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1  Introduction 11 

Soil moisture is a key variable in hydrology, meteorology and biosphere science. It is the result of a 12 

strongly heterogeneous atmospheric forcing, i.e. rainfall, and of the interaction of other processes 13 

like evaporation, transpiration, or infiltration. Consequently, soil moisture is subject to strong and 14 

possibly quick variations and is heterogeneous in space and time. This results in potential difficulties 15 

in sampling strategies since sensors have their own limitations in terms of observable scales 16 

(Vereecken et al., 2014). For instance, operating passive L-band radiometers like those of SMOS (Kerr 17 

et al., 2010; 2016) and SMAP (Entekhabi et al., 2010) missions can provide continental  daily coverage 18 

of soil moisture variability but their spatial resolution is limited to pixels of about 50x50 km².  19 

Airborne missions can provide more details about spatial variability but data are available over 20 

limited areas and a very limited amount of time (i.e. when the mission is operated). Conversely, in-21 

situ sensors have the ability to give a very local estimate of soil moisture over small (hourly or sub-22 

hourly) time steps but their observations are difficult to upscale or to extrapolate to other locations. 23 

This resolution mismatch may be somewhat reduced by applying downscaling methods to satellite 24 

data (e.g., Merlin et al., 2008; 2011), but the problem is still not fully solved since downscaled 25 

products have still coarse (kilometric) resolutions in comparison to the small spatial domain seen by 26 

an in-situ sensor. 27 
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An alternative approach is to try to characterize the spatial and temporal variability of soil moisture 28 

with intrinsically multiscale statistical formalisms. The idea behind such formalisms relies on the fact 29 

that a complex, heterogeneous signal or random process may hide remarkable symmetries. In this 30 

context, we may look for statistical estimators that could be related to the process resolution by 31 

simple analytical laws. Such scaling properties are accurately followed by various geophysical 32 

variables (Lovejoy, Schertzer et al., 2008; Lovejoy and Schertzer, 2006, 2010; Gagnon et al., 2006; 33 

Tessier et al., 1993). In many cases, these properties are even related to the concepts of scale 34 

invariance and fractality (some of these concepts will be defined in Section 2).  35 

In geophysics, the characterization of scaling laws may be useful for several kinds of applications such 36 

as: (i) comparing the variability of measurements collected by sensors operating at different 37 

resolutions, (ii) evaluating a numerical model (such as a General Circulation Model or a Land Surface 38 

Model) that should be able to reproduce some scaling features of the observations (e.g., Lovejoy et 39 

al., 2013; Verrier et al., 2014), (iii) constraining statistical downscaling methods (Gires et al., 2012) to 40 

respect the observed scaling laws. 41 

In the context of soil moisture, existing studies already evidenced the existence of fractal-like scaling 42 

in space and in time. In particular, remote sensing data have been used by several authors in order to 43 

investigate fractal properties across space scales. Kim and Barros (2002a, 2002b) analyzed airborne 44 

soil moisture estimates from the Southern Great Plains 1997 experiment and proposed a 45 

monofractal approach for downscaling soil moisture from 10 km to 1km resolution.  Multifractal 46 

variants of the latter approach have been proposed later by Mascaro et al. (Mascaro and Vivoni, 47 

2010, 2012; Mascaro et al., 2010, 2011) based on (partly similar) airborne remote sensing data sets. 48 

Several analyses have also been performed on satellite images. For instance, Lovejoy, Tarquis et al. 49 

(2008) have shown that both MODIS radiances and surface soil moisture index exhibit scaling and 50 

multifractal properties (based on a case study over central Spain).  51 

In the time domain, Katul et al. (2007) also identified the existence of spectral scaling properties 52 

based on relatively long-term in-situ acquisitions (8 years of hourly data) at one specific station. The 53 

authors also proposed a physical approach to justify the existence of these properties, especially 54 

taking into account the integrative nature of soil water content with respect to its meteorological 55 

forcing. 56 

In the following, scaling analysis tools are applied to surface soil moisture time series collected by a 57 

network of probes, SMOSMANIA. Overall, the SMOSMANIA network consists of about 20 stations 58 

located in South-Western and South-Eastern France. Capacitive measurements of hourly soil 59 

moisture have been done continuously during several years at stations belonging to the Météo-60 
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France operational observation network. This makes these measurements suitable for scaling 61 

analyses due to the wide range of time scales covered by the data. Moreover, the network design is 62 

based on a compromise between a large spatial coverage and a moderate distance between probes. 63 

Finally, all probes are located at places with relatively normalized conditions (flat areas, fallow 64 

vegetation, low or moderate altitude) since they are co-located with operational meteorological 65 

stations operated by Météo-France (Calvet et al., 2007; Albergel et al., 2010). 66 

In this paper, a scaling analysis of eight-year long SMOSMANIA time series is proposed, based on 67 

spectral and multifractal analysis tools. The objective will be to try to identify whether scaling 68 

properties are present and over which scale range. Scaling will also be investigated in terms of 69 

complexity analysis by computing the multiscale entropy (MSE) of the different time series. 70 

The rest of the paper is structured as follows. In Section 2, theoretical notions related to spectral 71 

scaling, multifractal scaling, and MSE are recalled. Then the dataset is presented in Section 3. 72 

Spectral analysis results are then presented in Section 4, followed by the multifractal analysis of the 73 

dataset in Section 5. MSE analysis of the data is detailed in Section 6. Then, in the subsequent Section 74 

7, the expected relationship between MSE and multifractal scaling parameters is investigated with 75 

the help of numerical simulations and discussed. Finally, I conclude in Section 8. 76 

 77 

2 Theoretical background  78 

2.1 Spectral scaling 79 

Scale invariance consists of a family of generic properties exhibited by many geophysical datasets 80 

(time series, 2D/3D fields). The concept is closely related to the concept of fractality that has been 81 

investigated and popularized by B. Mandelbrot (e.g., Mandelbrot, 1983).  In the context of stochastic 82 

modeling of geophysical processes, scaling may be typically detected by investigating the scale 83 

dependence of some classical or less classical statistical indicators that often vary as a power-law of 84 

the time (or spatial) resolution or lag. The exponents of such power-laws can therefore characterize a 85 

physical process over given range of scales. For instance, the approaches proposed by Kolmogorov 86 

(1941) for turbulence or by Hurst (1951) in hydrological science have led to a vast scientific literature. 87 

Among various statistical tools that can be used to investigate scaling properties, spectral analysis 88 

offers a relatively simple and convenient way to study the distribution of energy across a wide range 89 

of temporal or spatial frequencies. In particular, power spectral densities have been used as a tool to 90 

investigate the temporal scaling properties of various hydrologic variables such as rainfall (Fraedrich 91 
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and Larnder, 1993; Olsson, 1995 ; Verrier et al., 2011), river flows (Pandey et al., 1998) or soil 92 

moisture (Katul et al., 2007). 93 

In the spectral sense, a time series is scaling if its power spectral density E(f) is proportional to a 94 

power law of the form: 95 

���� ~ ���  (Eq.1) 96 

where f is the frequency and ~ denotes equality within the limits of slowly varying factors that do not 97 

affect the main scaling behavior. (Eq. 1) is valid for frequencies f comprised between two limit 98 

frequencies defining the limits of the scaling range in which the scaling properties have been found. 99 

For some processes like rainfall, several distinct scaling ranges may be found in the series, with 100 

possible meteorological interpretation (e.g., Fraedrich and Larnder, 1993). In the case of soil 101 

moisture, Katul et al. (2007) used theoretical and empirical arguments to separate two ranges, one 102 

with a steep spectrum (behaving like 1/f² spectrum or steeper) at high frequencies (equivalent to 103 

time scales from hours to about one hundred hours) and another one with a flatter spectrum at 104 

lower frequencies (i.e. larger time scales). 105 

 106 

2.2 Multifractals and cascades 107 

Multifractality may be viewed as a generalization of classical scaling properties to systems that do 108 

not exhibit a unique scaling law per scaling range but a whole set of scaling laws with specific 109 

parameters that nonlinearly depend on the order of statistical moments used in analysis (Schertzer 110 

et al., 2002). Physically, it is interesting to investigate different orders of statistical moments since 111 

they are representative of various levels of intensities of the process (e.g. moderate intensities vs. 112 

extreme intensities). 113 

Let us denote λ = T/τ the resolution factor consisting of the ratio of the series time length T and a 114 

given analysis time scale τ (comprised between the time lag between two measurements and T). In 115 

the strict sense, a time series Φ(t) is said to be multifractal if its statistical moments of real positive 116 

orders q follow power-laws of the resolution λ: 117 

〈Φ�
�〉 ~ �����

        (Eq.2) 118 

In the previous equation, Φλ represents a low-resolution version of the original times series, obtained 119 

by direct aggregation over disjoint intervals of length τ = T/λ. Other approaches could have been 120 
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used for defining aggregated products (moving averages, wavelets…) but these approaches will not 121 

be considered in the following. 122 

 123 

In theoretical terms, stochastic processes following (Eq. 2) may be built by iterative multiplicative 124 

procedures called multiplicative cascades (Schertzer et al., 2002). These procedures consist in a 125 

series of resolution refinements where a given coarse scale series is modulated by random 126 

multiplicative factors at each step (i.e. at each resolution refinement). Resolution refinements can be 127 

done by explicitly dividing coarse pixels in smaller subpixels, thus causing a discretization of the 128 

scales. Alternatively this construction can be extended to consider a continuum of scales, leading to 129 

continuous in scale multiplicative cascades (Schertzer and Lovejoy, 1997).  For the latter, random 130 

multiplicative factors between two arbitrary scales should follow a log-infinitely divisible distribution. 131 

In the general case described by (Eq. 2), the scaling exponent K(q) is a convex function of the 132 

moment order q. However, the exact form of K(q) is subject to additional constraints when taking 133 

into account the continuity of the scale space and the related constraints such as the distribution of 134 

random multiplicative factors described above. Based on these considerations, some authors 135 

proposed cascade models where the function K(q) can be expressed in closed form. In particular, 136 

two-parameter models have been proposed by Schertzer and Lovejoy (1987) and by She and Levêque 137 

(1994).  138 

In the following, the parameterization of the K(q) function will be investigated with the help of the 139 

Universal Multifractal (UM) model proposed by Schertzer and Lovejoy (1987). The choice of this 140 

model was motivated by several factors such as its mathematical pertinence (the model is one of the 141 

natural attractors of the class of continuous in scale log-infinitely divisible cascades), its wide use in 142 

geophysical literature, and its physically interpretable parameterization. 143 

In this framework, the function K(q) is parameterized as follows: 144 

���� = ��
��� ��� − ��    (Eq. 3) 145 

C1 is a dispersion parameter comprised in the interval [0,1] for time series. For instance C1 = 0 would 146 

correspond to a homogeneous time series. Mathematically, C1 is the fractal co-dimension associated 147 

to the set of points exceeding a specific threshold specifically related to the mean value of the field . 148 

The parameter α is an index of multifractality and belongs to the [0, 2] interval (α = 0 is the pure 149 

monofractal case where K(q) becomes linear while α = 2 corresponds to log-normal cascades for 150 

which scaling exponents K(q) vary in a quadratic way with q). 151 
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 152 

 153 

2.3 Fractionally integrated cascades 154 

By construction, multiplicative cascades are potentially appropriate for modeling time series whose 155 

power spectrum follows a scaling law with a scaling exponent β < 1. More precisely the scaling 156 

exponent should follow the relationship β = 1-K(2) where K(2) is necessarily positive (see, e.g., Tessier 157 

et al., 1993, §3.b).  158 

However, most geophysical variables are characterized by steeper power spectra (β > 1) in space 159 

and/or time domains.  This is typically the case for variables closely related to turbulence (where β is 160 

generally close to 5/3 for both wind speed and passive scalars coherently with the predictions of 161 

Kolmogorov (1941), Obukhov (1949), and Corrsin (1951)), but also for many other variables, including 162 

topographic  fields (Gagnon et al., 2006). Anticipating on Sect. 4, the subsequent analyses of 163 

SMOSMANIA soil moisture will show evidence of power spectra that are closer to 1/f² behavior. 164 

In the latter cases, multifractality can be investigated by testing the validity of (Eq. 2) for a derivative 165 

of the process, called the flux and denoted Φ. This derivative can be a fractional derivative of the 166 

original process. It is recalled that fractional derivative and integrations are useful notions of 167 

fractional calculus that extend classical definitions of derivatives and integrals to non integer orders 168 

(Loverro, 2004). These concepts are useful for modeling processes with various spectral scaling 169 

exponents, e.g. integrations can represent effects leading to steeper power spectra (Schertzer and 170 

Lovejoy, 1991, appendix B2; Gagnon et al., 2006). In the context of our study, the observable variable 171 

Y (e.g., soil moisture) is modeled as the fractional integration of order H of a multifractal flux Φ that 172 

follow Eq.2. Combined with UM cascades, this defines the Fractionally Integrated Flux (FIF) model 173 

(Schertzer and Lovejoy, 1987) which depends of the three parameters α, C1, and H.  When H is 174 

positive, its effect is that of a smoothing parameter. On the contrary, the case  175 

H < 0 corresponds to additional roughening effects. The case H = 0 corresponds to multiplicative 176 

cascades described in the previous paragraph (i.e. without any additional smoothing or roughening).  177 

In practice, this parameter H may also be estimated by computing the first-order structure function 178 

S(Δt) defined by the first-order absolute increments of the time series as a function of the time lag 179 

Δt: 180 

��∆�� ≝ 〈|��� + ∆�� − ����|〉     (Eq.4) 181 
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In the case of a FIF model, S(Δt) follows a scaling law similar to the one exhibited by fractional 182 

Brownian motions processes: 183 

��∆�� ~ ∆��   (Eq. 5) 184 

where ~ again means equality within the limits of slowly varying factors. It should be mentioned that 185 

the definitions above can be extended by using other definitions of fluctuations in time series. For 186 

instance, Lovejoy and Schertzer (2012) have proposed a variant based on the replacement of 187 

difference fluctuations used in Eq. 4 by Haar fluctuations. Interestingly, such variants may differ from 188 

each other in terms of range of validity of H estimates. For instance, structure functions estimates 189 

based on Eq. 4 will allow the retrieval of H only when 0 < H < 1. The use of Haar fluctuations can lead 190 

to correct estimates on a wider range of H values (-1 < H < 1). In the rest of the paper, analyses will 191 

nevertheless be based on the more classical structure functions defined by (Eq. 4). This is not a 192 

limitation here since H estimates will be found near the middle of the [0, 1] interval (see section 6.2). 193 

The value of H directly affects the distribution of energy across scales: namely, a higher value of H 194 

implies a steeper spectrum. For a FIF series, both values are related by β = 1-K(2)+ 2H (Tessier et al., 195 

1993). Note that for a monofractal signal such as a fractional Brownian motion (characterized by a 196 

unique scaling exponent H), a more or less similar relationship (β = 1 + 2H) still holds. The case of FIF 197 

processes differs from the fBm case by the multifractal correction term K(2). 198 

 199 

2.4 Multiscale entropy 200 

Other signatures of scale-invariance may be found by using analysis methods more closely related to 201 

information theory. For instance, the notion of information dimension has been defined to 202 

characterize the density of points in fractal geometric sets and strange attractors (e.g., Hentschel and 203 

Procaccia, 1983; Farmer et al., 1983). Zhang (1991) suggested computing Shannon entropies of 204 

coarse-grained time series as a prerequisite to define a complexity measure of a signal. A similar 205 

approach has been proposed by Costa et al. (2002, 2003, 2005) in the context of the analysis of 206 

biological signals. Their approach, called Multiscale Entropy (MSE) is based on the estimation of the 207 

sample entropy (SampEn) (Richman and Moorman, 2000) applied on time series that are coarse-208 

grained at various time resolutions.  The sample entropy provides an approximation of the entropy 209 

information of any discrete time series  ["] of length N by computing the conditional probability that 210 

two similar sequences of m consecutive points will remain similar when considering extended 211 

sequences of m+1 points. 212 
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If $%["] denotes a sequence (vector) of m points starting at index i, i.e. $%["] = & ["], … ,  [" + ) −213 

1]+, and d is a given distance between vectors (here taken as the maximal absolute distance between 214 

their components), then we may define the probability of similarity between two different vectors 215 

with respect to a threshold T: 216 

,�), -, .� = Pr� 1�$%["], $%[2]�  3 -�         �2 4 "�       �Eq. 6� 217 

Then the sample entropy may be computed by estimating the negative logarithm of the conditional 218 

probability that two matching vectors of length m will still match while taking into account an 219 

additional point within all vectors (Costa et al., 2005): 220 

�9�), -, .� = −:; <,�) + 1, -, .�
,�), -, ;� =       �Eq. 7� 221 

Due to the negative logarithm, the sample entropy tends to increase when “unexpected” changes in 222 

the series tend to occur, i.e. when they are less repetitive and contain more information. In the 223 

following, the parameters m and T will be fixed to values close to those used in the literature, i.e. 224 

m = 2 and T taken as 15% of the standard deviation of the time series y. 225 

Within this context, the Multiscale Entropy is a procedure consisting at estimating the sample 226 

entropy not only from given a data time series �["] but also from coarse-grained time series ��?�["] 227 

that may be estimated by averaging Y over non-overlapping windows of length τ. This provides an 228 

entropy estimate MSE(τ) that depends on the time resolution τ. 229 

Recent results tend to prove that scale invariance has a specific signature on the Multiscale Entropy: 230 

as recalled by Nogueira (2017), MSE(τ) should scale as a power-law with exponents closely related 231 

with the spectral slope., i.e.  232 

@���A�~ A�B          �Eq. 8� 233 

This has been verified empirically in the case of colored noise/fractional Brownian motion (fBm) time 234 

series (Courtiol et al., 2016). Analytical arguments based on fBm theory have also been proposed by 235 

Gao et al. (2015) to understand this relationship.  These authors also confirmed their findings on 236 

empirical studies of biological signals.  237 

Nogueira (2017) compared the scaling laws of power spectra and MSE approach for both geophysical 238 

data (near-surface wind) and synthetic data (based on monofractal fBm series). In the case of 239 

monofractal fBm signals, the results were tending to confirm that the MSE scaling exponent H’ 240 

should be identical to the scaling exponent H determined by the first-order structure function. On 241 
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the contrary, the case of multifractal signals has not been explicitly analyzed. It may be noticed that 242 

Nogueira’s empirical results on turbulent (i.e., likely multifractal) wind processes suggest that a 243 

scaling law if the form of Eq. 8 could still hold for multifractal signals. 244 

In the following, both MSE tools and multifractal analysis tools will be applied to the same 245 

SMOSMANIA surface soil moisture time series. This will provide two types of multiscale information 246 

that could eventually be compared.  247 

 248 

  249 
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 250 

3 Data sets 251 

SMOSMANIA consists of a network of about 20 measurement stations distributed across 252 

Southwestern and Southeastern France in grassland and agricultural areas (Calvet et al., 2007; 253 

Albergel et al., 2010, 2011). This network has been set up in relation with the much broader HyMeX 254 

campaign (http://www.hymex.org) which was mainly devoted to the monitoring and modeling of 255 

water cycle within the Mediterranean region.  The SMOSMANIA probes are located at existing 256 

operational Météo-France weather stations (RADOME network). The average distance between two 257 

SMOSMANIA stations is of the order of 45 km (Albergel et al., 2010). These locations may be viewed 258 

at ISMN website at the following address: www.geo.tuwien.ac.at/insitu/data_viewer/ISMN.php. All 259 

stations are located at places with a fallow vegetation cover. 260 

The SMOSMANIA network provides operational measurements of volumetric soil moisture and soil 261 

temperatures at various depths. Concerning the former, soil moisture is estimated on a hourly basis 262 

with the help of Thetaprobe sensors based on a capacitive technology. Measurements are available 263 

at four references depths ranging from 5 cm to 30 cm. All the time series may be downloaded for 264 

free at the International Soil Moisture Network (ISMN) page (http://ismn.geo.tuwien.ac.at/data-265 

access/). For more information about ISMN, the reader is also referred to the presentation by Dorigo 266 

et al. (2011). 267 

The present study is focused on time series located in Southwestern France, i.e. on time series of soil 268 

moisture collected at 12 places reported in Table 1. Since scaling-related analyses must generally rely 269 

on data that have a small number of missing data, time series presenting long missing periods of 270 

several dozens of days have been discarded. We therefore restricted the study to nine of the twelve 271 

initial series (discarded series are marked with a star in Table 1). All remaining missing data have 272 

been replaced by linear interpolation. 273 

Several differences between locations should be noted. For instance, Urgons, Sabres, and Créon 274 

d’Armagnac are located closer to the Atlantic ocean and therefore are subject to a more oceanic 275 

climate. They also differ from most of the other stations by a different soil texture with a much larger 276 

sand proportion. Stations that are closer to the Mediterranean Sea (Narbonne, Lézignan-Corbières) 277 

typically have a silt loam texture. Finally, stations that are distant from both seas tend also to have 278 

the largest clay fraction (Condom, Peyrusse Grande, Lahas). We can notice that all stations (except 279 

Mouthoumet station) are located at low altitudes. 280 



11 

 

The present study is focused on the 2007-2014 period that covers most of the available time series 281 

from ISMN. Thus, all soil moisture measurements comprised between 2007/01/07 6:00 and 282 

2015/01/01 0:00 (local time) have been selected in order to cover approximately 8 years. 283 

Measurements before 2007/01/07 were only available at a few stations and thus were discarded. 284 

Since all sensors provide measurements on an hourly basis, all selected time series have about 285 

70,000 data points which provides the possibility of investigating potential scaling properties over 286 

four orders of magnitude in scale. 287 

Finally, some data at the beginning of the data series have been removed in order to reduce all the 288 

time series to 65536 measurements points each. All the retained series still cover the same dates, 289 

ending on 2015/01/01 0:00. The purpose of this restriction is to work with 2E length time series 290 

(here n = 16) which is preferable for technical reasons. Indeed, multifractal analysis requires the 291 

estimation of statistical moments at different aggregated resolutions and the use of a dyadic cascade 292 

(i.e. 2F resolutions with integer i) is very convenient for this. Moreover, FFT-based spectral analysis 293 

techniques are also faster when applied to series with 2E data points. 294 

  295 

 296 

4 Spectral analysis of SMOSMANIA series 297 

4.1 Surface soil moisture data (5 cm depth) 298 

Spectral analysis has been carried out on the data set of soil moistures measured at 5 cm depth in 299 

order to identify scaling properties and possible scaling ranges. Since scaling properties generally 300 

take the form of a power-law spectrum, i.e. ���� ~ ���, the results are presented in logarithmic 301 

coordinates. In such a graph, scaling laws should indeed appear as linear. However, this 302 

representation may have less desirable counterparts when analyzing long time series. In particular, 303 

this usually results in a much denser sampling of frequencies near the high frequencies and often in a 304 

less readable graphic representation. To avoid these problems, an average of the spectra over 305 

equally spaced logarithmic bins (of length 0.02 here) was performed. 306 

The power spectra of the nine selected series are shown on Figure 1. The figure is presented in 307 

logarithmic coordinates. In order to make it more readable, the spectra are translated upwards from 308 

one station to the next one. The spectrum of the Condom series is the only one that has not been 309 

vertically translated. Time scale tick labels are displayed on the horizontal axis (i.e. high frequencies 310 
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are still on the right of the figure but the horizontal graduations specify the time scale equivalent to 311 

this frequency, i.e. τ = 1/f). 312 

 313 

The main feature exhibited by the spectra on Figure 1 is the presence of scaling laws over a large 314 

scale range covering a large range of scales. All spectra seem nevertheless slightly steeper at the high 315 

frequencies than at low frequencies. A more oscillatory behavior at low frequencies (e.g. time scales 316 

larger than several thousands of days) may be noticed. This feature is probably related to the coarser 317 

sampling of frequencies when analyzing large scale structures over time series that is not much 318 

longer than these structures. 319 

It may also be noticed that all spectra appear roughly parallel to each other which suggests that all 320 

spectra should have very similar scaling laws with exponents β that are not expected to vary much. 321 

This may be checked by calculating these scaling exponents.  322 

While the spectra look scaling over three orders of magnitude at first glance, several additional 323 

factors must be taken into account to determine the scale range considered in the fits: (i) the low-324 

frequency part of the spectrum has a poorer sampling and is less robustly estimated, (ii) the 325 

application of a segmentation algorithm (D’Errico, 2017) has been used to identify possible 326 

transitions between ranges with different spectral exponents β, but failed to notice very significant 327 

transitions, (iii) however, some spectral estimations (for instance at Lahas station) exhibit a very local 328 

drop at time scales of the order of 1000-3000 h, (iv) the retained fit range must permit linear 329 

regressions with a good coefficient of determination, for example R² > 0.98. 330 

Taking these elements into account and also anticipating on Sect. 5 where a narrower scaling range 331 

will be found, the estimation of scaling exponents has been limited to the range of scales 1000h – 1h. 332 

The linear regressions are shown on Figure 1 and the scaling coefficients β are reported in Table 2 333 

(for the nine soil moisture time series collected at depth 5 cm). It may be noticed that this choice 334 

permits one to obtain a very good coefficient of determination for each of the nine spectra 335 

presented. All spectral slopes β are found within or very close to the range [1.9, 2] and thus are very 336 

similar to each other when considering that each exponent is given with an uncertainty of ±0.04. This 337 

confirms the apparent parallelism of the spectra on the figure. 338 

4.2 Other depths 339 

By repeating the above procedure for the three other depths, similar results were obtained with 340 

scaling holding to a good approximation for scales smaller than 1000 h (all error bars Δβ were found 341 
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smaller than 0.04 for a linear fit within this range). For all time series, the surface (5 cm) data 342 

spectrum remains above the other spectra, meaning that the surface series contains more energy (in 343 

the signal processing sense) than the other ones. Physically, this is also coherent with the greater 344 

variability amplitude of soil moisture at the surface due to the meteorological forcing. 345 

However, significant differences have been found between stations with typical cases illustrated on 346 

Figures 2a and 2b. At Peyrusse Grande station (Fig. 2a), the spectra are close to each other and the 347 

spectral slopes do not change considerably with depth (here from 1.93 to 2.08) while at Montaut the 348 

spectra are clearly distinct with different spectral slopes (ranging from 1.97 to 2.35).  It may be noted 349 

that the spectra displayed on Figure 2 do not include any vertical shifts between spectra. 350 

The spectral slopes β estimated for all stations at all considered depths are summarized on Figure 3. 351 

The estimates of β are represented on the vertical axis while the stations names are distributed on 352 

the abscissa axis (the stations have been sorted from the most western position to the most eastern 353 

position). More precisely, the abscissa axis refers to the three first letters of the names of the 354 

stations. Error bars are omitted but are of the order of ±0.03 or 0.04 for all estimates. 355 

As illustrated on Figure 2 and Figure 3, it seems that the spectral slope tends to increase as we 356 

consider deeper layers. However, β estimates become more variable across stations as the depth 357 

increases. This could possibly be related to the differences in subsurface processes and soil texture, 358 

the latter being heterogeneous across the stations. 359 

While similar studies in the region of interest do not seem to be reported in the literature, several 360 

published studies may help to put our findings in perspective. In the space domain, lower scaling 361 

exponents are generally reported. For instance, Pelletier et al. (1997) found a value of β = 1.8, while a 362 

value closer to 1.2 might be deduced from the findings presented by Kim and Barros (2002a), based 363 

on remote sensing data. More recently, Neuhauser et al. (2018) reported a spectral exponent closer 364 

to 1.0 at spatial scales > 40 km based on SMOS data. 365 

In the time domain, higher estimates of β have been reported by Katul et al. (2007) based on 366 

measurements of soil moisture in a more subtropical eastern US region (Durham, NC). These authors 367 

considered an eight-year long time series of integrated (0-30 cm) soil moisture. They found a steep 368 

scaling β = 2.75 in the scale range 90 h – 1h and a much flatter spectrum at larger scales. 369 

Interestingly, they also proposed a simplified physical model to show that soil moisture time series 370 

may behave as a time integration of precipitation time series at relatively small time scales (at least 371 

in first approximation). Since power spectra of precipitation data are either flat or decrease in a 372 

scaling way (i.e.  ��G where a > 0, cf. Fraedrich and Larnder, 1993), the expected spectrum of soil 373 
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moisture could be of the form �H�G, which was verified in their case. The results obtained by Katul et 374 

al. (2007) therefore suggest that it is not surprising that soil moisture has a steeper scaling in the 375 

time domain than in the space domain, due to this time integration effect. However, in the present 376 

study estimates of β are found closer to 2.0, i.e. a red-noise like scaling. In this sense, our results may 377 

differ from those of Katul et al. (2007) since the model proposed by the latter authors does not seem 378 

compatible in practice with values of β smaller than 2. 379 

 380 

5 Multifractal analysis 381 

5.1 Surface soil moisture data (5 cm depth) 382 

Results of the previous section show that soil moisture power spectra estimated above are rather 383 

steep (similar to a  f -2 red-noise). This usually means that the series cannot be directly described by a 384 

multifractal multiplicative cascade which requires β < 1. However, as explained in Section 2.3, it is 385 

possible to check whether a multifractal cascade structure may describe some derivative (or 386 

integration) of the process. Fractionally integrated stochastic processes (e.g.  fractional Brownian 387 

motions, fractionally integrated flux…) are models that may be appropriate for scaling processes with 388 

steeper spectral slopes. Therefore, a possible way to investigate multifractality within the series is to 389 

consider a “flux” estimated from a derivative of the time series and to test whether the moments of 390 

this flux follow a multifractal law analogous to that described in Section 2.2 (Eq. 2). 391 

In the following, the fluxes Φ are estimated at 1h resolution by taking the absolute value of the finite 392 

difference derivative of the 5cm moisture series, following the process originally described by 393 

Lavallée et al. (1991, 1993). For each series, the flux is aggregated over non-overlapping intervals of 394 

length τ = 2FAI  using a dyadic cascade approach (i.e. at each step the resolution ratio λ = T/τ is 395 

divided by a factor two and the data are aggregated on successive couples of points). This leads to an 396 

ensemble of aggregated fluxes series ΦJ��F� indexed by the resolution � = 2K  for j = 0, 1, …, 16 (each 397 

aggregated series thus containing λ data points). 398 

Then the empirical moments are used as an estimate of the (unknown) statistical moments. For each 399 

series, and for each chosen moment order q, the aggregated fluxes are elevated to power q and 400 

averaged over the whole series length. The computation is done for all averaging resolutions � = 2K  401 

(j = 0,1,…, 16) and for various orders q comprised between 0 and 2.5 (with a spacing of 0.1 between 402 

two successive orders). This provides the empirical moments @��, �� that approximate the statistical 403 
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moments 〈L�
�〉, the statistical average being replaced by the empirical average. This procedure 404 

corresponds to the Trace Moment approach presented by Tessier et al. (1993). 405 

The empirical moments are represented in logarithmic coordinates as a function of the resolution λ. 406 

The process is repeated for each series. The result is displayed in a larger figure for the case of 407 

Peyrusse Grande data, and in a composite figure for other stations (see Figures 4 and 5).   408 

Figure 4 may be read as follows. First, each curve is associated to one specific moment order. The 409 

higher moment orders q > 1 are associated with the upper, increasing curves on the figure, while the 410 

slightly decreasing curves are associated to orders q such that 0 < q < 1.  Similarly to Figure 1, finer 411 

resolutions are located on the right of Figure 4. 412 

At the coarsest time scales, typically > 1000 h, the curves are undistinguishable meaning that no 413 

significant multiscaling may be found. However, moments are much more variable towards finer 414 

resolutions.  Log-log linear behavior is found to a good approximation within the range of resolutions 415 

comprised between 128 h and 1 h (green fit lines). Since the figure is in logarithmic coordinates, each 416 

regression is representative of Eq. 2 for a fixed order of moment q and its slope corresponds to the 417 

scaling exponent K(q). 418 

Comparable figures are found for the eight others time series with very similar scaling ranges 419 

(Figure 5). Thus, and in order to facilitate the comparison between the different series, it has been 420 

chosen to perform the regression over the same scaling range (128 h – 1 h). It can be noted that this 421 

range is smaller than the one observed on power spectra presented in the previous section. 422 

Based on Figure 4, we also remark that all linear regressions are convergent towards a point while 423 

being extrapolated towards coarser resolutions. The abscissa of this point may correspond to the 424 

“external scale” (Lovejoy et al., 2008) at which the multifractal cascade is initiated. For the nine time 425 

series, the exact position of the external scale may vary a bit but is comprised in the range 200-600 426 

hours. For most of the time series, the external scale would be close to 200-300 h, but for some of 427 

them higher values seem obtainable (e.g., Urgons, Narbonne, or Créon d’Armagnac). For the latter 428 

station, the external scale seems indeed closer to 600 h. Due to the uncertainty of this estimate, it is 429 

not possible to clearly tell if the latter difference is really significant and related to meteorological 430 

forcing. Nevertheless, the position of the external scale is plausibly related to the 431 

weather/macroweather transition scale that has been evidenced for numerous atmospheric fields 432 

(Lovejoy et al., 2013; de Lima and Lovejoy, 2015). The transition between the weather and 433 

macroweather regimes occurs at the lifetime of planetary meteorological structures, i.e. at time 434 

scales of the order of a couple of weeks.  For meteorological variables, the transition separates 435 
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scaling regime respectively characterized by a small intermittency (i.e. large-scale/macroweather) 436 

and a stronger (multifractal) intermittency at smaller scales (i.e. weather regime). 437 

As explained above, the slopes of the green lines on Figure 4 provide the estimates of the moment 438 

scaling function K(q) for the orders q that have been used in previous computations. The graph of the 439 

estimated K(q) function at Peyrusse Grande station is provided on Figure 6. The round dots 440 

correspond to the empirical estimates. We may notice that the values of K(q) are also given for 441 

higher moment orders (up to 3.0) that have not been represented on Fig. 4 for readability purposes. 442 

As expected, the K(q) estimates are distributed along a convex curve. The latter may then be fitted by 443 

the two-parameter universal form recalled in Section 3. The green curve is obtained by nonlinear 444 

optimization on the interval defined by � ∈ [0 , 2.5]. More precisely, the Nelder-Mead method is 445 

used to find the couple of parameters that minimizes the (quadratic) distance between fixed K(q) 446 

estimates and the theoretical values predicted by (Eq. 3).  In this case, the universal parameters 447 

estimates for Peyrusse Grande station are P� = 0.28 and Q = 1.51. 448 

For other stations, more or less similar graphs may be obtained but some variability still exists in both 449 

estimates of Q and P� (Fig. 9). All the different K(q) function estimates were fitted within the interval 450 

[0 , 2.5] (see Figure 5). The obtained parameters are reported in Table 3. 451 

 452 

As shown on Table 3, some variability may be found within parameter estimates. Nevertheless, 453 

P� remains always close to 0.25-0.3 and the observed variability does not seem related with the 454 

positions of the stations and/or soil texture. Such estimates are significantly larger than the values 455 

(closer to 0.1 or even less) reported for other geophysical fields (e.g., Lovejoy and Schertzer, 2013). 456 

However, some studies report large (> 0.3) estimates in the case of rainfall (e.g., Lovejoy, Schertzer et 457 

al., 2008), at least at time scales larger than 1 h (Verrier et al., 2011). Thus, the relatively high value of 458 

C1 that has been observed in this study for soil moisture could be a consequence of the large 459 

intermittency of the rainfall process. Concerning the index of multifractality Q, most estimates are 460 

found within the range 1.6-1.8. In this aspect, the stations of Créon d’Armagnac and Urgons seem to 461 

differ significantly from the others with much lower Q estimates closer to 1.3-1.4. Interestingly, these 462 

stations are relatively close to each other (about 55 km) and both located in the French department 463 

of Landes, at the most western part of the region covered by SMOSMANIA, i.e. closer to the Atlantic 464 

Ocean and with significantly more sandy soil texture. This could suggest a possible impact of these 465 

features on Q. However, the parameter Q characterizes the degree of nonlinearity of the K(q) curve 466 
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and is known to be more difficult to estimate than P�. This could also explain part of the observed 467 

difference despite the relative homogeneity of Q estimates for the other stations. 468 

 469 

5.2 Other depths 470 

By repeating the previous analysis to other depths, a similar multifractal scaling was found in the 471 

range 128 h – 1 h for all stations. This is illustrated on Figure 8 where moments of Peyrusse Grande 472 

(10, 20, 30 cm) data follow a scaling law that could be extrapolated to external scales of the order of 473 

several hundreds of hours. From the slopes of the green lines, scaling exponents K(q) may be 474 

computed and then plotted on Figure 8 (bottom right). On this figure, each color is associated to one 475 

depth (note that 5 cm depth estimates are also plotted on the same graph). While the different 476 

curves globally follow the same shape, they differ significantly from each other for low and high 477 

moment orders. In this case, high-order moments are higher for 10 cm depth data than for other 478 

data, while 20 cm depth data differ from the others for low moment orders. These differences affect 479 

both estimates of multifractal parameters, which can be checked by comparing the couples (α, P�) at 480 

depths 5 cm and 20 cm. Indeed, the latter are respectively equal to (1.51, 0.28) and (0.79, 0.40). Part 481 

of the change may be explained by the partial “linearization” of the K(q) curve as the depth increases 482 

(the limit case of linearity can theoretically be attained at α = 0, i.e. monofractality case). 483 

For all time series, the parameters α and P� have been estimated at the different depths. The results 484 

are summarized on Figures 9a and 9b where estimates are given as a “function” of the station (once 485 

again, stations are sorted from the most western to the most eastern and are identified by their first 486 

three letters). As deeper data are considered, smaller values of α and larger values of P� are 487 

systematically obtained, with a globally larger variability from one station to one another. Similar to 488 

Fig. 8, this change seems to be related to a less pronounced convexity of the K(q) curves as depth 489 

increases. 490 

We may conclude that soil moisture at these depths still follows multifractal properties but with 491 

different K(q)  scaling exponents, especially at low and high order moments. This is illustrated by a 492 

change in multifractal parameter estimates that is noticeable when compared to the relative 493 

homogeneity of the parameters for 5 cm depth data across different stations. A possible explanation 494 

could reside in the impact of soil texture on soil moisture at the deeper layers.  For instance, 495 

subsurface processes could cause a change of the scaling of some moment orders, this change 496 

propagating to the multifractal parameters. 497 

 498 
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6 Multiscale entropy properties 499 

6.1 MSE analysis 500 

The nine surface (5 cm depth) soil moisture time series are now analyzed within the MSE framework. 501 

For each series, sample entropy is estimated at various coarse resolution time series obtained by the 502 

means of averages performed over non-overlapping intervals of various durations τ chosen between 503 

1 h, i.e. the finest resolution available, and 690 h. We cannot degrade the time series to coarser 504 

resolutions since the sample entropy calculation can only be performed over coarse time series 505 

containing at least 100 points (Nogueira, 2017). The estimated entropies are represented in 506 

logarithmic coordinates on Figure 10 for the different time series. Once again, MSE curves are 507 

regularly shifted upwards to make the figure more readable. MSE curves are steeper at lower time 508 

scales and a bit flatter at larger scales. The segmentation tool proposed by J. D’Errico (2017) was 509 

used to estimate the position of the transition between the two behaviors, with a result close 510 

to 30 h. Due to the better sampling of the MSE on the right of the figure, only time scales within the 511 

range 650 h – 30h have been considered for fitting. The exponents H’ are determined by linear 512 

regressions over this interval of time scales. The values of H’ estimates and error bars may be found 513 

in Table 4. Estimates are comprised between 0.31 and 0.66 for a mean value of H’ = 0.43 for all time 514 

series. All the regressions have a very good coefficient of determination except in the case of the 515 

Mouthoumet station. 516 

Despite the narrower scale range, the results are partially coherent with the findings previously 517 

obtained by spectral analysis, with often similar scaling exponents across stations (see Table 2). Once 518 

again, all time series have rather similar scaling properties which could be related to the sampling 519 

strategies (all sensors being located in grassland on flat areas). Nevertheless, it could be noted that 520 

the dispersion of the values of H’ is greater than the dispersion of spectral slopes. This dispersion is 521 

nevertheless probably not representative of a better sensitivity of MSE to local differences: indeed, 522 

H’ is estimated over a significantly narrower scale range than β which could lead to more dispersion 523 

in the estimates.  524 

Furthermore, the soil moisture series collected at 10 cm, 20 cm and 30 cm depths have been 525 

analyzed in a similar way. The scaling exponents H’ obtained by fitting the MSE curves are displayed 526 

on Figure 11. All these exponents have been obtained by linear fits on the log-log graph of MSE(τ) for 527 

time scales in the range 30h – 650 h (all linear regressions had an R² greater than 0.94 except in the 528 

case of Peyrusse Grande where the fits are poorer). Figure 11 also confirms that the scaling 529 
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exponents may depend on depth. Coherently with what was reported on Figure 3, the scaling seems 530 

in general a bit steeper at greater depths.  531 

The results of this section confirm that the scaling properties of soil moisture may be retrieved not 532 

only in terms of spectra and moments, but also in terms of information content. This was expectable 533 

since the signal information (occurrence of unexpected structures) is of course strongly constrained 534 

by the probability distribution of the signal at various resolutions. Nevertheless, this result shows 535 

that multiscale entropy scaling can be found in non-biological natural signals, consistently with the 536 

findings by Nogueira (2017). Additionally, our results show that MSE scaling may be found in natural 537 

signals that follow multifractal statistics. This could extend the findings of the literature that mainly 538 

focuses on monofractal Brownian processes or natural processes assimilated to the former ones (e.g. 539 

Gao et al., 2015). 540 

Complementarily, we may investigate which degree of redundancy may exist between the MSE 541 

approach and the structure function approach, i.e. to check if they estimate the same scaling 542 

properties or not. Indeed, first-order structure functions can be used to estimate the third parameter 543 

H of the FIF model (cf. Section 2.3). In the case of our dataset, is H indeed close to the MSE scaling 544 

parameter obtained above? 545 

6.2 Comparison with first order structure functions 546 

In order to investigate this issue, the first-order structure functions (defined by Eq. 4) have been 547 

estimated based on the surface soil moisture data from the nine stations. The structure functions are 548 

displayed on Figure 12, where they are regularly shifted in the vertical direction to improve 549 

readability. It should be noted that on Figure 12, the large time increments are on the right of the 550 

figure. Very small and very large time increments are not taken into account as they might be 551 

affected by sampling limitations. On the middle of the Figure 12, a scaling regime may be identified 552 

for 30 ℎ 3 ∆� 3 1000 ℎ. This regime is representative of a scaling behavior of the form given by Eq. 553 

5. In order to make the comparison with Sect. 6.1 easier, the linear fit range was restricted to 30 ℎ 3554 

∆� 3 650 ℎ. Good scaling results are obtained, with an very small error bar on the slope estimate ( 555 

∆T ≈ ±0.01  or smaller). The scaling exponent does not vary much from one series to one another, 556 

the mean value of H being equal to H = 0.41 (see values in Table 5). 557 

 558 

We may now compare the estimates of H and H’ obtained for the different series. Figure 13 displays 559 

H’ as a function of H for the different time series. For most stations, estimates of H and H’ are very 560 

similar despite some differences larger than the regressions error bars. However, significant 561 
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differences were found for two stations (Narbonne and Savenès) where the H’ estimates are much 562 

larger than their structure function counterparts. It remains unclear if this is due to greater 563 

uncertainties in the estimates obtained by the MSE approach and/or an ability of the latter method 564 

to catch specific features at some stations. This issue could be investigated in future studies since 565 

MSE and structure function approaches may perform differently in the estimation of Hurst-like 566 

scaling parameters.  567 

While the detailed comparison of the two methods still requires additional theoretical work, we can 568 

already notice that each method has qualitatively identifiable practical advantages and drawbacks. 569 

Namely, classical structure functions are more easy to use to analyze a large scale range but do not 570 

have direct interpretation in terms of signal information. Additionally, they cannot estimate negative 571 

scaling exponents (unless modified variants based on wavelets are used, e.g., Lovejoy and Schertzer, 572 

2012). Meanwhile, MSE algorithms are appropriate for information and complexity estimation but 573 

they are applicable over a relatively limited scale range due to computational constraints (Nogueira, 574 

2017). The MSE framework also provides equations that seem more difficult to relate analytically to 575 

equations such as those governing the statistics of multifractal cascades for non-unity orders of 576 

statistics (Eq. 2). It could be interesting to try to investigate possible links with other theoretical 577 

notions such as the information dimension, which contains both scaling and (Shannon) entropy 578 

characterization. The latter point is left as a perspective in this work. However, a better 579 

understanding of the possible relationship between multifractal scaling and MSE scaling can already 580 

be achieved with the help of numerical tests. This is the subject of the next section. 581 

 582 

  583 
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7 Expected relationship between H’ and multifractal parameters 584 

7.1 Numerical experiments 585 

The analysis presented in Section 6 was aimed to test if H and H’ estimates could have close values in 586 

the empirical case of the study. While the hypothesis H ≈ H’ has been tested numerically by Nogueira 587 

(2017) in the case of fractional Brownian motion processes where the structure function H is the 588 

unique scaling parameter, the extension to the case of multifractal processes has not yet been 589 

investigated by theoretical or numerical approaches (at least to the author’s knowledge). Multifractal 590 

processes differ from fractional Brownian motions by the existence of more nonlinear properties that 591 

are characterized by the parameters C1 and α defined above. A priori, there is no theoretical reason 592 

to rule out a possible effect of C1 and α on the MSE scaling parameter. Therefore, we might look for a 593 

possible functional relationship of the form H’ = f(H, C1, α). While it is still unknown if this function f 594 

can be defined in closed form, numerical tests can be performed to check if there is a systematic 595 

dependency of H’ on the three multifractal parameters. 596 

In the following, numerical tests are presented based on the multifractal simulation techniques of FIF 597 

processes described by (Pecknold et al., 1993; Schertzer and Lovejoy, 2002; Macor, 2007; Verrier, 598 

2011). The main steps are the following: (i) generation of a unit extremal Lévy-stable noise (with an 599 

asymmetry parameter equal to -1 and a stability parameter α identical to the multifractal α defined 600 

above); (ii) multiplication by a (normalizing) multiplicative constant W = X ��
���Y

� �Z
; (iii) Convolution by 601 

a kernel proportional to  |�|� [\ where D is the embedding space dimension (i.e. D = 1 for time series); 602 

(iv) Exponentiation; (v) fractional integration of order H. Step (i) above is performed by applying the 603 

procedure described by Chambers et al. (1976) to a couple of independent simple random variables 604 

at each data point. It is worth noting the procedure allows to store numerical realizations of these 605 

two simple “input” variables U and E (with uniform and exponential distributions respectively, cf. 606 

Pecknold et al., 1993, § 3) and then to repeat the five-step procedure with different sets of 607 

parameters (H, C1, α). Therefore, it is very easy to test different sets of parameters on the same 608 

probabilistic events (i.e. numerical realizations). 609 

Numerical tests have been implemented in the following way. Twenty independent realizations of 610 

couples of U and E time series are first generated in order to build the experiment on twenty 611 

different probabilistic events. Then, the procedure of simulation is applied for various sets of 612 

multifractal parameters (H, C1, α) – in other words 20 synthetic multifractal time series are obtained 613 

for each set of parameters but the 20 random realizations used to generate the series are the same 614 
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for all sets. Since synthetic multifractal time series can have numerical discrepancies at the highest 615 

frequencies, it has been chosen to perform all numerical simulations based on time series of 218 616 

points and then to average each of them over a series of disjoint intervals of 16 points. This 617 

procedure provides 20 time series of 214 = 16384 points for each set of multifractal parameters.  618 

In a second step, MSE analysis is applied to each individual time series and then the MSE(τ) function 619 

is averaged over the 20 individual realizations available for each set of multifractal parameters. The 620 

H’ exponent is then estimated from the averaged MSE(τ) by performing a linear regression in log-log 621 

coordinates over the whole range of available scales (i.e. from 1 to 163 data points since sample 622 

entropy needs 100 data points to be computed). 623 

 624 

7.2 Results 625 

Examples of MSEs estimated from individual series are presented in log-log coordinates on Figures 14 626 

and 15. Figure 14 shows the MSE(τ) obtained for a single random realization with α = 2 and C1 = 0.05. 627 

The blue curve is obtained when H = 0 and the green curve when H has been fixed to 0.4. It may be 628 

noticed that the effect of the fractional integration (i.e. transition from the blue to the green curve) 629 

changes both the height and the slope of the MSE(τ) function. In this individual case, the hypothesis 630 

H’≈H seems to hold when 0.4, but a moderate scaling is found in the H = 0. Figure 15 illustrate the 631 

case where the parameter C1 changes (while α = 2 and H = 0) based on a different individual 632 

realization. The increase of C1 leads to a drastic decrease of the entropy and seems also to increase 633 

the slope H’ of the MSE curve. 634 

These conclusions are globally confirmed when considering the H’ estimates obtained from the 635 

averaged MSEs (Figs. 16-17). Figure 16 shows the H’ estimate as a function of H, with variable C1 636 

while α is fixed to 2. On the figure, each curve corresponds to one value of C1 comprised between 637 

0.05 (continuous blue curve) and 0.55 (dashed green curve) with a spacing of 0.10. H is sampled in 638 

the range [0, 0.7] with a spacing of 0.10. The first bisectrix is represented as a dashed black line. For 639 

all curves, H’ increases with H but does not follow the bisectrix (except when C1 is very small). When 640 

H > 0.5, all curves tends to get relatively close to each other meaning that when H is sufficiently high, 641 

the influence of C1 on H’ is relatively small. On the contrary, when H < 0.4, the influence can become 642 

quite large with a systematic increase of H’ with C1 (confirming the observation of Figure 15). In the 643 

case of a non integrated multiplicative cascade (H = 0), this can lead to an H’ estimate varying within 644 

the range [0.1; 0.3] depending on the C1 value. Regression error bars on H’ estimated from the 645 

average MSE(τ) functions are not represented because they are very small (inferior to 0.01). 646 
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The possible influence of the α parameter (coupled with H) is presented on Figure 17, where H’ is 647 

represented as a function of H, with one curve for one value of α (C1 being fixed to 0.25). The 648 

parameter α has been chosen in the interval [1.5, 2] with a spacing of 0.1 (i.e., values usually 649 

encountered in geophysics, and also reported in this study). Again, H’ is an increasing function of H 650 

for all curves which also remain above the first bisectrix. However, H’ is a decreasing function of α 651 

such that the relationship between H’ and H tends to become closer to the first bisectrix when α = 2. 652 

We may notice that the dependency of H’ on α is very limited for high values of α (α > 1.7) but 653 

becomes more pronounced for smaller values. Finally, we may again notice that for high values of H, 654 

all curves become close to the first bisectrix and increasingly undistinguishable from each other (e.g., 655 

H = 0.7). 656 

These numerical results show that the relationship between multifractal parameters and the MSE 657 

scaling properties is more complex than originally anticipated and that a dependency on the three 658 

multifractal parameters should be expected in the general case. However, we may distinguish two 659 

basic cases: 660 

• For relatively high values of H (> 0.4-0.5), the relationship H ≈ H’ might still provide a useful 661 

work assumption since our results suggest that the fractional integration washes out the 662 

possible effects of the multifractal parameters α and C1. In this case, the MSE scaling 663 

properties of a multifractal process are expectedly close to those of a fractional Brownian 664 

motion which have been investigated  by Nogueira (2017). 665 

• For lower values of H, and in particular in the case of a non-integrated multiplicative cascade 666 

(H = 0), the effect of α and C1 is visible and results in a MSE scaling exponent that is higher 667 

than H (i.e.  H’ = H+ g(H, C1, α)). The positive offset modeled by the function g is higher when 668 

C1 increases or when α becomes significantly smaller than 2. Interestingly, the offset 669 

becomes very small when C1 takes small values, which illustrates that multifractal 670 

intermittency plays an important role in the difference H’-H.   671 

While more exhaustive numerical tests and theoretical work remain to be done to quantify and 672 

understand the relationships between multifractal parameters and observed MSE scaling laws, some 673 

qualitative arguments may help to interpret the present observations. First, the effect of the 674 

fractional integration included in the FIF model is similar to a (scaling) low-pass filter that significantly 675 

attenuates the variability at the smallest scales. It is therefore expectable that a fractionally 676 

integrated signal (H > 0) possesses more entropy at coarse resolutions than at fine resolutions. This is 677 

obvious on Figure 14 where we see that the effect of H is to strongly reduce entropy estimates at 678 

small scales (i.e. on the left part of Fig. 14). Moreover, as already noted on Figure 15, high C1 679 
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parameter values also contribute to strongly reduce entropy. This could seem a bit paradoxical since 680 

C1 is known as an intermittency/heterogeneity parameter. However, multifractal processes with high 681 

C1 correspond to processes that exhibit slow variations most of the time, while most of the variance 682 

is due to very strong and sparse peaks (e.g., fig. 10 in Pecknold et al., 1993). In this case, sample 683 

entropies tend to decrease since repetitive patterns are (or seem) more frequent due to the 684 

existence of wide areas with small variations. This effect is even more pronounced due to the 685 

increased standard deviation of the process when C1 is large due to the contribution of extreme 686 

peaks. Indeed, since the sample entropy builds its similarity criterion by using the standard deviation 687 

of the series (see Eq. 6), it classifies events as similar more easily when large standard deviation and 688 

C1 are involved. We can notice that the decrease of entropy is expectably stronger at small scales 689 

where peaks are both very intense and cover a very small fraction of the time. 690 

7.3 Application to SMOSMANIA empirical parameters 691 

Finally, we may come back to the results of Section 6 since we have just demonstrated that the initial 692 

hypothesis H ≈ H’ may be too simplistic for multifractal processes in some situations. By reporting the 693 

parameters (H, C1, α) estimated in Sections 5 and 6.2 to the graph presented on Figure 17, we obtain 694 

an expected parameter H’ between 0.4 and 0.5. However, the empirical H’ estimates found in Section 695 

6.1 (≈ 0.40) are less coherent with this expected parameter (H’ ≈ 0.47-0.48 for multifractal 696 

parameters α = 1.7, C1 = 0.25, H = 0.40) than the one resulting from the naive H ≈ H’ hypothesis. 697 

Beyond possible estimation uncertainties, a plausible explanation for this observation is the fact that 698 

the multifractal parameters C1 and α are expected to be valid in the range of scales 128h – 1 h, while 699 

H and H’ are valid in the range 650 h – 30 h. At scales larger than 128 h (i.e., beginning of the 700 

“macroweather” regime), the flux moments have much slower variation with scale (Figs. 4-5), which 701 

is equivalent to a strong decrease of the C1 parameter. This could explain why the empirical 702 

estimates of H’ are close to the structure function exponents since it is what is expected for low 703 

values of C1 (see Figure 16, continuous blue curve), especially when H is still relatively large (0.4 in 704 

this case).  705 

 706 

 707 

8 Conclusions 708 

Like other geophysical processes, soil moisture is strongly variable over a rather wide range of time 709 

(and space) scales. Some previous literature papers advocated the existence of scaling and fractal 710 
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properties over various ranges of scales. In this study, 8-year time series of surface soil moisture have 711 

been analyzed with the help of various multiscale analysis tools in order to investigate the existence 712 

of scaling laws. The twelve sensors are located in the same area of about 300 x 200 km² in 713 

southwestern France and the average distance between stations is of the order of a few dozens of 714 

kilometers. For nine of these stations,  power spectra of surface soil moisture showed a red noise-like 715 

1/f ² scaling over a large scale range of time scales (1 h ≤ τ ≤ 1000 h), without any strong break in the 716 

scaling. The scaling exponents are rather homogeneous at the surface layer and exhibit some 717 

variability at deeper horizons where spectra tend to become steeper.  718 

In a second step, multifractal analysis has been applied in order to identify the possible existence of 719 

scaling properties for non-quadratic moment orders. Multifractality has also been observed in the 720 

range of scales comprised between 1 h and 128 h. The moment scaling functions have been 721 

successfully fitted with the two-parameter functional form predicted by the Universal Multifractal 722 

Model. At the surface (5 cm depth) layer, the obtained parameters showed a slightly greater 723 

dispersion than that of spectral slopes, with C1 ≈ 0.2-0.3 and α ≈ 1.3-1.8 for surface data (5 cm 724 

depths). However, a greater dispersion has been found for data collected at deeper horizons (10-30 725 

cm).  On average, the depth affects the multifractality parameters more strongly than spectral 726 

slopes. At 30 cm depth, C1 is closer to 0.4-0.5 while α often becomes smaller than 1. This shift and 727 

this variability could be related to the soil composition while surface parameters are likely to be more 728 

representative of the influence of the meteorological forcing. 729 

Multiscale entropy has also been applied as a complementary scaling analysis tool devoted to the 730 

multiscale analysis of information content present in the series. This approach had been originally 731 

developed in Biology/medicine research literature and has a good potential for analyzing time series 732 

in other scientific fields. As noticed by Nogueira (2017), a systematic relationship exists between MSE 733 

scaling and spectral/first-order structure function scaling in the case of synthetic monofractal data 734 

and seems to hold for scaling geophysical observations. 735 

MSE analysis has been performed over the twelve SMOSMANIA surface time series, showing the 736 

existence of scaling properties for the sample entropies estimated at various aggregation resolutions 737 

(30-650 hours). Due to the strong constraints on sample entropy estimation, the validity of MSE 738 

scaling at larger scales could not be investigated. This is a basic (methodological) limitation of the 739 

MSE approach that is compensated by other advantages: contrary to the usual structure function 740 

approach, MSE could be appropriate to analyze processes with negative Hurst scaling exponents (i.e. 741 

with H < 0 or β < 1) and has a rather direct interpretation in terms of information theory. 742 
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More generally, our numerical results also demonstrated that the MSE scaling properties are not 743 

limited to fBm-like monofractals investigated by previous authors (Gao et al., 2015; Nogueira, 2017) 744 

but should hold for synthetic and natural signals characterized by multifractal properties. Numerical 745 

tests were used to investigate the existence of a systematic relationship between the MSE scaling 746 

parameter H’ and the three multifractal parameters H, C1 and α. It has been observed that the 747 

relationship H’ = f(H, C1, α) is more complex than in the monofractal case (where H’ ≈ H) and that in 748 

some cases the intermittency parameter C1 and the multifractality parameter α can affect 749 

significantly MSE scaling properties. In other cases (i.e. large H or low intermittency), the 750 

approximation H’ ≈ H could be acceptable.  Finally, more theoretical work remains to be done to 751 

understand the relationships between MSE scaling and fractal/multifractal scaling properties. This 752 

could open interesting perspectives for a better physical understanding of many geophysical 753 

processes that exhibit multifractal properties.  754 
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Tables 914 

Station GPS coordinates 

(Lat/Lon) 

Altitude (m) Sensor  

Condom 43.97440     0.33610 174 ThetaProbe-ML2X  

Créon d’Armagnac 43.99360    -0.04690 149 ThetaProbe-ML2X  

Lahas 43.54720     0.88780   249 ThetaProbe-ML2X  

Lézignan Corbieres* 43.17330     2.72830 60 ThetaProbe-ML2X  

Montaut 43.19220     1.64360 295 ThetaProbe-ML2X  

Mouthoumet 42.96000     2.53000 538 ThetaProbe-ML2X  

Narbonne 43.15000     2.95670 112 ThetaProbe-ML2X  

Peyrusse Grande 43.66640     0.22170 245 ThetaProbe-ML2X  

Sabres* 44.14750    -0.84560  81 ThetaProbe-ML2X  

St Félix de Lauragais* 43.44170     1.88000 337 ThetaProbe-ML2X  

Savenès 43.82500     1.17670 158 ThetaProbe-ML2X  

Urgons 43.63970    -0.43500 145 ThetaProbe-ML2X  

 915 

Table 1a : Identification of the 12 SMOSMANIA stations located in the region of interest. Names 916 

marked with a star correspond to stations that are not used in the rest of the study. 917 
 918 
 919 
 920 

Station Soil texture  

Condom Clay  

Créon d’Armagnac Sand  

Lahas Clay  

Lézignan Corbieres Silt loam  

Montaut Silt loam  

Mouthoumet Silt loam  

Narbonne Silt loam  

Peyrusse Grande Clay  

Sabres Sand  

St Félix de Lauragais Clay  

Savenès Silt loam  

Urgons Silt loam  

 921 

Table 1b : Soil texture classification (in terms of USDA texture classification), based on  922 

ISMN/SMOSMANIA metadata information. 923 

  924 
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 925 

Station β  Δβ      R² 

Condom 1.99 0.037  0.988 

Créon d’Armagnac 2.01 0.037 0.988 

Lahas 1.96 0.039 0.987 

Montaut 1.97 0.034 0.990 

Mouthoumet 2.02 0.036 0.989 

Narbonne 1.91 0.034 0.989 

Peyrusse Grande 1.93 0.031  0.991 

Savenès 1.92 0.030 0.992 

Urgons 1.99 0.036 0.989 

 926 

Table 2: Estimates of spectral scaling exponents  β for the time series collected at 5 cm depth.  Δβ is 927 

half of the length of the 95% confidence interval on β while the last column presents the 928 

coefficient of determination. 929 

 930 

Station ]^  _ Validity conditions 

Condom 0.22 1.82 q ≤ 2.5 ; scales 1-128 h 

Créon d’Armagnac 0.26 1.42 «  

Lahas 0.27 1.82 «  

Montaut 0.31 1.60 «  

Mouthoumet 0.22 1.76 «  

Narbonne 0.31 1.61 «  

Peyrusse Grande 0.28 1.51  «  

Savenès 0.27 1.68 «  

Urgons 0.29 1.37 «  

 931 

Table 3: Universal multifractal parameter estimates for the nine SMOSMANIA time series collected 932 

at 5 cm depth. 933 

  934 
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 935 

Station H’ ΔH’      R² 

Condom 0.31 0.02      0.96 

Créon d’Armagnac 0.45 0.02 0.99 

Lahas 0.35 0.02 0.98 

Montaut 0.38 0.02 0.98 

Mouthoumet 0.35 0.04 0.90 

Narbonne 0.66 0.02 0.99 

Peyrusse Grande 0.36 0.02      0.96 

Savenès 0.61 0.01 0.99 

Urgons 0.36 0.01 0.98 

 936 

Table 4: MSE scaling parameter estimates over the time scale range 30 h – 650 h for the nine series 937 

collected at 5 cm depth. 938 

 939 

 940 

Station H ΔH      R² 

Condom 0.42 < 0.01      0.98 

Créon d’Armagnac 0.37 “ 0.97 

Lahas 0.41 “ 0.98 

Montaut 0.41 “ 0.99 

Mouthoumet 0.39 “ 0.96 

Narbonne 0.38 “ 0.93 

Peyrusse Grande 0.39 “      0.98 

Savenès 0.47 “ 0.99 

Urgons 0.42 “  0.99 

 941 

Table 5: Structure function scaling parameter estimates over the time scale range 30 h – 650 h for 942 

the nine stations (surface moisture). 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 
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Figures captions 952 

Figure 1: Power spectral densities E(f) of the nine selected SMOSMANIA surface (5 cm 953 

depth) soil moisture series in logarithmic coordinates.  In order to facilitate the 954 

understanding in terms of time scales, the horizontal axis exhibits values of 1/f (time scale 955 

equivalent to a Fourier frequency). The horizontal axis is presented so that high frequencies 956 

(i.e., small time scales) appear on the right of the figure. The different curves have regularly 957 

been translated upwards in order to improve readability. 958 

Figure 2a: Power spectra of soil moisture at Peyrusse Grande, one spectrum per depth. 959 

Figure 2b: Power spectra of soil moisture at Montaut, one spectrum per depth. 960 

Figure 3: Estimates of spectral slope β for all stations and depths. Each line is associated to a 961 

depth. On the abscissa axis, the three letters identify the stations. Stations are sorted from 962 

west to east. 963 

Figure 4: Flux moments estimated for the Peyrusse Grande time series of surface soil 964 

moisture. Logarithmic scales are used. Moment orders q vary between 0 and 2.5.  965 

Figure 5: Flux moments estimates for the eight other surface soil moisture series. Again, 966 

moments orders comprised between 0 and 2.5 are represented. 967 

Figure 6: Moment scaling function K(q) of Peyrusse Grande surface soil moisture series. 968 

Figure 7:  Moments scaling functions K(q) estimated for the eight other SMOSMANIA surface 969 

soil moisture series. 970 

Figure 8: (Upper figures and bottom left) Moments estimations based on Peyrusse Grande 971 

data at depths 10, 20 and 30 cm. (Bottom right) Moments scaling functions estimated from 972 

depths 5, 10, 20 and 30cm.  973 

Figure 9a: estimates of the index of multifractality α for the different stations and depths.  974 

Each line is associated to a depth. On the abscissa axis, the three letters identify the stations. 975 

Stations are sorted from west to east. 976 

Figure 9b: estimates of the inhomogeneity parameter C1 for the different stations and 977 

depths.  Each line is associated to a depth. On the abscissa axis, the three letters identify the 978 

stations. Stations are sorted from west to east. 979 

Figure 10: MSE analysis for the nine surface soil moisture series. For each series, the Sample 980 

Entropy (SampEn) is estimated for different time resolutions obtained by time aggregation. 981 

Plots are shifted vertically from one station to one another to improve readability. 982 

Figure 11: MSE scaling parameter estimates over the time scale range 30 h – 650 h for the 983 

nine stations and the four depths considered. 984 
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Figure 12: First-order structure functions obtained for the nine SMOSMANIA series. Plots are 985 

shifted vertically in order to improve readability. The different curves are sorted in the same 986 

order as in Figure 10 (from Condom at the bottom to Urgons at the top). 987 

Figure 13: Comparison of scaling exponents H and H’ provided by SF and MSE methods. 988 

Figure 14: MSE analysis for two synthetic multifractal time series generated with H = 0 (blue 989 

curve) and H = 0.4, for the same random realization. C1 and α are respectively fixed to 0.05 990 

and 2. Note that contrary to Figs. 1, 2 and 12, no vertical shift is applied here between both 991 

curves. 992 

Figure 15: MSE analysis for two synthetic multifractal time series generated with C1 = 0.05 993 

(blue curve) and C1 = 0.35, for the same random realization. H and α are respectively fixed to 994 

0 and 2. 995 

Figure 16: Estimated scaling parameter H’ from the MSE analysis averaged on 20 random 996 

realizations. α is equal to 2 in these simulations. Each curve represents the evolution of H’ as 997 

a function of H for a fixed C1. The values of C1 are the following: 0.05 (continuous blue 998 

curve), 0.15 (dashed blue curve), 0.25 (continuous red curve), 0.35 (dashed red curve), 0.45 999 

(continuous green curve), 0.55 (dashed green curve). H is sampled from 0 to 0.7 with 0.1 1000 

spacing. 1001 

Figure 17: Estimated scaling parameter H’ from the MSE analysis averaged on 20 random 1002 

realizations. C1 is equal to 0.25 in these simulations. Each curve represents the evolution of 1003 

H’ as a function of H for a fixed α. The values of α are the following: 1.5 (continuous blue 1004 

curve), 1.6 (dashed blue curve), 1.7 (continuous red curve), 1.8 (dashed red curve), 1.9 1005 

(continuous green curve), 2 (dashed green curve). H is sampled from 0 to 0.7 with 0.1 1006 

spacing. 1007 
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