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ABSTRACT
We assembled homogenized long-term time series, up to 19 years, of measurements of net ecosystem
exchange of CO2 (NEE) and its partitioning between gross primary production (GPP) and respiration (Reco)
for five different ecosystems representing the main plant functional types (PFTs) in France. Part of these
data was analyzed to determine the influence of the main environmental variables on carbon fluxes between
temperate ecosystems and the atmosphere, and to investigate the temporal patterns of their variations. A
multi-temporal statistical analysis of the time series was conducted using random forest (RF) and wavelet
coherence approaches. The RF analysis showed that, in all ecosystems, the incident solar radiation was
highly correlated with GPP and that GPP was better correlated with the temporal variations of NEE than
Reco. The air temperature was the second most important driver in ecosystems with seasonal foliage, i.e.,
deciduous forest, cropland and grassland; whereas variables related to air or soil drought were prominent in
evergreen forest sites. The environmental control on CO2 fluxes was tighter at high frequency suggesting an
increased resilience to environmental variations at longer time spans. The spectral analysis performed on
three of the five sites selected revealed contrasting temporal patterns of the cross-coherence between CO2

fluxes and climate variables among ecosystems; these were related to the respective PFT, management and
soil conditions. In all PFTs, the power spectrum of GPP was well correlated with NEE and clearly different
from Reco. The spectral correlation analysis showed that the canopy phenology and disturbance regime
condition the spectral correlation patterns of GPP and Reco with the soil moisture and atmospheric
vapour deficit.

Keywords: Net CO2 ecosystem exchange, Ecosystem respiration, Gross primary production, spectral analysis,
random forest analysis

1. Introduction

The analysis of time series of eddy-covariance (EC) data,
as in-situ measurements of the net atmospheric CO2
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exchange (NEE) reveals that their temporal variability is
a ubiquitous phenomenon which may help investigations
of the sensitivity of biogeochemical processes to the envir-
onment at the ecosystem scale. Over the past decade,
numerous studies have focused on the interannual vari-
ability (IAV) of NEE and its environmental drivers at
global scale (Jung et al. 2017; Liu et al. 2018; Fu et al.
2019). Studies were conducted for different ecosystems
(Delpierre et al. 2012; Shao et al. 2016; Baldocchi et al.
2018; Fu et al., 2018) and individual sites (Wohlfahrt
et al. 2008; Marcolla et al. 2011; Aubinet et al. 2018).
Synthesis studies have reported significant spatial vari-
ability in NEE among ecosystem types (Baldocchi 2008;
Niu et al. 2017; Baldocchi et al. 2018), as well as large
temporal variability within sites.

The IAV of NEE at the ecosystem scale has been pri-
marily linked to meteorological drivers (including extreme
events) such as temperature, precipitation, and radiation,
etc. Plant phenology is an additional control acting
through, e.g., the length of the growing season, and the
timing of leaf onset and shedding. Evidence exists that
these drivers are significant contributors to the temporal
variability of NEE. Subtler changes in the ecosystem
structure due to natural and anthropogenic disturbances
(e.g., stand/cropland/grassland management) or delayed
physiological response to climate, and edaphic conditions,
are also likely causes. Indeed, the variations in tempera-
ture, precipitation and incident solar radiation have been
reported as the most important climate factors controlling
variability in the NEE of different ecosystems (Jung et al.
2017), while less attention has been paid to climate inter-
actions with phenology and physiology (i.e., period and
amplitude of the growing season) (Delpierre et al. 2009).
The direct and indirect controlling factors of the NEE
IAV differ among the ecosystem types, with distinctive
differences between forests and non-forests, evergreen
needleleaf forests (ENF) and deciduous broadleaf forests
(DBF), and between grasslands (GRA) and croplands
(CRO) (Shao et al. 2016).

The response of the gross primary productivity (GPP)
and ecosystem respiration (Reco) to physical and bio-
logical drivers controls the variability of NEE at different
time scales, from seconds to years (Stoy et al. 2009).
Long-term observations are necessary to capture such
effects (Chu et al. 2017). Most recent studies indicate that
IAV of NEE is most often associated with variations in
GPP (Ciais et al. 2005; Stoy et al. 2009; Ahlstr€om et al.
2015; Novick et al. 2016). In a synthesis study, Shao
et al. (2016) found that the maximum photosynthetic rate
was the most important factor for the IAV in GPP,
which was mainly induced by the variation in vapour
pressure deficit (D). For Reco, the most important drivers
were GPP and the reference respiratory rate. The relative

sensitivity of photosynthesis and respiration to environ-
mental factors shows that GPP is more sensitive to
drought stress than Reco in most ecosystems. This phe-
nomenon was especially the case in Mediterranean cli-
mates, which experience large variability in the amount of
rainfall during the growing season (Pereira et al. 2007;
Allard et al. 2008).

Several methodologies have been used in the literature
to explore carbon-flux/environment interactions.
Common approaches are based on the statistical analysis
between carbon cycle components and environmental var-
iables applied on measured data. Among them, look-up
tables are used for gap-filling (Falge et al., 2001;
Reichstein et al. 2005). A number of numerical, analytical
or predictive approaches, either detailed or simplified,
have been proposed, which are grouped into the so-called
Machine Learning approach (ML). Detailed or simplified
ML can be applied to predict carbon fluxes based on
environmental parameters. The approach has proved
good at demonstrating the nonlinear relationship between
ecosystem-based carbon fluxes and environmental varia-
bles based on EC measurements (Papale and Valentini
2003). These authors have demonstrated the potential of
artificial neural networks in the study of carbon flux
dynamics in European forest ecosystems, for gap-filling
and spatializing carbon fluxes (Dou et al. 2015; Papale
et al. 2015). In predictive studies of soil CO2 fluxes, or
carbon and energy fluxes, ML based on the Random
Forest approach (RF) (Dou et al. 2018) or regression
splines (Tramontana et al. 2016) have been successfully
used. The RF approach is highly flexible and can perform
two types of data analysis: regression and classification.
In our study specifically, we used the regression mode as
our variables are continuous. RF is of particular interest
because it determines the most important environmental
parameters controlling the variations in carbon fluxes at
different time scales. Spectral analysis is also an appropri-
ate technique to investigate the control of fluxes in the
time-frequency domain, which is therefore complementary
to the RF approach. Previous studies used Fourier trans-
form or cross-correlation approaches, (Baldocchi et al.
2001; Stoy et al. 2005, 2009; Vargas et al. 2010a). More
recently the alternative technique of wavelet analysis has
emerged (Vargas et al. 2010b, 2011; Fares et al. 2013).
The latter is particularly relevant for investigating the
spectral properties of biometeorological variables that
exhibit non-stationary features (Katul et al. 2001) and for
partitioning the drivers of their temporal variability along
the frequency domain. In that sense, the scalogram —

plot of a signal spectrum or a two-signal cross-spectrum
as a function of time and frequency — can be more use-
ful than the spectrogram for analyzing real-world signals
that are typically non-stationary. Trends in means and/or
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variability are typical features of such signals, but chang-
ing modes of variability could also be present.
Scalograms are the dedicated tools for detecting the lat-
ter. They also have the advantage of better time localiza-
tion for short-duration/high-frequency events, and better
frequency localization for low-frequency, longer-dur-
ation events.

Comparing the interaction between carbon fluxes and
environmental parameters among different ecosystems
requires concurrent time series of turbulent data obtained
with a common methodology and standardized post-proc-
essing treatments. Thus far, this requirement has not yet
been satisfactorily met for the various methodologies
used either when measuring turbulent variables or for
processing the data obtained. Moreover, concurrent time
series of flux and meteorological data extending beyond
10 years were not available until recently. The present
study is built upon time series of data from different
types of ecosystems representative of the French network
of stations contributing to the European ICOS Research
Infrastructure. Among them, three historical stations
were launched during the Euroflux project in 1997 and
two during the subsequent CarboEuroflux project in 2000
and 2002. The data analyzed represent the carbon flux
components, the Net Ecosystem Exchange, Gross
Primary Production and total ecosystem Respiration.
They cover the five main temperate plant functional types
along time series extending from 9 to 13 years. The values
of the three flux components were calculated from raw
data using a common methodology thus eliminating arti-
ficial discrepancies between sites.

Our analysis investigates the respective influence of the
drivers of NEE, GPP and Reco. It uses a Random Forest
analysis performed along a range of discrete frequencies
and a spectral analysis for the determination of cross-
coherence between CO2 fluxes and their environmental
drivers across the frequency domain.

2. Material and methods

2.1. Site descriptions

Five sites from the pre-ICOS network were selected for
the analysis, as representative of plant functional types
in France:

� A temperate Deciduous Broadleaf Forest (DBF):
hereafter referred to as Barbeau

� A temperate Evergreen Needleleaf Forest (ENF): Le Bray
� A Mediterranean Evergreen Broadleaf Forest

(EBF): Puechabon
� A temperate/continental extensive Grassland

(GRA): Laqueuille
� A temperate Cropland (CRO): Aurad�e

The site characteristics are summarized in Fig. 1 and
Table 1. Additional information is provided in the sup-
plementary material (S1, Table S1).

2.2. Meteorological data and flux measurements

The time series of in-situ measurements analyzed by the
RF or wavelet approaches are summarized in Table 2.
Among them, we used the incident solar radiation (Sd),
the air temperature (Tair), the precipitations (P), the wind
speed (u), the vapour pressure deficit (D) computed from
the air temperature and the relative humidity, and the
soil water content (h). The relative extractable water
(hEW) was computed from the volumetric soil water con-
tent (h) normalized by the water holding capacity esti-
mated from the difference between the water content at
field capacity and at wilting point (Granier et al. 1999),
previously quantified for these specific sites. When h was
not available or when the data series contained too many
gaps, a site-specific model for the corresponding site was
used to gap-fill hEW (Granier et al. 1999; Mouillot et al.
2001; Loustau et al. 2005; Vuichard et al. 2007; Cabon
et al. 2018, supplementary material § S2).

The net ecosystem exchange (NEE) was determined
using the eddy-covariance methodology which combines
measurement at 20Hz of the 3-D wind speed and

Fig. 1. Location of sites in France.
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surrogate temperature using a sonic anemometer, and
with the molar fractions of CO2/H2O using an infrared
gas analyzer (see Table 2 for sensor references at
each site).

2.3. Eddy-covariance data processing

2.3.1. Flux computation. Half-hourly eddy-covariance
fluxes from the five selected sites were calculated using
EddyProVR (www.licor.com/eddypro). Standardized proc-
essing was applied for all the sites. i) Axis rotation of the
wind vector was performed using the planar fit method-
ology (Wilczak et al. 2001) for Barbeau, Puechabon, Le
Bray, Laqueuille and the double rotation for Aurad�e
because of the fast growth rate of the vegetation. The
block-average method was used to extract turbulent fluc-
tuations from time series (Gash and Culf 1996). Time
lags between vertical wind speed and the variable of inter-
est were determined for each averaging period by an
automatic time lag optimization. ii) Low frequency spec-
tral corrections were applied according to the analytic
method described by Moncrieff et al. (2005). High fre-
quency spectral corrections were applied depending on
the setup: the fully analytic method of Moncrieff et al.
(1997) was adopted for the open-path systems (LI-7500,
Aurad�e, Laqueuille, Barbeau), which includes a correc-
tion for sensor separation effects; an in-situ spectral cor-
rection method (Fratini et al. 2012) was used for the
closed-path analyzers (LI-6262, Puechabon and Le Bray)
as a suitable method to describe attenuation along the
intake tube. For the closed-path analyzers, a correction
was also applied to account for sonic anemometer and
analyzer separation according to Horst and Lenschow
(2009). For the open-path LI-7500 analyzers, the WPL
correction (Webb et al. 1980) and the self-heating correc-
tion were also applied (Burba et al. 2008). iii) As a QA/
QC test of the final fluxes, we used the standard flags (0-
1-2) defined by Mauder and Foken (2004) and data with
a flag ¼ 2 were discarded. Remaining flux data were also
filtered using statistical tests on the raw data (Vickers
and Mahrt 1997); these included: despiking, absolute limit
determination, amplitude resolution, drop out, skewness
and kurtosis tests, and discontinuities. Finally, we tested
for insufficient atmospheric turbulence with a friction vel-
ocity (u� threshold being determined for each site
(Reichstein et al. 2005).

2.3.2. Partitioning and gap-filling. Incident solar radi-
ation (Sd), air temperature, Tair and vapour pressure def-
icit (D) were gap-filled using the marginal distribution
method (Reichstein et al. 2005). To compare CO2 fluxes
computed over different integrated time scales from the
different sites, we filled gaps in the half-hourly flux time

series using the gap-filling tool and the nighttime parti-
tioning method from Reichstein et al. (2005), developed
in an R package (Wutzler et al. 2018). An exception was
made for Barbeau for which the 2013 NEE long gap of
the LI-7500 was gap-filled with the flux computed from
the LI-7200 deployed in parallel with the LI-7500 since
2012 (Delpierre N., pers. comm).

2.4. Statistical analyses

2.4.1. Random forest analyses. A random forest (RF)
machine-learning algorithm (Breiman 2001) was used to
identify how the environmental controls affect the vari-
ability of NEE, GPP and Reco in the long term. The RF
is a non-parametric statistical estimation technique based
on the use of decision trees and multiple regressions. A
detailed explanation of the algorithm is given by Breiman
(2001). Each of the decision trees that form an RF are
built from bootstrap samples of the original dataset (i.e.,
training data). For each tree, the data that are not
included in the bootstrap samples are named Out-Of-Bag
(OOB) samples (i.e., test data). The training data is ran-
domly chosen for the splitting rule at each node. Each
tree is then fully grown or until each node is pure. The
trees are not pruned.

Using the OOB samples, the RF algorithm produces a
robust and informative statistic able to provide the
importance of an explanatory variable X for predicting
the variable of interest Y (McInerney and Nieuwenhuis
2009). This importance of explanatory variables, X, over
the response variables, Y, is calculated in terms of per-
centage increase of the mean squared error (%IncMSE) if
the variable X in the model is replaced with a random
one (Eq. 1).

MSE ¼
Pn

i¼1 Y � Ŷð Þ2

n
(1)

where: Y stands for the observed variable, Ŷ ¼ f ðXÞ for
the predictive variable, n the number of observations.

More precisely, an explanatory variable, X, is consid-
ered important if by “breaking” the link between X and
Y, the prediction error increases. To break this link,
Breiman (2001) suggested randomly permuting the pre-
dictor variable, X, in the OOB samples. The importance
corresponds to the mean increase in the prediction error
on the tree ensemble. Therefore, if we randomly permute
an explanatory variable that does not gain us anything in
prediction, then predictions will not change much and we
will only see small changes in MSE. On the other hand,
the important variables will significantly change the pre-
dictions if randomly permuted, so we will see more
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significant changes in MSE. The higher the difference is,
the more important is the explanatory variable.

The package ‘randomForest’ (Version 4.6-14, Liaw and
Wiener 2018) available in R was used for these multiple
regression analyses and is presented in the supplementary
material (S3). The analysis was conducted first to com-
pare five plant functional types (PFTs) at the half-hourly
time-step. Secondly, we performed the analyses at weekly,
monthly and seasonal scales for only two sites, those pre-
senting contrasting results at the half-hourly time-step.
Among the data presented in section 2.2, the data used
for the RF analyses were Sd, Tair, P, u, D, hEW, and car-
bon dioxide concentration (CO2). To make the graphs
easier to read at the aggregated time scales, we aggre-
gated radiative parameters into an ‘Energy’ variable (Sd
þ Tair) and an Index of Stress relative to the air or soil
water deficit constraint defined by ‘IStress’ (hEWþ D). In
order to cross-compare the %IncMSE computed at each
site and for each flux, we present this %IncMSE as a
relative value of the total percentage (%Imp).

Missing environmental values are omitted in the analysis.
Indeed, to make sure that the final results were not biased by
the partitioning and gap-filling method that is based on a rela-
tionship between hourly Reco and Tair, and GPP and Sd, we
performed the analyses using only measured NEE (qc ¼ 0),
nighttime Reco (Sd< 20Wm�2) and daytime GPP (Sd> 20W
m�2) when it was directly estimated fromNEEminus Reco.

2.4.2. Wavelet coherence analyses. Local and global
wavelet power spectra were computed using the Morlet
wavelet transform (Morlet et al. 1982). Morlet proposed the
use of a window with a size that depends on the frequency
analyzed, with a fixed number of oscillations. The analyzed
functions are precisely the Morlet wavelets that allow us to:

1. Observe the high frequencies with a high temporal
resolution and therefore to provide accurate
information on the locations of brief phenomena.

2. Observe the low frequencies over a sufficient period
of analysis to account for slow phenomena.

The Morlet wavelet transform of a time series (xt) is
defined as the convolution of the series with a set of
“wavelet daughters” generated by the mother wavelet
W, by translation in time by s and scaling by s (Eq. 2)
(R€osch and Schmidbauer 2018). The position of the par-
ticular daughter wavelet in the time domain is determined
by the localizing time parameter s being shifted by a time
increment dt. dt is therefore the time resolution, i.e. the
sampling resolution in the time domain, and 1/dt repre-
sents the number of observations per time unit. The
choice of the set of scales s determines the wavelet cover-
age of the series in the frequency domain. This scale
value is a fractional power of 2, a ‘voice’ in an ‘octave’

with 1/dj determining the number of voices per octave. dj
corresponds to the frequency resolution, i.e. the sampling
resolution in the frequency domain, and therefore, 1/dj
refers to the number of suboctaves, i.e., voices per octave.

Wx s, sð Þ ¼
X
t

xt
1ffiffi
s

p W� t�s
s

� �
(2)

They also defined the wavelet power spectrum or time-
frequency (or time-period) wavelet energy density:

Px s, sð Þ ¼ 1
s

� WX s, sð Þ
�� ��2 (3)

which actually corresponds to the square of the local
amplitude of the periodic component of the time series.

Following the approach of Torrence and Webster
(1999), the wavelet coherence between two time series (xt)
and (yt) was computed as:

Coherence ¼ S�Wxy
�� ��2

S� Px � S�Py
(4)

The notion of wavelet coherence requires smoothing of
both the cross-wavelet spectrum and the normalizing indi-
vidual wavelet power spectra, which is indicated by ‘S’
smoothing operator and is defined as S(W(s, s)) ¼ Sscale
(Stime(W(s, s))). Stime represents smoothing in time and
Sscale is smoothing along the wavelet scale axis. Wxy is the
cross-wavelet transform (Eq. 5), defined as the product of
the wavelet transform of x and the complex conjugate of
the wavelet transform of y (Torrence and Compo 1998):

Wxy ¼ 1
s

� Wx s, sð Þ � Wy
� s, sð Þ (5)

where “�” denotes the complex conjugate.
Squared spectral coherence estimates, as described by

Eq. 4, express the degree of linear association between the
phases and amplitudes of the two data records within each
normalized non-overlapping frequency band. These esti-
mates show the proportion of common variance within each
frequency band shared by two variables. Eq. (4) is the ana-
logue with the notion of Fourier coherence and the coefficient
of determination in statistics. It may actually be regarded as
such, which means that a coherence value of zero signifies
that the two time series are unrelated, whereas a coherence
value of unity indicates the two time series are linearly related
at the given frequency and time. Finally, through this cross-
wavelet analysis, we can study the two series synchronization
in terms of the instantaneous or local phase advance of any
periodic component of (xt) with respect to the correspondent
component of (yt), the so-called phase difference of x over y
at each localizing time origin and scale.

Du s, sð Þ ¼ ArgðWxy s, sð ÞÞ (6)

Eq. 6 equals the difference of individual phases, Du¼ux�uy,
when converted to an angle in the interval]�p, p].
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The package ‘WaveletComp’ (Version 1.1, R€osch and
Schmidbauer (2018)) available in R was used for these
coherence analyses. The parameters used in the analysis
and the scalogram reading guidelines are provided in the
supplementary documentation (Supplementary material: §
S3.2, S3.3 and Table S2, Fig. S2). All the results are pre-
sented as image plots of both the individual wavelet
power spectrum (and average) and cross-wavelet coher-
ence, in the time-period domain for the period
2006–2011. This period was selected as a common period
for the three selected sites and with the lowest gap-filled
data percentage. Since, among the five sites considered,
our Random Forest analysis allowed us to identify three
main patterns and our power and wavelet results are
shown for three sites selected out of the five original sites:
a forest with permanent foliage, Puechabon (similar to Le
Bray), a forest with seasonal foliage, Barbeau, and the
crop site, Aurad�e (similar to Laqueuille). The cross-coher-
ence analyses focused on the most important meteoro-
logical parameters extracted from the Random Forest
analysis, i.e. hEW and D. They comprise both the main
potential constraints on carbon fluxes (Novick et al.
2016) and exhibit a stronger and less predictive temporal
variability than Sd and Tair across sites. In addition, spec-
tral analysis of the cross-coherence of these two variables
with carbon flux components from 30minutes to 6 years
has rarely been performed.

3. Results

Firstly, we are presenting the analyses of the role and
importance of environmental drivers in determining the
variability of carbon fluxes for the five sites selected over
the whole period of measurement provided in Table 2 at
each site. This phase does not need any specific descrip-
tion of the environmental conditions as it is based on the
RF approach mixing all environmental conditions.
Thereafter we are showing the investigations on the tem-
poral correlation between time series for three of the five
sites selected by identifying periodicities and quantifying
phase differences between series for a range of temporal
scales. The analyses were performed on a 6-year period
(2006–2011) for which environmental and fluxes patterns
are described.

3.1. Random forest analysis

At half-hourly resolution, the percentage of variance
explained by the RF model showed values between 65%
and 90% (Table 3) and was higher by between 4% and
30% for NEE and Reco as compared with GPP. For all
five sites, Sd was the most important factor in explaining
NEE and GPP, accounting for more than 45% of the

half-hourly variability; whereas Tair was responsible for
most of the variability of Reco (>70%), followed by hEW
(Fig. 2). The atmospheric concentration of CO2 appeared
third in the list of factors explaining the variance of GPP,
Reco and NEE for poor mixing conditions (Reco) and can-
opies with lowest roughness (grassland at Laqueuille and
crops at Aurad�e). The precipitation contribution
was negligible.

Three main results were revealed by this analysis at
half-hourly time-step:

� Globally, the four most important variables extracted
were Sd, Tair, D, and hEW (Fig. 2).

� The pattern of RF for NEE was roughly similar to
the GPP’s with Sd being the largest contributor and
either hEW, D or Tair second.

� Reco was instead systematically dominated by the
Tair contribution with hEW ranked second
contributor.

3.1.1. PFT comparison. The main difference between
PFTs came from the variance profiles of GPP and NEE.
For those PFTs with strong LAI dynamics during the
year, i.e., Barbeau, Laqueuille, Aurad�e, Tair appears as
the second most important variable after the incident
radiation. The hEW or D only appeared as third or
fourth-most important contributors, wind speed and pre-
cipitation being last. Conversely, for evergreen PFTs
Puechabon (holm oak) and Le Bray (maritime pine), the
hEW and D came second in the variance profiles of GPP
and NEE, hEW being the most important parameter at
Puechabon and D at Le Bray.

3.1.2. Analysis across integration times. Across time
scales, the GPP-NEE similarity was conserved from the
30-minute time scale to the seasonal at the cropland site,
but the precipitation overtook the stress contribution at
the season scale (Fig. 3B). At Puechabon, the GPP profile
was changed and the stress index became the main con-
tributor to GPP at monthly and seasonal scales
(Fig. 3A).

According to the integration time considered, the vari-
ables selected did capture a variable fraction of the car-
bon flux variability in the evergreen broadleaf at the
Puechabon site and the cropland at Aurad�e, from 21%
(the seasonal variance of GPP at Puechabon) to 89% (the
half-hourly Reco at Puechabon) (Table 3). In the EBF,
the variance contribution profile was maintained at the
different scales, with the dominance of Sd (more than
50% for the different scales) for NEE. However, the
constraint index, ‘IStress’, contributed gradually to the
variability reaching almost 50% of the seasonal variance
(Fig. 3). Reco patterns did not significantly change except
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for the season for which D and hEW equally contributed
to the variability (35%) and the precipitation contribution
reached 4% against 0.3% at the hourly scale. Finally, the
GPP variability was mainly affected by the hEW from
daily to seasonal scale, that became the most important
variable across increasing time scales. Including D, these
two potential constraints contributed to 64% and 56% at
monthly and seasonal scales, respectively.

In the cropland, as regards NEE and GPP, Sd and
Istress were still dominant along the different scales (sum

>50%). However, precipitation became as important as
Istress at seasonal scale. For Reco, we also observed an
increasing importance of wind speed especially at sea-
sonal scale (>50%). The difference in performance
between the two PFTs, EBF and crops (CRO), decreased
at longer time scales.

We focused the next analyses on three sites that pre-
sented contrasting results in the RF analyses (Barbeau,
Puechabon and Aurad�e), and for a common period
2006–2011 with the lowest amount of gap-filled data.

Table 3. Input parameters optimization and results of the RF approach in terms of percentage of variance explained from the half-
hourly (five sites), daily, monthly and seasonal (two sites selected) time scales. « ndata » corresponds to the number of data in the
time-step considered; « mtry » stands for the number of explanatory variables to randomly sample as candidates at each split and «
ntrees » for the number of trees in the RF analysis.See Supplementary material (§ S3.1) for further information.

Sites Years Flux ndata mtry ntrees % Var Explained MSE

Half-hourly :
Puechabon 2000–2014 Reco 40400 6 400 88.55 0.16

GPP 59527 4 400 73.27 5.92
NEE 99927 2 400 85.84 3.17

Le Bray 2000–2008 Reco 20128 6 400 86.04 0.43
GPP 36176 2 400 67.91 16.4
NEE 56305 2 400 79.27 11.4

Barbeau 2005–2018 Reco 51049 6 400 88.89 0.37
GPP 66170 3 400 82.87 21.9
NEE 117220 3 400 86.58 12.8

Aurad�e 2004–2014 Reco 23475 5 400 74.12 0.69
GPP 36094 4 400 64.9 36.1
NEE 59570 4 400 72.33 17.5

Laqueuille 2003–2013 Reco 19391 5 400 90.05 0.62
GPP 25832 4 400 69.25 18.6
NEE 45223 2 400 72.8 13.0

Daily :
Puechabon 2000–2014 Reco 3340 4 400 60.4 0.61

GPP 4311 3 400 62.88 5.13
NEE 4456 2 400 51.43 4.63

Aurad�e 2004–2014 Reco 2421 5 400 40.56 1.64
GPP 2721 4 400 43.97 38.3
NEE 2842 3 400 53.56 12.2

Monthly :
Puechabon 2000–2014 Reco 166 7 400 58.3 0.53

GPP 167 4 400 53.29 3.45
NEE 167 5 400 58.38 1.00

Aurad�e 2004-2014 Reco 114 5 400 46.36 1.21
GPP 114 7 400 63.17 22.3
NEE 114 5 400 71.04 4.63

Seasonnally :
Puechabon 2000–2014 Reco 56 3 400 41.22 0.40

GPP 56 7 400 20.99 4.10
NEE 56 3 400 65.72 0.46

Aurad�e 2004–2014 Reco 40 5 400 37.36 1.07
GPP 40 3 400 51.27 25.5
NEE 40 4 400 54.05 6.14
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3.2. Environmental conditions and carbon flux time
series over the period 2006–2011

3.2.1. Environmental conditions. The 2006–2011 period
was characterized by contrasting environmental conditions

that are depicted for three sites, Barbeau, Aurad�e and
Puechabon, in Fig. 4 and Supplementary material: section
S4 and Table S3. The average annual temperatures (See
Table S3) were slightly higher than the long-term average

Fig. 2. RF analysis results: importance of environmental variables explaining the variability of carbon fluxes (A. NEE, B. GPP and C.
Reco) at a half-hourly time-step at five ecosystem stations. Standard deviation on the mean of %imp of each environmental variable,
computed from a bootstrap analysis (n¼ 100), were voluntarily omitted in the graph as they presented values lower than 0.1% in each
case (See Supplementary material S3.1).
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(Table 1). The highest monthly average temperature was
recorded either in July or August, with values of 19.7 �C,
21.7 �C and 23.3 �C for Barbeau, Aurad�e and Puechabon,
respectively. The warmest year was 2011, followed by 2006
and 2009. The year 2010 was coldest, despite a warm July,
in part due to two months in winter and autumn being
colder than the long-term average. Solar radiation during
the spring varied strongly between years, with periods such
as May 2011 presenting a significant increase in Sd at the
three sites, compared to the other years. This increase is
consistent with the low rainfalls recorded at the same time.

Similarly, November 2011 had the lowest solar radiation at
Puechabon; consistent with the highest amount of rainfall.
Further comments are provided in Supplementary mater-
ial S4.

3.2.2. Carbon fluxes: 2006–2011. Using the sign conven-
tion that a flux from the vegetation to the atmosphere is
positive, the annual balance of carbon (NEE) in the ever-
green broadleaf forest (EBF) ranged from �381 g C
m�2 yr�1 (2007) to �136 g C m�2 yr�1 (2006) and from
�579 g C m�2 yr�1 (2007) to �425 g C m�2 yr�1 (2006) in

Fig. 3. RF analysis results: importance of environmental variables explaining the carbon flux variabilities for Puechabon (A) and
Aurad�e (B) at different time scales. Standard deviation on the mean of %imp of each environmental variable, computed from a
bootstrap analysis (n¼ 1000), were voluntarily omitted in the graph as they presented values lower than 1.5% for each case (§ S3.1).

12 V. MOREAUX ET AL.

https://doi.org/10.1080/16000889.2020.1784689
https://doi.org/10.1080/16000889.2020.1784689


the deciduous broadleaf forest (DBF) with a smaller
year-to-year variability than at the other sites during the
studied period (Fig. 5, Table S3). At Aurad�e, the winter
wheat rotations were a carbon sink with carbon seques-
tration between �166 g C m�2 yr�1 and �11 g C m�2 yr�1,
whereas rapeseed and sunflower rotations were sources of
carbon (þ12 and þ176 g C m�2 yr�1 respectively).

The temperate DBF site presented the highest gross
primary production (GPP) between 1829 g C m�2 yr�1

(2006) and 2162 g C m�2 yr�1 (2011) with no significant
differences between years, considering the uncertainty on
the measurements (about ±10%, Baldocchi et al. 2018).
The Mediterranean EBF GPP ranged from 986 g C
m�2 yr�1 (2006) to 1475 g C m�2 yr�1 (2007) and the crop

Fig. 4. 2006–2011 monthly time series of environmental variables (Sd, Tair, Cumulative P, u and D) for the three sites selected in the
wavelet analyses.
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had the lowest annual values of GPP ranging from 642 g
C m�2 yr�1 (sunflower rotation in 2007) to 1239 g C
m�2 yr�1 (winter wheat, 2008). The temperate DBF site
also presented the highest Reco between 1404 g C m�2 yr�1

(2006) and 1616 g C m�2 yr�1 (2011). In the
Mediterranean EBF, Reco ranged from 847 g C m�2 yr�1

(2006) to 1091 g C m�2 yr�1 (2007) with no significant dif-
ference between years. The annual Reco ranged from
742 g C m�2 yr�1 (for the sunflower, 2007) and 1125 g C
m�2 yr�1 (for the winter wheat, 2010). The annual peak
in both GPP and Reco was observed in May/June in the
cropland (except for the sunflower, in July) in June for
the EBF and July for the DBF.

3.3. Power and cross-coherence spectra of CO2

fluxes and climate variables at multi-temporal scales

The power and wavelet analyses were performed at three
sites representing different plant functional types (PFTs)
and for which the RF analysis showed contrasting pat-
terns (Puechabon, Barbeau and Aurad�e). In what follows,
the cross-correlation of ecosystem fluxes with hEW and D
was more specifically investigated as these two variables
represent a potential stress on carbon fluxes with a stron-
ger and less predictive temporal variability than Sd and

Tair across sites. In addition, spectral analysis of the
cross-coherence of these two variables with carbon fluxes
from 30minutes to 6 years has rarely been performed.
For all scalograms, red colours indicates high power
whereas blue colours indicates low power.

3.3.1. Individual power spectra of climate variables (Fig.
6). Despite the range of climates covered, the power spec-
tra of meteorological variables and their temporal varia-
tions from 2006 to 2011 were similar among the three
sites. For each variable, the average wavelet power
showed two major peaks at 1-year and 1-day bands. The
water vapour deficit and soil moisture variables showed,
however, the distinct features documented below.

� The water vapour deficit (D) spectrum reflected both
the low frequency pattern shown by temperature and
the high frequency behaviour of Sd. It exhibited high
power at intermediate scales, from 8-day to 3-month
periods, only during the summer season. Plausible
explanations of the discrepancy between the tempera-
ture and water vapour saturation deficit at high fre-
quency may be the frequent zeroing of D values
during nighttime and the non-linear relationship
between temperature and air water vapour saturation

Fig. 5. 2006–2011 monthly time series of carbon fluxes (NEE, GPP, and Reco), for the three sites selected in the wavelet analyses.
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which both amplify the daily D variation for a given
step change in temperature.

� At all sites, the relative extractable soil moisture con-
tent, hEW, is characterized by narrow bands of high
power extending from 1-year down to 2-week peri-
ods. It showed little variation at periods shorter than
a month. Different patterns can be seen, which
appear to depend on the soil thickness. For soil
deeper than 1 m, a 12-month periodicity is observed
continuously for hEW irrespective of plant functional
type (EBF or DBF). Power peaks (red colour) are
observed at higher frequency only after heavy pre-
cipitation at the end of the summer/autumn in
09–10/2006, 11/2008, and autumn 2011 for
Puechabon (EBF) and 10/2008, 08/2010 and 08/2011
for Barbeau (DBF). The rainstorms in late autumn
have even induced locally high power peaks of hEW
at intermediate frequency bands (periods < 1
month). No such patterns are observed during sum-
mer. We assume this is because high frequency

precipitation events in summer only marginally affect
the soil water volumetric content because of a dilu-
tion effect and the interception of precipitation by
the vegetation canopy that is proportionally higher
for lighter rainfall episodes and during summer. For
the shallowest soil (Aurad�e), the power at the year
period is intermittent whereas clear pulse dynamics
are observed at high frequency (1 per day). Indeed,
due to the shallower soil in the cropland (Aurad�e),
the response of h and hEW to precipitation events at
higher frequencies is strong, as seen by the spikes at
3-hour to 6-month periodicities attributed to wetting-
drying cycles. This was observed for all years, except
2008 when the cropland soil was close to saturation
throughout the year and the hEW remained above 0.7
from June to September.

3.3.2. Individual power spectra of CO2 fluxes (Fig. 7).
Over the 6-year period considered, the effect of the
annual cycle of leaf formation and leaf fall is evident in

Fig. 6. Wavelet Power Spectra (WPS) of environmental variables (scalograms) and corresponding profile of the average wavelet power
(curves) at three sites (Puechabon, Barbeau and Aurad�e).

Fig. 7. Wavelet Power Spectra (WPS) of ecosystem carbon fluxes (scalograms) and corresponding profile of the average wavelet power
(curves) at three sites (Puechabon, Barbeau and Aurad�e).
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the measured CO2 fluxes. This is particularly clear at
Barbeau deciduous broadleaf forest, meanwhile the fluxes
from the cropland were controlled by the farming opera-
tions between the sowing and the harvest date. The
Puechabon evergreen Mediterranean broadleaf forest had
no distinctive periodic pattern.

NEE and GPP. At high frequencies and in accordance
with the RF analysis, the wavelet decomposition of NEE
and GPP were strikingly similar, suggesting that processes
driving temporal variations of GPP were also controlling
NEE, more than temporal variations of Reco. Power spec-
tra of NEE and GPP had significant high power at the 1-
day period and a secondary small peak at 0.5 day during
the growing season. Hence, the high frequency peaks
were limited to spring-summer for the DBF and crop-
land, but covered the entire year in the EBF type. There
was one exception however during winter 2008–2009 in
the cropland where a secondary peak of high variance is
observed due to the winter wheat sown in September.

At intermediate and low frequencies, the power spectra
of NEE and GPP showed significant peaks at 1-year and
6-month periods especially in the deciduous broadleaf
and cropland ecosystems. The NEE annual peak was sys-
tematically attenuated as compared with GPP presumably
due to a compensating effect of Reco. GPP from the EBF
site was characterised by a continuous high power at 1-
year and by several hotspots at the 6-month periodicity
as in 2006, 2007, 2009 and 2010.

Reco. The power spectrum of Reco was different from
those of the GPP and NEE and was enriched at inter-
mediate scales, from a week to 6months. The Reco power
exhibited within the week to 3-month bands has, how-
ever, no strong influence on the NEE spectrum. A dis-
tinctive feature of the Reco spectra is the absence of
spectral gaps at intermediate scales (one to three months).
A statistically significant strong and dominant wavelet
band was observed at a 1-year periodicity at all sites and
a secondary power at 6-month periodicity for the EBF
and cropland sites. Specifically, these peaks were detected
mostly during the growing season. However, two local
events were also observed outside the growing season for
the cropland site at the end of 2009 and during the
autumn of 2011. These events impacted the power spec-
trum of NEE and were caused by the rotations between
summer (rapeseed) and winter (wheat) crops and related
soil disturbances (ploughing).

3.3.3. Cross-coherence spectra (Figs. 8 and 9). The
cross-wavelet coherence (CWC), i.e., the squared spectral
coherence, between two signals, identifies the frequencies
at which the two variables are most strongly correlated.
CWC can be seen as a frequency-domain analogue of the
squared correlation coefficient. This analysis allowed us

to investigate further the temporal coherence between
CO2 flux components (GPP and Reco), and D and hEW.
This coherence is represented in the scalogram (Figs. 8
and 9) with a scale between 0 (low coherence, blue col-
our) and 1 (high coherence, red colour). High coherence
is expected to occur when both GPP (Reco) and D (hEW)
co-vary. Conversely, low coherence occurs for the periods
when variables were constant or uncorrelated.

For the three sites selected, Figs. 8 and 9 show the
time series of GPP, Reco, D and hEW together with cross-
coherence spectra between GPP or Reco and D (Fig. 8) or
hEW (Fig. 9), from 2006 to 2011. The annual harmonic
mode — or the annual cycle — showed the dominant
effect of D and hEW on GPP and Reco for the three sites
as seen by the continuous high coherence (red colour)
from 2006 to 2011. At higher frequencies, the daily cycle
was marked by a strong coherence with D of both GPP
and Reco at all sites. At the day period, the CWC between
hEW and Reco was substantial in the cropland only. For
intermediate periods (week to 6months), the relationship
between CO2 flux and driving variables was highly non-
linear in the modes 1week to 2months, as evidenced by
the spectral gap between the day and week periods. This
gap was however discontinuous for D, for which coher-
ence peaks were observed sporadically during growing
seasons. Hotspots of high coherence were detected for
periods from a month to 6months and will be described
further below, first for the D and second for hEW.

The D cross-coherences with GPP and Reco were
roughly similar. The strong common power (red colour)
with GPP at the 1-day period was observed during the
growing season only. For the EBF site, the 1-day correl-
ation was attenuated during winter, consistent with the
smaller variations in D. At this 1-day period, GPP and D
were in phase (arrow pointing up right) and GPP attained
its maximum between 2 and 6 hours ahead of D (þp/12
and þp/4) (see Fig. S2). This was expected because D
lagged 2 to 3 hours behind incident Sd. At 1-week to 2-
month periods, correlations between GPP and D were
weaker and phase relationships were more chaotic for the
three sites. However, some localized high coherences
spots were observed at intermediate scales in the EBF
when hEW was not limiting (spring-summer 2007, spring
2011). In most of these situations, GPP and D were in
phase with zero lag observed. At longer periods, (1 to
6months) correlation hotspots between GPP and D were
exhibited for the three sites. These seasonal hotspots were
well individualized during the DBF growing seasons with
GPP lagging behind D by an angle of 7p/4, that is about
one week. The springs of 2006 and 2009 correlation hot-
spots were instead at the seasonal scale (4-month period),
during which GPP and D were in anti-phase, D leading
GPP by an angle of 3p/4 (�1month). In the EBF and
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cropland type, GPP and D are also correlated at periods
of from 3 to 6months. However, the GPP-D correlation
was intermittently lost in the EBF, e.g., in spring 2008,
both winter/spring 2009 and 2011, and in the crop site
during winters of 2007, 2008, 2011. At one-year period,
the three sites presented a strong correlation between
GPP and D. The DBF signals were synchronized, while
GPP led D by 3months (þp/4 angle) in EBF and
4months in the cropland (þp/3 angle).

The coherences of hEW with GPP and Reco were also
similar between sites showing two typical frequencies at
day�1 and year�1 frequencies. Indeed, the coherence was
highest at frequency bands and dates where hEW co-var-
ied with GPP or Reco. Similar co-occurring bands were
observed at higher frequencies in the crop site, where the
soil is shallowest. As for D, the GPP (Reco) – hEW cross-
power showed seasonal discontinuities at 1-day period
related to the phenology of the canopies. A spectral gap

appeared between the week and month periods where
rare, discontinuous, coherence hotspots occurred. At peri-
ods from 1 to 6months, some scattered, discontinuous
coherence hotspots emerged during 2006–2011; these were
consistent with the hEW power spectrum that showed its
maximal power at these frequencies.

4. Discussion

We have based our data analyses upon homogenized time
series of net CO2 fluxes and their components, GPP and
Reco, and their relationship with independent drivers. The
primary goal was not to maximize the fraction of vari-
ance explained but rather to examine the variability of
fluxes as explained by climate drivers and the correlation
patterns among PFTs. We limit our analysis to French
sites under temperate and Mediterranean climates during
the period, 2006–2011, for which a common 6-year long

Fig. 8. Cross-wavelet coherence (CWC) analysis of GPP (B) and Reco (C) with D at three sites (Puechabon, Barbeau and Aurad�e)
from 2006 to 2011. The monthly time series of variables (A) are presented together with the corresponding scalograms of CWC. The red
colour indicates high coherence between the two-time series at a particular time and a particular period. A blue one indicates no
coherence between the two time series. Arrows on the cross-wavelet coherence plots stand for the synchronization analyses and are
plotted only within white contour lines indicating significance (with respect to the null hypothesis of white noise processes) at the 5%
level. Arrows are pointing right for the in-phase two series relationship (e.g., positively correlated with no lags), left for the anti-phase
relationship (e.g., negatively correlated with no lags), and straight up (down) when carbon flux (biometeorological variable) is leading
the biometeorological variable (carbon flux) by p/2 radians. Finally, the grey zone represents the cone of influence in which the spectral
information is likely to be less accurate (Torrence & Compo 1998).
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time series of raw data could be homogenized and proc-
essed. Our main findings concern the contribution of cli-
mate variables to the CO2 fluxes among five PFTs, the
relationship between the temporal variations of GPP,
Reco and the resulting NEE with climate, soil characteris-
tics, PFT and management. Based on the RF and spectral
analyses, they confirm the previous conclusions and intui-
tive results reached by the pioneering spectral analyses of
ecosystem fluxes (Baldocchi et al. (2001), Katul et al.
(2001) and Stoy et al. (2005, 2009)).

4.1. Contribution of environmental variables

The similarity between the PFTs in the distribution of the
half-hourly CO2 flux variances among contributors was
assigned to the ubiquitous biological processes involved
in the C3 photosynthesis metabolism: CO2 diffusion
through stomata and mesophyll, light absorption by
chlorophyll antenna, the Calvin enzymatic cycle and
RuBisCO kinetics. The high frequency dependency of
these processes on incident light, temperature and CO2

concentration is well characterized. Furthermore, such
processes have been shown to integrate straightforwardly
from the cell to the leaf and canopy levels, with relatively
few upscaling effects (Farquhar et al. 1989; Rayment

et al. 2002). Such processes respond to environmental
drivers with time constants of minutes to an hour (Vialet-
Chabrand et al. 2017) so that cross-variations of CO2

fluxes with climate variables are expected to occur from
minutes to decades. Since the RF analysis reveals only
the direct effect of environmental variables at a 30-minute
time-step, we should expect that a convergence among
PFTs emerges from the ranking of driving variables by
the RF algorithm.

The RF results are consistent with the conclusions
reached by previous studies regarding the control of
GPP, Reco and NEE at high frequency (Baldocchi et al.
2001; Stoy et al. 2009; Ouyang et al. 2014). Here, the dif-
ferential role among PFTs of hydrological drivers such as
D and hEW on GPP and NEE is also apparent. Besides
increasing atmospheric demand for evapotranspiration,
increasing D has been assigned to stomata closure in
response to increased atmospheric dryness (Farquhar
1978; Medlyn et al. 2011; Novick et al. 2016); although
not necessarily through a direct effect of D (Damour
et al. 2010). High values of D have been widely observed
to coincide with stomatal closure and GPP decrease
(Oren et al. 1999; Fu et al., 2018). D is therefore likely to
control the CO2 fluxes more tightly for those PFTs which
expose the canopy foliage to high values of D for longer

Fig. 9. Cross-wavelet coherence (CWC) analysis of GPP (B) and Reco (C) with hEW at three sites (Puechabon, Barbeau and Aurad�e)
from 2006 to 2011. The monthly time series of variables (A) are presented together with the corresponding scalograms of CWC.
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periods, such as the evergreen ecosystems at Puechabon
and Le Bray in a warmer environment (Rambal et al.
2003). The D control was much less tight under wetter
climates and canopies, e.g., the DBF Barbeau site and
the alpine grassland at Laqueuille.

Soil drought also affects photosynthesis by degrading
the plant and leaf water status, leading to stomatal clos-
ure, impaired growth, leaf shedding and ultimately xylem
damage and plant mortality (Br�eda et al. 2006; Granier
et al. 2007). Soil water stress at hEW lower than 0.4 is
reported to affect photosynthesis (Granier et al. 1999,
2000). This condition occurred on average on 115, 61 and
54 days for Puechabon (Mediterranean), Barbeau (tem-
perate), and Aurad�e (crop), respectively, between 2006
and 2011. In the holm oak stand of Puechabon, Pita
et al. (2013) showed a low GPP with low diurnal variabil-
ity in accordance with a strong stomatal control caused
by the severe water stress. This difference among sites
and climates explains our RF analysis conclusions regard-
ing the between-site differences. The soil water, hEW, is
controlled by precipitation, runoff and water uptake by
plants, but its variations are dampened by the soil water
holding capacity. This combination of controls shifts its
power scale pattern towards lower frequencies than those
of D, a difference also observed in arid ecosystems by Jia
et al. (2018). The hEW power gap in the high frequency
range is thus more pronounced where the soil water hold-
ing capacity is large, e.g., in the old growth sessile oak
stand at Barbeau (�170mm) as compared to the crop-
land Aurad�e (�60mm).

Compared to GPP, the situation is different for Reco,
which is controlled by diffusion and other transport proc-
esses intervening between the source metabolic activity
and putative decarbonation processes in the soil and
aboveground biomass. Indeed, not only the Reco-Tair but
also the Reco-hEW correlation is explained at least partly
by a causal relationship, with an effect of temperature
and moisture at periods from an hour to months and a
year (e.g., Janssens et al. 2001; Vargas et al. 2010a; Sierra
et al. 2015). However, the correlation between half-hourly
values of Reco and hEW as observed at all sites might be
partly coincidental, because respiration and soil moisture
vary seasonally in parallel; they show lesser variations in
winter when soil is cold and water-saturated, and larger
variations during the growing season (Vargas
et al. 2010b).

For the functional types with a discontinuous vegeta-
tion cover (Barbeau, Aurad�e and Laqueuille), the RF
ranking of the air temperature, just after the radiation,
indirectly suggests the role phenology played in the tem-
poral pattern of GPP and therefore NEE (White et al.
1999). Interestingly, we observed that wind speed and
CO2 concentration above the canopy co-varied more

closely with GPP in smoother canopies (Aurad�e and
Laqueuille). This observation could be explained by the
contrasting atmospheric coupling of forest, grasslands
and croplands: in low vegetation, turbulence is less devel-
oped and the aerodynamic transfer less efficient, i.e., the
vegetation is decoupled from the atmosphere. This pro-
cess leads to the smoother canopies having a larger diel
variation of CO2 concentration that is synchronized and
opposite to GPP variations. Therefore, we cannot con-
clude a direct influence of CO2 on GPP through
enhanced photosynthesis as has been suggested by
Fern�andez-Mart�ınez et al. (2017).

The percentage of variance explained by climate varia-
bles in the RF analysis decreased with the integration
timespan, confirming that other variables or biotic
parameters or delayed effects contribute to the monthly
to yearly variability of CO2 fluxes. Using regression algo-
rithms with the machine learning approach to predict
NEE, Reco and GPP in all types of ecosystems (ENF,
DBF, EBF, grasslands, croplands, etc… ), Tramontana
et al. (2016) were led to similar conclusions. This finding
suggests that additional explanatory variables must be
introduced to capture CO2 flux variability at low fre-
quency, especially at sites with no clear seasonal cycle as
in evergreen broadleaf forest and crops. In different forest
ecosystems (ENF, DBF and EBF), Urbanski et al.
(2007); Delpierre et al. (2012) and Ouyang et al. (2014)
showed that the direct influence of hydroclimatic drivers
on canopy fluxes, especially NEE, was masked at longer
time scales by the effects of canopy dynamics, photosyn-
thetic thermal acclimation and ecosystem disturbances.
As shown here by the RF analysis across integration
times, several studies confirmed that climatic variables
explain a large fraction of the variance of CO2 fluxes, up
to 80%, at high frequency (30-minute flux averages)
(Loescher et al. 2003; Hollinger et al. 2004; Moffat et al.
2010), but can be reduced to an explained variance of
50% when scaled to longer time intervals (Law et al.
2002; Luyssaert et al. 2007b). Indeed, the RF analyses
cannot account for the putative time lag and memory
effects on NEE, GPP and Reco (Papale et al. 2015) that
might arise from the transfer of carbon from photosyn-
thesis (GPP) to biomass and soil respiration (Reco) and
its variation between PFTs, seasons and species
(Dannoura et al. 2011; Vargas et al. 2011).

The main explanation for the uneven RF performances
among PFTs is their specific disturbance regimes. The
lowest score obtained in the cropland site might be due
to management practice (sowing dates) and disturbance
(soil preparation, harvest) which are indeed crucial but
not accounted for by either the RF or spectral analyses.
The long-term effects of disturbances such as manage-
ment and extreme events (heatwaves, storms and
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prolonged drought) were also not revealed by our RF
analysis (Amiro et al. 2010; Moreaux et al. 2011; Buysse
et al. 2017). As no biotic parameters were selected in the
present analysis, our results are not overestimated, since
as we discussed above, these biotic parameters are known
to be relatively important in explaining flux variability,
depending on the time scales considered. At the Aurad�e
site, a supplementary test showed an increase up to
92.8% in the GPP variance explained when the vegetation
structure and dynamics, such as LAI, was included, as
compared to the initial 64.9% otherwise (data not shown)
(Ouyang et al. 2014). Missing soil properties and carbon
pools in the RF analysis may also explain its lower per-
formance with increasing integration time in the two eco-
systems investigated over a range of time scales.

4.2. Temporal behaviour of CO2 flux variance
partitioning

Our spectral analysis confirms previous conclusions
extracted from the Fluxnet dataset (Stoy et al. 2009).
Both our cross-coherence analysis across temporal scales
and our RF analysis confirm the changes in importance
of climate drivers on ecosystem CO2 fluxes, GPP and
Reco, with decreasing time frequency. An important result
of the RF analysis is to confirm the changes in import-
ance of climate drivers of ecosystem CO2 fluxes, GPP
and Reco, with decreasing time frequencies commonly
observed in literature. This conclusion is also supported
by the cross-coherence analysis across temporal scales.
The variance of half-hourly ecosystem fluxes exceeded the
variance of driving variables, as observed previously by
Katul et al. (2001) at the Harvard Forest site and by
Ouyang et al. (2014) in another temperate broadleaf for-
est in Ohio. It is generally dampened at longer periods,
from weeks to a year, though Ouyang et al. (2014)
observed a secondary power peak of NEE at 6-month
period when compared with air temperature and incident
light. The attenuation of the power of CO2 fluxes at low
frequency has been interpreted as the control of CO2

fluxes by biological factors and the effects of synoptic
weather patterns. Richardson et al. (2007) showed that
40% of the variance in modelled annual NEE can be
attributed to variation in environmental drivers, and 55%
to variation in the biotic drivers. Going through different
time scales, Stoy et al. (2005) and Ouyang et al. (2014)
concluded similarly that the control of NEE, GPP and
Reco changes as the integration timespan increases from
day to season and to year. They found that the incident
downward flux density of photosynthetically active radi-
ation, followed by air vapour pressure saturation deficit
dominated at a daily scale whereas soil water, tempera-
ture or stand characteristics were most influential at

seasonal and annual scales. Furthermore, our spectral
analysis shows that the time series of CO2 flux power
spectra over years are related to the canopy phenology
and are markedly different for the studied PFTs. Our
results closely confirm those obtained by a similar statis-
tical analysis in a drought-stressed mixed ecosystem
where soil moisture appeared as the most relevant pre-
dictor of GPP (Fares et al. 2013). Their ENF, which was
planted with ponderosa pine, exhibited results with the
same ranking order as we found for our ENF, the mari-
time pine ecosystem Le Bray.

The spectral analysis also showed the similarity of the
power spectra of GPP and NEE from half-hourly to 1-
month scales, and to a lesser extent at lower frequencies
(Hong and Kim 2011; Jia et al. 2018). The GPP and Reco

power scale-wise patterns are clearly distinguishable from
each other and confirm therefore that NEE diel to
monthly variability is dominated by GPP independent of
the PFT and climate type (Stoy et al. 2005, 2009;
Luyssaert et al. 2007a; Ouyang et al. 2014; Jia et al.
2018). We cannot exclude, however, a putative influence
of Reco on NEE at longer time scales, 6-month to a year,
although Luyssaert et al. (2007b) showed also that annual
NEE anomalies in forests were created by anomalies in
GPP and Fu et al. (2019) recently extended this conclu-
sion to 66 sites. The contrasted scale-wise power of GPP
and Reco shows that their functional link has actually
only a minor influence, if any. We think this is due to
Reco, the bulk CO2 emission from the ecosystem, being
the end process of the biological part of the carbon cycle
and results from a combination of metabolic and trans-
port processes occurring all along the soil-plant con-
tinuum (Sierra et al. 2015; Moya et al. 2019). Each
respiratory source is using photosynthetic organic carbon
fixed by the carboxylation of Ribulose, but the transfer
time may vary widely between leaf respiration which can
follow assimilation within minutes, to coarse woody deb-
ris mineralization which is lagged by months to years.
These delays may obscure the functional link between
GPP and Reco and their respective temporal patterns. In
addition, and contrary to the photosynthesis, which
occurs only in the canopy foliage, the processes involved
in the ecosystem respiration are located in above and
belowground parts of the vegetation and through soil
microbes which are subjected to a wide range of tempera-
ture and moisture. This positioning makes the relation-
ship between Reco and bulk climate variables more
complex than the GPP’s. Last, the ecosystem respiration
continues at night and during the dormant season; this
may contribute to its power enrichment at intermediates
scales and attenuation at high frequency as compared
with GPP.
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The 6-year period covered by our spectral analyses
allowed us to examine how the power spectrum of fluxes,
micrometeorological variables and their correlation have
been changing from year to year. The soil water was
intermittently correlated with both GPP and Reco at
intermediate (from twice a week to seasonal) frequencies
especially at the end of summer periods and at the 1-yr
period for the three ecosystems studied. On the contrary,
GPP and Reco were highly correlated to D at the 1-day
and 1-yr periods in the three ecosystems with PFT-spe-
cific dynamics. For the evergreen broadleaf forest,
Puechabon, GPP and Reco were almost continuously in
coherence with D at 3-month and 6-month periods; which
is not the case in the deciduous forest and the cropland,
which are marked by a canopy seasonality and for which
GPP and Reco were intermittently uncorrelated at inter-
mediate frequencies. Here, the comparison of spectral
power and coherences among PFT showed that the can-
opy phenology is a key characteristic for assessing the
dynamic effects of climate drivers across time scales. As
expected, the power of CO2 fluxes and D co-vary with a
larger magnitude in spring and summer and least in win-
ter. Less intuitively the scalograms of the cropland
revealed some periods where D variations are high but
vegetation absent (late summer) and conversely, where D
variations are lowest but vegetation is present (winter
wheat). Here, the dynamics of the GPP-D cross-coher-
ence clearly depends on the sowing date and leaf area
development, and thus ultimately on management prac-
tice. This is of course not the case in the deciduous
broadleaf forest since GPP-D cross-coherence coincides
with the growing season and no management operations
happened for the period considered. Accordingly,
accounting for the LAI temporal variations would sub-
stantially improve the representation of CO2 flux variabil-
ity (Hong and Kim 2011; Delpierre et al. 2012; Stoy et al.
2013; Jia et al. 2018).

5. Conclusion

The empirical approaches that we used here, such as the
Random Forest approach and spectral analysis, are use-
ful tools for investigating temporal variations in eco-
logical variables but have limited use for disentangling
their drivers and causal chain, even when accounting for
the phase effects. The canopy photosynthesis GPP
appears as the primary process controlling the temporal
changes of CO2 exchange from the ecosystems consid-
ered, in accordance with the fact that it precedes the
other carbon emission processes. The Reco scale-wise vari-
ability is conversely clearly disconnected from the GPP:
that may be explained by the nature of its complex spa-
tial distribution and multiple sources. The differing

phenology of the PFTs is a key characteristic governing
their temporal variability. The management itself introdu-
ces a supplementary complexity in the time-frequency
control of carbon fluxes as observed in the cropland,
where management modifies the vegetation dynamics at
intra-annual periods. This effect might also be present in
forest but at lower frequencies since there, main opera-
tions (thinning, harvest, etc) occur at longer peri-
ods (5–10 years).

Understanding the impacts of biotic and abiotic varia-
bles on ecosystem fluxes and their temporal variability is
still challenging due to the nature of the impacts. As
pointed out by Stoy et al. (2009), improving the assess-
ment of biotic and abiotic variables involved in the tem-
poral control of CO2 fluxes might benefit from using the
upcoming generation of standardized long-term eddy
covariance observations, e.g., the ICOS Research
Infrastructure in Europe. Multiple site comparative ana-
lysis on standardized data series with well-documented
ancillary data on management and canopy conditions will
allow a better separation of drivers on ecosystem
CO2 fluxes.
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