://www.zotero.org/google-docs/?JB4b1O
https://www.zotero.org/google-docs/?EeBo21
https://www.zotero.org/google-docs/?EeBo21
https://www.zotero.org/google-docs/?EeBo21
https://www.zotero.org/google-docs/?kjdVEF
https://www.zotero.org/google-docs/?kjdVEF
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neighbourhood. It is therefore necessary to test the influence of this approximation on the 

quality of PLS results. 

  

 2.        Theory 

           2.1.        Notations 

Capital bold characters will be used to designate matrices, e.g. X ; small bold characters for 

column vectors, e.g. xj will denote the j th column of X; row vectors will be denoted by the 

transpose notation, e.g. xT
i will denote the i th row of X; non bold italic characters will be used 

for scalars, e.g. matrix elements xij or indices i. 

           2.2.         Method description 

  

The creation of an index with parSketch is done in two steps: dimension reduction and grid 

creation [37], [38]. Let X(np) be the matrix of n spectra per p wavelengths. Let P(pv) be a matrix 

of v vectors of dimension p, containing the values -1 or 1 according to a random selection. 

The dimension reduction is achieved by calculating the matrix T(nv), obtained by equation (1), 

shown in Figure 1. Each line tT
i of T corresponds to the sketch of xT

i. 

  

T = XP                                                                                            (1) 

https://www.zotero.org/google-docs/?zXTMBy
https://www.zotero.org/google-docs/?zXTMBy
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Figure 1 : Sketch creation 

  

Adjacent pairs of T columns are grouped together to form two-dimensional spaces (in default 

setting). Such formed, the spaces are segmented to form g grids (g=v/2 where v is the number 

of random vectors generated). The projections of sketches in the grids is a fundamental step 

of the algorithm. The essential operation being how the determination of intervals are 

implemented (solely for computational efficiency). In this paper, the results are produced with 

an internal algorithm from R, relying on interval search. The position of all samples in the grid 

cells is recorded, as illustrated by Figure 2. In this figure, T, the matrix of sketches, contains 6 

samples described with four variables. T is then mapped into two dimensional grids divided 

into 3 segments for both of the variables. Each of the 6 samples are then assigned to a cell 

within the grids according to their values. For example sample “t(1)” is assigned to cell [10-

20][10-20] in grid 1 and to cell [0-10][10-20] in grid 2. 

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/findInterval
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Figure 2 : Grid creation 

  

The search for the neighbours of any unknown sample xnew uses the indexes created in the 

following way: 

xnew is converted into a sketch using the loadings P: tnew=xT
new P. For each grid u, let cu be the 

cell where tnew is located. The samples present in the cu cell for at least m % of the grids are 

selected as neighbours of xnew. 
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Figure 3 : Neighbour search 

  

This process is illustrated by Figure 3, where a new sample is searched for best candidate 

neighbours in T. The sample is first converted as a sketch, t(new), and placed in the grids 

using the same process. Consequently, the neighbours of t(new) are chosen within the 

samples that occur in the same cells as t(new) with a minimum threshold of m. In Figure 3, 

t(1) and t(new) co-occur one, while t(1) and t(new) co-occur twice. With a minimum threshold 

corresponding to 2 co-occurrences, t(6) would be considered candidate to be a nearest 

neighbour to t(new). 

           2.3.        Method properties 

The parSketch method has interesting properties for processing massive data. 
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Firstly, the parSketch method has three adjustable parameters to define a trade-off 

between the computation costs and the accuracy of resulting neighbourhood. The first one, is 

the number of random vectors v used to generate P. This parameter improves the 

approximation quality of the neighbourhood. The greater the number of random vectors 

generated (v), the better the approximation. The second one, is the number of segments s in 

the grids. This parameter allows to obtain neighbours closer to the sample to be predicted and 

reduces the number of returned neighbours. The larger the number of segments, the smaller 

the neighbourhood returned by parSketch. The third parameter, is a threshold regarding the 

minimum number of grids m in percentage. The higher this threshold, the closer the 

neighbours returned by parSketch are to the sample to be predicted but fewer in number. 

Secondly, the dimension reduction is very efficient. In contrast to the usual dimension 

reduction methods used in chemometrics (e.g. principal component analysis or partial least 

squares) the dimension reduction performed within parSketch is essentially a single matrix 

product. This reduction is performed through the matrix P which is very easy to generate (from 

random selection). And more importantly, the Johnson-Lindenstrauss lemma [39], guarantees 

to preserve an approximation of the Euclidean distances between the samples. 

Thirdly, the application of grids to T is facilitated. Indeed, there are no predominant 

variables in the sketch matrix T because this matrix is obtained using P, constructed from 

random vectors. It is therefore possible to create grids without having to take precautions 

regarding the space of the T variables. If factorial methods such as the PCA were used for 

this dimension reduction, the grids should take into account the variance expressed by each 

component. 

Fourthly, parSketch uses a large number of low dimensional grids (2 dimensions in this 

case). This makes possible to discard some constraints inherent to the curse of dimensionality 

[40]. Indeed, if large grids were exploited, it would generate hollow subspaces i.e. the returned 

neighbourhoods would be too small or even non-existent. 

https://www.zotero.org/google-docs/?Usojhg
https://www.zotero.org/google-docs/?Usojhg
https://www.zotero.org/google-docs/?WJNC6X
https://www.zotero.org/google-docs/?WJNC6X
https://www.zotero.org/google-docs/?WJNC6X
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Fifthly, the parSketch method considerably reduces calculation times, thanks to 

dimension reduction and indexing. In addition, all parSketch steps can be parallelised. This 

allows parSketch to process large amounts of data. For example, in [37], parSketch made it 

possible to process databases of 3x10
8 

samples in a short time. 

  3.        Material and methods 

           3.1.        Data and software 

 In this article, a dataset for classification has been defined by sampling hyperspectral images. 

The images correspond to wheat plants. The initial database contained 360,000 reflectance 

spectra. The samples measured belong to four classes, corresponding to four different 

genotypes. The spectra were acquired using a hyperspectral camera at p=256 wavelengths 

ranging from 410 to 1000 nm. One hyperspectral image was acquired for each class 

containing 90,000 spectra. 

Hyperspectral imaging has the advantage of quickly generating a large number of spectra. 

However, the resulting spectra can be correlated spatially. In order to limit the risks of 

overfitting, a test set has been carefully constructed. In this case, for each image and thus 

each class, 100 test samples were selected using the Kennard-Stone method [41] applied to 

the coordinates of the pixels in the image. Because samples are selected from images, spectra 

resulting from adjacent pixels are very likely to be highly correlated. Consequently, a 

reasonable manner to construct minimally biased validation sets, is to select only one sample 

in every 7*7 neighbourhoods. The resulting database includs a test set of 400 samples and a 

calibration set of 354,426 samples. The purpose is to simulate big-data like issues. i.e. when 

there is a substantial and generic database that is used to predict a few specific samples. 

Using a more conventional sampling ratio would lead to include too many resembling samples 

between the prediction and the model samples.  In this feasibility study, only one test set has 

https://www.zotero.org/google-docs/?7xuPJY
https://www.zotero.org/google-docs/?7xuPJY
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been built to study the behavior of the methods.  For a real application, multiple randomly 

sampled sets would be required as well as a fine study for the settings tuning,  thanks to 

processes like cross-validation. Moreover, the data of the learning set and the test are part of 

the same image and therefore it is not possible to validate this step for a real application. 

Calculations were performed with the R software (version 3.6.1 [42]), and the Rnirs toolbox 

for PLS. The R package rnirs is available at https://github.com/mlesnoff/rnirs. 

  

  

           3.2.        Prediction models 

The objective of this article was to compare the properties and classification performance of 

three types of methods: PLSDA, KNN-PLSDA, parSketch-PLSDA. It was first intended to 

illustrate the contribution of the KNN-PLS method in relation to PLSDA. Then, it was used to 

compare KNN and the parSketch algorithm in terms of returned neighbourhoods and in terms 

of cost to performance potentials. 

The first model was derived from a PLSDA, the model consisted in transforming a univariate 

variable y (containing q classes) into an n*q matrix Ydummy of q 0/1 dummy variables then to 

apply a PLS2 model on (X ,Ydummy) [20] and then to carry out a linear discriminant analysis 

(LDA) between the PLS2 scores and Y. 

In the second model, derived from a KNN-PLSDA [43], the search for neighbours (thanks to 

brute-force algorithm) is conducted on the first 10 scores of a PLS model [44]. In this 

experiment, the influence of two parameters is tested: the size of the neighbourhoods and the 

number of latent variables. Neighbourhoods of 400, 1000, 3000, 5000 and 10000 samples are 

considered. 

https://www.zotero.org/google-docs/?7sJ4HI
https://www.zotero.org/google-docs/?7sJ4HI
https://github.com/mlesnoff/rnirs
https://github.com/mlesnoff/rnirs
https://www.zotero.org/google-docs/?mwzwWL
https://www.zotero.org/google-docs/?mwzwWL
https://www.zotero.org/google-docs/?dcdsET
https://www.zotero.org/google-docs/?dcdsET
https://www.zotero.org/google-docs/?1zpqQr
https://www.zotero.org/google-docs/?1zpqQr
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For the first two models (PLSDA and KNN-PLSDA), the criterion for assessing the quality of 

the calculated models was the percentage error of prediction on the test set. A third model 

was estimated by replacing the brute-force algorithm by parSketch in the KNN-PLSDA 

method. 

The three parameters of parSketch : number of random vectors (v), number of segments (s), 

minimum % of grids (m), are set with values ranging as: v ∈ {10, 20, 30, 50, 80, 100}, s ∈ {5, 

7, 9, 11, 13, 15}, m ∈ {30, 50, 70, 90}. 

In the following this model will be referred to as “parSketch-PLSDA”. For the third model, 3 

evaluation criteria of the parSketch parameters have been selected. First, the number of 

predictable samples, i.e. the number of test samples having more than 30 neighbours. Then, 

the distribution of the number of neighbours is observed. Finally, the prediction error of 

parSketch-PLSDA is observed through 5 notable combinations of [v,s,m] parameters. 

  4.        Results and discussion 

           4.1.        Data visualisation 

 

Figure 4 : Spectra plot of the 4 genotypes 
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Figure 5 : Plot of the first two PCA scores 

  

Figure 4 shows sampled reflectance spectra of the calibration set covering the 4 genotypes. 

Spectra from each group present similar general shapes. There is no significant peak in any 

wavelength that can clearly discriminate spectra from the different genotypes. Moreover, there 

is no specific spectral domain in which the four genotypes seem to diverge. 

Figure 5 presents a projection of the whole spectra on the two first components of a PCA. All 

genotypes follow a single trajectory with significant overlaps. Similar examinations conducted 

with up to 20 components lead to the same results. This shows that genotypic differences 

cannot be explained by the PCA model. 

  

           4.2.        PLSDA 
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Figure 6 : Error in classification of the test set according to the number of latent 

variables PLS 

  

  

  

  

Figure 6 shows the classification error of the test set performed by the PLSDA as a function 

of the number of PLS latent variables. It is difficult to observe a minimum error. The optimal 

number of latent variables is between 20 and 30 components. This is a very high number of 

components, which can be related to non-linearities in the data. The minimum classification 

error is close to 0.24(24%). It therefore seems that the “PLS” model does not perform well in 

this case prediction. The classes are divided by genotypes, which are very close from a 

physicochemical point of view. Therefore, it is not surprising that a global linear model fails to 

discriminate them. 
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           4.3.        KNN-PLSDA 

  

Figure 7 : Classification error of the test set of a KNN-PLSDA, depending on the number 

of PLS latent variables and the number of neighbours 

  

  

  

  

  

Figure 7 shows the prediction error of a KNN-PLSDA model as a function of the number of 

PLS latent variables for a given number of neighbours k ∈  {100,400,1000,3000,5000,10 000}. 

These results are much better compared to the PLSDA model (see figure 6) with a minimal 

prediction error divided by 2.5. This confirms the non-linearity within the data. 

  

Table 1 : Optimal classification error according to the number of neighbours 
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Number of neighbours Optimal number of LVs Misclassification error (%) 

100 7 10 

400 13 8 

1000 14 8 

3000 16 7 

5000 14 8 

10000 22 8 

  

  

Table 1 summarises the minimum misclassification errors and the associated latent variables 

depending on the size of the considered neighbourhood (from figure 7). It illustrates that as 

the number of neighbours increases, errors decrease but with a growing optimal number of 

latent variables. Table 1 shows that the minimum prediction error is 7% for an optimal number 

of neighbours of 3000 and a number of latent variables of 16. It can then be concluded that 

the KNN-PLSDA method for this study is more efficient than the PLSDA. Furthermore, it is 

observed that to achieve minimal prediction errors, it is necessary to create KNN-PLS models 

with a large number of PLS latent variables, which means that genotype discrimination is 

difficult to achieve. 

           4.4.        parSketch-PLSDA 
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In this section, two points will be discussed : the neighbourhood of samples and the prediction 

error of the parSketch-PLSDA method. 

  

Figure 8 : Heatmap of the number of predictable samples found by parSketch, as a 

function of the 3 parameters v, s, m (number of random vectors, number of segments, 

minimum % of grids). Figure 8 is divided into 4 graphs, each graph corresponds to a 

value of parameter m. 

  

For each sample in the test set, parSketch returns a neighbourhood whose size depends on 

the parameters of the algorithm. An sample in the test set is said to be predictable, if the 

neighbourhood returned by parSketch contains at least 30 samples. 

Figure 8 shows that the number of predictable samples decreases as the value of m increases. 

The parameter m is used to select the samples most often present in the same cell as the 

sample to be predicted (see section 2). The parSketch method constructs grids on sketches 
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that are derived from matrix P random vectors. It is therefore very unlikely to obtain a large 

number of neighbours if the threshold m is too high (Cf section 2.2). 

Figure 8 shows that the number of predictable samples decreases as the values of s (number 

of segments) and v (number of random vectors) increase. s defines the number of cells in 

each grid (see section 2). When the number of cells in each grid increases, the cells are 

smaller and therefore contain fewer samples. 

The number of random vectors (v) is used to preserve the Euclidean distances in an 

approximate way. This parameter is not directly related to the size of the neighbourhood but v 

is linked to the threshold m and thus will have an indirect impact on the number of predictable 

samples. 

To conclude, s and m have a strong impact on the number of predictable samples while v has 

a weak (indirect) impact on the number of predictable samples. 
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Figure 9 : Distribution of the number of neighbours per test sample as a function of the 

parSketch parameters (v, m, s). 

  

Figure 9 shows that when the value of parameters m and s is too high, the number of returned 

neighbours is low or even zero. Moreover, a highly stochastic behaviour of the neighbourhood 

distributions can be observed when the value of the threshold m is high (e.g. m = 90%). In 

addition, when m has values that are too high, the impacts of other factors are not observable. 

It is therefore not possible to make conclusions about the influence of the parSketch 

parameters when the value of the parameters m and s are too high. For future observations, 

the distributions of the neighbourhoods obtained with parameters m = 90 or s = 15 are not 

studied. 

In Figure 9, it is possible to observe the impact of the three parSketch parameters on 

the neighbourhood distributions of the samples to be predicted. 

Firstly, when v varies, the median number of neighbours and the interquartile range of 

neighbourhoods are constant. Indeed, the number of random vectors has no impact on the 

quantity of returned neighbours (see section 2). 

Secondly, as s increases, the median number of neighbours per sample to be 

predicted decreases. Indeed, s defines the number of cells in each grid, the more s will have 

a high value the more cells there will be and thus the fewer samples in each cell. When s 

increases, the interquartile range of neighbourhoods decreases. Indeed, the stronger the 

segmentation, the less influence there will be on the structure of the position of the samples 

to be predicted in the database. 

Thirdly, when m increases, the median number of neighbours and the interquartile 

neighbourhood gap per sample decreases. m is a threshold, the higher the value of m the 
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more similar the samples returned by parSketch will be. Therefore, if the value of m is high, 

fewer neighbours will be returned by parSketch. 

To conclude, with the help of figures 8 and 9 it is possible to eliminate certain combinations of 

parameters. Indeed, figure 8 makes it easy to select combinations that allow us to predict a 

certain number of samples. Then, figure 9 allows the selection of combinations of parameters 

according to the characteristics of the neighbourhoods (e.g. a high number of neighbours and 

a low variability of the neighbourhoods). Five combinations were chosen to calculate a PLSDA 

model (see Table 2). 

  

Table 2 : Combinations of the selected parSketch parameters 

Combinaison m v s 

1 50 10 9 

2 50 10 11 

3 50 20 11 

4 50 20 11 

5 50 100 13 

  

These combinations of parameters were chosen because the resulting neighbourhoods were 

small and all samples were predictable. However, in these combinations, the median 
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neighbourhood returned by parSketch is much larger (100,000) than the neighbourhood used 

in the KNN-PLSDA, which was 3,000 neighbours. 

  

  

Figure 10 : Method classification error : parSketch-PLSDA (all 5 combinations); PLSDA 

and KNN-PLSDA (3000 neighbours), depending on the number of PLS latent variables 

  

In Figure 10, the error curves of the parSketch-PLSDA are all very close and provide an 

optimal error of approximately 10%. Figure 10 shows parSketch-PLSDA provides better 

prediction than PLSDA. The best combination of parameters approaches the best result of the 

KNN-PLSDA. To conclude, on the example discussed in the article, the neighbourhood 

returned by parSketch may provide an alternative. ParSketch provides a neighbourhood that 

allows us to improve the prediction qualities but this neighbourhood can be very large and 

therefore not all the neighbours returned by pasketch are useful. 

  

5.        Conclusion / perspective 
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This article shows that the combination of a big-data indexing algorithm (parSketch) with 

PLSDA (parsketch-PLSDA) approaches the best results of KNN-PLSDA on the treated 

example (wheat leaf genotype discrimination by hyperspectral imaging). The parSketch 

method is not able to obtain as good classification results as the KNN-PLSDA method, but 

allows better results than a PLSDA. It can be  concluded that parSketch-PLS is very efficient 

in terms of computation time to select neighborhoods in massive datasets and allows to handle 

non-linear relations between X and Y. ParSketch is less efficient than the brute-force method 

to obtain relevant neighbours for PLS model calculation, but allows to realise a fast estimation 

of the neighbourhood on massive databases. The KNN-PLS and parSketch-PLS methods are 

used in real time, i.e. for each prediction to be performed a PLS model is calculated on the 

selected neighborhood and the prediction is directly performed.  The prediction of the 400 test 

samples took several hours with KNN-PLS while the prediction using parSketch-PLS took only 

a few minutes. This article also shows that it is possible to use parSketch to study the 

database. Indeed, the parameters s and m (number of segments and minimum % of grids) are 

dependent on the database structure, for example if the database is very compact, the 

neighbourhoods returned by parSketch will be very large.  In order to confirm the feasibility 

study a real application will be realised in a second step with the parSketch-PLS method. A 

major problem with parSketch is that it may return too large neighbourhoods. If the 

neighbourhoods returned by parSketch are too large, it is possible to fail to handle non-

linearity. Indeed, if too many neighbours are returned it is possible that these samples do not 

all belong to the same linear model. Moreover, the computation time of a PLS model is related 

to the number of samples. A solution to obtain smaller neighbourhoods and better predictions 

is to combine parSketch with a method for selecting samples. For example, parSketch could 

be combined with the brute-force method to reduce the number of distances to be computed 

for each sample to predict. This means that within a neighbourhood returned by parSketch it 

would be possible to apply the brute force method. It would therefore be interesting to study 

parSketch as a filter and then to combine parSketch with another approach of selection or 

weighting of samples. 
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  8.        Figure Captions  

Figure 1 : Sketch creation 

  

Figure 2 : Grid creation 

  

Figure 3 : neighbour search 

  

Figure 4 : spectra plot of the 4 genotypes 
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Figure 5 : Plot of the first two PCA scores 

Figure 6 : Error in classification of the test set according to the number of latent 

variables PLS 

  

Figure 7 : Classification error of the test set of a KNN-PLSDA, depending on the number 

of PLS latent variables and the number of neighbours 

  

Figure 8 : heatmap of the number of predictable samples found by parSketch, as a 

function of the 3 parameters v, s, m (number of random vectors, number of segments, 

minimum % of grids). Figure 8 is divided into 4 graphs, each graph corresponds to a 

value of parameter m. 

  

Figure 9 : Distribution of the number of neighbours per test sample as a function of the 

parSketch parameters (v, m, s). 

  

Figure 10 : Method classification error : parSketch-PLSDA (all 5 combinations); PLSDA 

and KNN-PLSDA (3000 neighbours), depending on the number of PLS latent variables. 

  

 


