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Matrix Cofactorization for Joint Spatial–Spectral
Unmixing of Hyperspectral Images

Adrien Lagrange , Student Member, IEEE, Mathieu Fauvel, Senior Member, IEEE, Stéphane May,

and Nicolas Dobigeon , Senior Member, IEEE

Abstract—Hyperspectral unmixing aims at identifying a set of
elementary spectra and the corresponding mixture coefficients for
each pixel of an image. As the elementary spectra correspond
to the reflectance spectra of real materials, they are often very
correlated, thus yielding an ill-conditioned problem. To enrich
the model and reduce ambiguity due to the high correlation,
it is common to introduce spatial information to complement
the spectral information. The most common way to introduce
spatial information is to rely on a spatial regularization of the
abundance maps. In this article, instead of considering a simple
but limited regularization process, spatial information is directly
incorporated through the newly proposed context of spatial
unmixing. Contextual features are extracted for each pixel, and
this additional set of observations is decomposed according to a
linear model. Finally, the spatial and spectral observations are
unmixed jointly through a cofactorization model. In particular,
this model introduces a coupling term used to identify clusters
of shared spatial and spectral signatures. An evaluation of the
proposed method is conducted on synthetic and real data and
shows that results are accurate and also very meaningful since
they describe both spatially and spectrally the various areas of
the scene.

Index Terms—Cofactorization, hyperspectral imaging, image
analysis, spectral unmixing.

I. INTRODUCTION

OVER the past decades, the huge potential of Earth obser-
vation has pushed the scientific community to develop

automatic methods to extract information from the acquired
data. Hyperspectral imaging is a specific image modality
proposing very rich information in the spectral domain. Each

This work was supported in part by the Centre National d’Études Spatiales 
(CNES), Occitanie Region, EU FP7, through the ERANETMED JC-WATER 
Program under Project ANR-15-NMED-0002-02 MapInvPlnt, in part by the 
ANR-3IA Artificial and Natural Intelligence Toulouse Institute (ANITI), and 
in part by the European Research Council under Grant ERC FACTORY-
CoG-681839. (Corresponding author: Adrien Lagrange.)

Adrien Lagrange is with the University of Toulouse, IRIT/INP-
ENSEEIHT, 31000 Toulouse, France (e-mail: adrien.lagrange@enseeiht.fr).
Mathieu Fauvel is with CESBIO, University of Toulouse, CNES/CNRS/

INRA/IRD/UPS, 31400 Toulouse, France (e-mail: mathieu.fauvel@inra.fr).
Stéphane May is with the Centre National d’Études Spatiales (CNES), 

DCT/SI/AP, 31400 Toulouse, France (e-mail: stephane.may@cnes.fr).
Nicolas Dobigeon is with the University of Toulouse, IRIT/INP-

ENSEEIHT, 31000 Toulouse, France, and also with the Institut 
Universitaire de France (IUF), France 
(e-mail: nicolas.dobigeon@enseeiht.fr).

Digital Object Identifier 10.1109/TGRS.2020.2968541

pixel is indeed a dense sampling of the reflectance spectrum
of the underlying area with usually hundreds of measure-
ments from visible to infrared domains. The particularities of
hyperspectral images have led to the development of specific
interpretation methods in order to fully benefit from this
spectral information. In particular, spectral unmixing meth-
ods [1] are based on the assumption that the reflectance
spectrum of a pixel is the result of the mixture of a reduced
set of elementary spectra called endmembers. Each of these
endmembers is the reflectance spectrum corresponding to a
specific material present in the scene. An unmixing method
aims at estimating the existing endmembers and recovering
the proportions of each material in a given pixel, collected
in a so-called abundance vector. These abundance vectors
allow, for example, the end user to build abundance maps
displaying the distribution of materials over the observed
scene.

As hyperspectral images contain rich spectral information,
many unmixing methods focus on exploiting it and often
neglect the spatial information. Many well-established meth-
ods process pixels without taking into consideration the basic
idea that neighboring pixels are often very similar. The only
shared information between pixels is a common endmember
matrix [2], [3]. Nevertheless, advanced methods have been
proposed to perform spatially informed spectral unmixing [4].
The most direct approach is to consider the local spatial
regularization of the abundance maps. Several works, such as
SUnSAL-TV [5] or S2WSU [6], proposed to use the TV-norm
regularization to achieve this goal. Identifying clusters of
spectrally similar pixels, gathered in homogeneous groups, has
also been used to impose spatial smoothing of the abundances
(see [7]–[9]). In a different way, other works used the local
neighborhood to identify the subset of endmembers present
in the neighborhood. It is especially useful when dealing
with a large number of endmembers [10], [11]. Finally, to a
lesser extent, spatial information has also been used to help
the extraction of endmembers. Indeed, endmember extraction
is often performed before estimating the abundance vectors.
Some preprocessing steps were proposed to ease the extraction
and the identification of pure pixels as the averaging of spectra
over superpixels [12] or the use of spatial homogeneity scalar
factors [13].

Overall, it is noticeable that all these approaches tend to
exploit the very simple idea that neighboring pixels should be
spectrally similar. However, the spatial information contained



in remote sensing images is richer than this simple state-
ment. This article attempts to show that the conventional
hyperspectral unmixing approach can leverage the spatial
information to help for spectral discrimination. It relies on
the hypothesis that very spectrally similar pixels can be
discriminated by analyzing their spatial contexts. For instance,
vegetated areas generally lead to challenging unmixing tasks
due to high correlations between signatures associated with
distinct vegetation types. However, it may generally be easier
to discriminate these types of vegetation by analyzing their
respective spatial contexts, even extracted from a grayscale
panchromatic image. As an example, hardwoods are expected
to exhibit canopies different from conifers, thus resulting in
different spatial textures. Similarly, crops are arranged with
specific spatial patterns different from those characterizing
grassland. Exploiting spatial patterns and textures descriptors
is, thus, expected to be helpful to the unmixing process.
To exploit this assumption, this article proposes a model based
on a cofactorization task to jointly infer common spatial and
spectral signatures from the image.

Cofactorization methods, sometimes referred to as coupled
dictionary learning, have been implemented with success in
many application fields, e.g., for text mining [14], music
source separation [15] and image analysis [16], [17]. The
main idea is to define an optimization problem relying on
two factorizing models supplemented by a coupling term
enforcing a dependence between the two models. The method
proposed in this article jointly considers a spectral unmixing
model and a decomposition of contextual features computed
from a panchromatic image of the same scene. The coupling
term is interpreted as clustering identifying groups of pixels
sharing similar spectral signatures and spatial contexts. This
method exhibits two major advantages: 1) it provides very
competitive results even though the method is unsupervised
(i.e., it estimates both endmember signatures and abundance
maps) and 2) it provides very insightful results since the scene
is partitioned into areas characterized by spectral and spatial
signatures.

The remaining of this article is organized as follows.
Section II defines the spectral and spatial models and further
discusses the joint cofactorization problem. Section III details
the optimization scheme developed to solve the resulting
nonconvex nonsmooth minimization problem. An evaluation
of the proposed joint model is conducted first on synthetic
data in Section IV and then on real data in Section V. Finally,
Section VI concludes this article and presents some research
perspectives to this article.

II. TOWARD SPATIAL–SPECTRAL UNMIXING

The main goal of this section is to introduce a model
capable of spectrally and spatially characterizing a hyper-
spectral image. In particular, instead of incorporating prior
spatial information as a regularization [5], the concept
of spatial unmixing, detailed in Section II-B, is intro-
duced alongside a conventional spectral unmixing model in
order to propose a new joint framework of spatial–spectral
unmixing.

A. Spectral Mixing Model

Spectral unmixing aims at identifying the elementary spec-
tra and the proportion of each material in a given pixel [1].
Each of the P pixels yp is a d1-dimensional measurement
of a reflectance spectrum and is assumed to be a combina-
tion of R1 elementary spectra mr , called endmembers, with
R1 ≪ d1. The so-called abundance vector ap ∈ R

R1 refers
to the corresponding mixing coefficients in this pixel. In a
general case, where no particular assumption is made on the
observed scene, the conventional linear mixture model (LMM)
is widely adopted to describe the mixing process. It assumes
that the observed mixtures are linear combinations of the end-
members. Within an unsupervised framework, i.e., when both
endmember signatures and abundances should be recovered,
linear spectral unmixing can be formulated as the following
minimization problem:

min
M,A

‖Y − MA‖2F + ı
R

d1×R1
+

(M) + ı
SP

R1
(A) (1)

where the matrices Y ∈ R
d1×P gather all the observed pixels,

M ∈ R
d1×R1 are the endmembers, A ∈ R

R1×P are the
abundance vectors, and ı

R
d1×R1
+

(·) and ı
SP

R1
(·) are, respec-

tively, indicator functions on the nonnegative quadrant and the
column-wise indicator function on the R1-dimensional prob-
ability simplex denoted by SR1 . The nonnegative constraint
over M is justified by the fact that endmember signatures
are reflectance spectra and, thus, nonnegative. The second
indicator function enforces nonnegative and sum-to-one con-
straints on the abundance vectors ap (p = 1, . . . , P) in
order to interpret them as proportion vectors. It is worth
noting that the sum-to-one constraint is sometimes disregarded
since it has been argued that relaxing this constraint out
offers a better adaptation to possible changes of illumination
in the scene [18]. Due to the usual ill-conditioning of the
endmember matrix M, the objective function underlying (1)
is often granted with additional regularizations promoting
expected properties of the solution. In particular, numerous
works exploited the expected spatial behavior of the mix-
ing coefficients to introduce spatial regularizations enforc-
ing piecewise constant [5], [8] or smoothly varying [2], [3]
abundance maps, possibly driven by external knowledge [19].
Conversely, this article does not consider spatial information as
a prior knowledge but rather proposes a decomposition model
dedicated to the image spatial content, paving the way toward
the concept of spatial unmixing. This contribution is detailed
in Sections II-B–II-D.

B. Spatial Mixing Model

As previously mentioned, this article proposes to comple-
ment the conventional linear unmixing problem (1) with an
additional data-fitting term accounting for spatial information
already contained in the hyperspectral image. To do so, for
sake of generality, we assume that the scene of interest
is characterized by vectors of spatial features sp ∈ R

d2

describing the context around the corresponding hyperspectral
pixel indexed by p. The features can be extracted from
the hyperspectral image directly or from any other available



images of any modality of the same scene, with possibly
better spatial resolution. A common choice for designing
these features will be discussed later. To capture common
spatial patterns, akin to a so-called spatial unmixing, these
P d2-dimensional spatial feature vectors sp gathered in a
matrix S ∈ R

d2×P are linearly decomposed and recovered
from the optimization problem

min
D,U

‖S − DU‖2F + ı
R

d2×R2
+

(D) + ı
SP

R2
(U) (2)

where D ∈ R
d2×R2 is a dictionary matrix and U ∈ R

R2×P is
the corresponding coding matrix.

The spatial model underlying (2) can be interpreted as a
dictionary-based representation learning task. It means that the
image in the considered feature space can be decomposed as a
sum of elementary patterns collected in the matrix D of spatial
signatures. The corresponding coding coefficients are gathered
in U. The nonnegativity constraints are imposed to ensure an
additive decomposition similar to what is done in the context
of nonnegative matrix factorization (NMF) [20]. Finally, with-
out any constraint on the norms of U and D, the problem would
suffer from a scaling ambiguity between U and D. To cope
with this issue, additional sum-to-one constraints are imposed
on the columns of U. This choice, which somehow brings
some loss of generality when compared to normalizing the
rows of U, leads to possibly amplitude-varying atoms in D.
In other words, to describe similar spatial patterns of different
amplitudes, additional atoms should be included in the spatial
dictionary D. However, normalizing the columns in U has
the advantage of leading to spatial and spectral representation
vectors of the same unit norm, which prevents any unbalances
in the coupling process introduced in Section II-C.

It is worth noting that a model similar to (2) was implicitly
assumed in [21]–[23], where a single-band image acquired by
scanning transmission electron microscopy is linearly unmixed
by the principal component analysis [24], independent com-
ponent analysis [25], N-FINDR [26], or deep convolutional
neural networks. In these works, the spatial feature space is
defined by the magnitude of a sliding 2-D-discrete Fourier
transform, which unlikely ensures the additivity, or at least
linear separability, assumptions underlying the mixtures. As an
alternative, the strategy adopted in this article relies on a
patch-based representation of the image, as popularized by
several seminal contributions in the literature. Combined with
a linear decomposition underlying (2), this representation can
be easily motivated by the intrinsic property of image self-
similarity. It has already shown its practical interest for various
image processing tasks, including classification and denois-
ing. As archetypal examples, patch-based dictionary learning
methods leverage on linear models similar to (2) to capture
spatial redundancies [27]–[30]. This self-similarity property is
also a key assumption to motivate linear aggregation steps in
many nonlocal denoising techniques such as NL-means [31]
and BM3D [32]. Its simplicity makes this model popular in
many application fields, including medical imaging [33] and
photography [34]. Thus, in the numerical experiments reported
in Sections IV and V, the spatial features will be chosen as

the elementary patches extracted from the virtual panchromatic
image computed by averaging the hyperspectral bands.

C. Coupling Spatial and Spectral Mixing Models

Sections II-A and II-B have defined two matrix factoriza-
tion problems associated with two unmixing tasks considered
independently. To mutually benefit from spectral and spatial
information brought by the image, these two tasks should be
considered jointly. A natural approach consists in coupling
the two tasks by relating the coding factors involved in the
two matrix decompositions. A hard coupling between the
coding matrices, which would consist in constraining spectral
and spatial abundance maps to be equal (i.e., A = U),
will be shown to be not sufficiently flexible to account for
complex interactions between spatial and spectral information
(see Section IV). Conversely, the proposed approach relies on
the simple yet sound assumption that the pixels in the scene
obey a small number of spectral and spatial behaviors that
can be clustered. This implicitly means that a given elemen-
tary material, uniquely represented by a single endmember
spectrum, is expected to be present in the scene with a small
number of distinct spatial configurations. Thus, the coupling
is designed as a clustering task which aims at recovering
common behaviors jointly exhibited by the spatial and spectral
abundance maps. More precisely, this clustering task can be
formulated as another NMF problem

min
B,Z

∥

∥

∥

∥

(

A

U

)

− BZ

∥

∥

∥

∥

2

F
+

λz

2
Tr(ZT VZ) (3)

+ ı
R

(R1+R2)×K
+

(B) + ı
SP

K
(Z) (4)

with V = 1K1T
K − IK , where IK is the K × K identity

matrix, 1K is the K × 1 vector of ones, and Tr(·) is the trace
operator. The two coding matrices A and U are concatenated,
and the clustering is conducted on the columns of the resulting
whole coding matrix. The matrix Z ∈ R

K×P describes the
assignments to the clusters, where zp gathers the probabilities
of belonging to each of the clusters; hence, the nonnegativity
and sum-to-one constraint enforced on it. It is accompanied
with a specific regularization [see the second term in (3)]. This
penalty promotes orthogonality over the lines of Z since it
can be rewritten as Tr(ZT VZ) =

∑

k1 6=k2

〈

zk1,:|zk2,:

〉

, where
〈·|·〉 stands for the scalar product. Due to nonnegativity of
the elements of Z, this term becomes minimal when the
assignments to clusters obey a hard decision, i.e., when
one component of zp is equal to 1 and the others are set
to 0. Thus, a strict orthogonality constraint would make the
clustering problem (3) equivalent to a k-means problem [35].
Centroids of the K clusters define the columns of the matrix
B ∈ R

(R1+R2)×K . Interestingly, each centroid is then the
concatenation of a mean spectral abundance and a mean
spatial abundance. In particular, it means that the pixels of
a given cluster share the same spectral properties and a sim-
ilar spatial context. Indeed, these centroids, when combined
with the spectral and spatial signature matrices M and D,
provide a compact representation of the spectral and spatial
contents of each cluster. More precisely, each column of the



(d1 + d2) × K -matrix defined by
(

M̄

D̄

)

=

(

M 0

0 D

)

B (5)

can be interpreted as the spatial–spectral signature of each
cluster, resulting from the concatenation of a mean spectral
signature m̄k and a mean spatial signature d̄k (k = 1, . . . , K ).

D. Joint Spatial–Spectral Unmixing Problem

Given the spectral mixing model recalled in Section II-A,
the spatial mixing model introduced in Section II-B, and their
coupling term proposed in Section II-C, we propose to conduct
spatial–spectral unmixing jointly by considering the overall
minimization problem

min
M,A,D,U,B,Z

λ0

2
‖Y − MA‖2F + ı

R
d1×R1
+

(M) + ı
SP

R1
(A)

+
λ1

2
‖S − DU‖2F + ı

R
d2×R2
+

(D) + ı
S

P
R2

(U)

+
λ2

2

∥

∥

∥

∥

(

A

U

)

− BZ

∥

∥

∥

∥

2

F
+

λz

2
Tr(ZT VZ)

+ ı
R

(R1+R2)×K

+

(B) + ı
SP

K
(Z) (6)

where λ0, λ1, and λ2 adjust the respective contribution of the
various fitting terms. It is worth noting that because of the sum-
to-one constraints enforced on the spectral abundance vectors
ap and spatial abundance vectors up , all these coding vectors
have the same unitary ℓ1-norm. It has the great advantage
of avoiding a reweighing of A and U in the coupling term
regardless of the number of endmembers and dictionary atoms.
Section III describes the optimization scheme adopted to solve
the joint spatial–spectral unmixing problem (6).

III. OPTIMIZATION SCHEME

A. Proximal Alternating Linearized Minimization (PALM)

Algorithm

The cofactorization problem (6) is a nonconvex, nonsmooth
optimization problem. For these reasons, the problem remains
very challenging to solve and requires the use of advanced
optimization tools. The choice has been made to resort to
the PALM algorithm [36]. The core concept of PALM is
to update each block of variables alternatively according to
a proximal gradient descent step. This algorithm has the
advantage of ensuring convergence to a critical point of the
objective function even in the case of a nonconvex, nonsmooth
problem.

In order to obtain these convergence results, the objective
function has to ensure a specific set of properties. First,
the various terms of the objective function have to be separable
in a sum of one smooth term g(·) and a set of independent
nonsmooth terms. Then, each of the independent nonsmooth
term has to be a proper, lower semicontinuous function fi :

R
ni → (−∞,+∞], where ni is the input dimension of fi .

Finally, a sufficient condition is that the smooth term is a
C2-continuous function and its partial gradients are globally
Lipschitz with respect to the derivative variable. Further details
are available in [36].

Algorithm 1 PALM

1 Initialize variables M0, A0, D0, U0, B0 and Z0;
2 Set α > 1;
3 while stopping criterion not reached do

4 Mk+1 ∈

proxαLM
ı
R

d1×R1
+

(Mk − 1
αLM

∇Mg(Mk,Ak,Dk,Uk,Bk ,Zk));

5 Ak+1 ∈

proxαLA
ı
S

P
R1

(Ak − 1
αLA

∇Ag(Mk+1,Ak,Dk ,Uk,Bk,Zk));

6 Dk+1 ∈ proxαLD
ı
R

d2×R2
+

(Dk −

1
αLD

∇Dg(Mk+1,Ak+1,Dk,Uk,Bk ,Zk));
7 Uk+1 ∈ proxαLU

ı
S

P
R2

(Uk −

1
αLU

∇Ug(Mk+1,Ak+1,Dk+1,Uk,Bk ,Zk));
8 Bk+1 ∈ proxαLB

ı
R

(R1+R2)×K
+

(Bk −

1
αLB

∇Bg(Mk+1,Ak+1,Dk+1,Uk+1,Bk,Zk));
9 Zk+1 ∈ proxαLZ

ı
S

P
K

(Zk −

1
αLZ

∇Zg(Mk+1,Ak+1,Dk+1,Uk+1,Bk+1,Zk));
10 end

11 return Mend,Aend,Dend,Uend,Bend,Zend

In problem (6), the smooth term g(·) is composed of the
three quadratic terms and the orthogonality-promoting regular-
ization. All these terms verify the gradient Lipschitz and C2-
continuous properties. Moreover, the nonsmooth terms fi are
separable into independent terms. Moreover, since they are all
indicators functions on convex sets, their proximal operators
are well-defined and, more specifically, are defined as the
projection on the corresponding convex set. The projection
on the nonnegative quadrant is a simple thresholding of the
negative values, and the projection on the probability simplex
can be achieved by a simple sort followed by a thresholding
as described in [37].

A summary of the overall optimization scheme is given in
Algorithm 1, where LX stands for the Lipschitz constant of
the gradient of g(·) considered as a function of X. Partial gra-
dients and Lipschitz moduli are all provided in the Appendix.
Additional details regarding the implementation are discussed
in Algorithm 1.

B. Implementation Details

1) Initialization and Convergence: As explained, the PALM
algorithm only ensures convergence to a critical point of the
objective function. Hence, it is important to have a good
initialization of the variables to be estimated. In the following
experiments, the initial endmember matrix M0 has been cho-
sen as the output of the vertex component analysis (VCA) [38].
Abundance matrix is then initialized by solving the fully con-
strained least-squares (FCLS) problem minA∈SP

R1
‖Y−MA‖2F.

Finally, D0 and U0 are initialized by performing a k-means
algorithm on columns of S. Similarly, B0 and Z0 are initialized
by a k-means on the concatenation of U0 and A0.



As stated in Algorithm 1, a criterion is needed to monitor the
convergence of the optimization algorithm. In the following
experiments, the residual error of the objective function is
computed at each iteration, and when the relative gap between
the two last iterations is below a given threshold (10−4 for
these experiments), the algorithm is stopped.

2) Hyperparameters: Several weighting coefficients λ· have
been introduced in problem (6) to adjust the respective con-
tribution of each term. In the following experiments, some of
these coefficients have been renormalized to take in consider-
ation the respective dimensions and dynamics of the matrices
defining each term, thus yielding:















λ0 =
1

d1‖Y‖2∞
λ̃0

λ1 =
1

d2‖S‖2∞
λ̃1.

(7)

IV. EXPERIMENTS USING SIMULATED DATA

Performance of the proposed spatial–spectral unmixing
method has been assessed by conducting experiments on both
synthetic and real data. The use of synthetic data makes
quantitative validation possible, whereas it is not possible with
real data since there is no reference data.

A. Data Generation

In order to properly evaluate the relevance of the proposed
model, two synthetic images referred to as Image 1 and
Image 2 have been generated such that they incorporate con-
sistent spatial and spectral information. Note that the proposed
simulation framework, detailed hereafter, does not directly rely
on the forward model underlying the joint spectral–spatial
unmixing problem in (6).

Each image is supposed to be composed of J homogeneous
regions with common spatial and spectral characteristics.
These regions have been randomly generated according to a
Potts–Markov random field with J classes [39]. Each region
is characterized by specific (yet nonpiecewise constant) spatial
and spectral contents whose generation processes are described
in the following. According to the linear mixing model,
the observed pixel spectra in each region are assumed to result
from the linear combination of R1 endmembers gathered in the
common matrix M = [m1, . . . ,mR1 ]

∀p ∈ P j , yp = Ma( j )
p (8)

where P j denotes the set of pixels belonging to the j th
region and a

( j )
p ∈ SR1 is the abundance vectors of the pth

pixel in the j th region. The endmember signatures in M have
been extracted from the ASTER library [40]. Each of these
regions is characterized by a particular texture. To ensure
realistic spatial patterns, the J textures associated with the
J regions are extracted from real panchromatic images. They
are depicted in Fig. 1 for Image 1 and Image 2. The intensity
of the pth pixel of the grayscale image texture associated
with the j th region is denoted by t

( j )
p ∈ (0, 1) (p ∈ P j ).

The key ingredient is the appropriate design of the abundance
vectors a

( j )
p (p ∈ P j ) that jointly encode the spatial and

Fig. 1. Synthetic data set: textures (forest and wheat) for Image 1 and (corn,
grass, forest, rock, and wheat) for Image 2.

spectral contents in the j th region. To include consistent
spatial information, these abundance vectors are assumed to
be convex combinations of two predefined extreme spectral
behaviors ψ ( j )

i ∈ SR1 (i ∈ {1, 2}), that is

a
( j )
p = t

( j )
p ψ

( j )
1 +

(

1 − t
( j )
p

)

ψ
( j )
2 (9)

where the grayscale intensity t
( j )
p ∈ (0, 1) of the j th texture

modulates the spectral content in the pth pixel of the j th
region. This supports the idea that a texture can be seen
as small spatial variations of the proportions of elementary
components between extreme spectral signatures. In particular,
a white pixel in the j th texture (i.e., t

( j )
p = 1) leads to a

spectral content only driven by ψ ( j )
1 , and the corresponding

pixel in j th region of the generated hyperspectral image is
yp = Mψ

( j )
1 . Conversely, a black pixel in the j th texture

(i.e., t
( j )
p = 0) leads to a spectral content only driven by

ψ
( j )
2 , and the corresponding pixel is yp = Mψ

( j )
2 . Of course,

gray pixels in the texture lead to mixed behaviors with yp =

t
( j )
p Mψ

( j )
1 + (1− t

( j )
p )Mψ

( j )
2 . The generated abundance maps

are shown in Fig. 2. Again, note that this simulation protocol
does not rely on the cofactorization formalism underlying the
proposed algorithm.

Two images have been generated according to this process.
Image 1 is a 200 × 200-pixel image with 385 spectral bands
composed of R1 = 4 endmembers and J = 2 regions.
Image 2 is a 300 × 300-pixel image with 385 spectral bands
with R1 = 9 endmembers and J = 5 regions. Note that
for these two images, the texture-based modulating intensity
t
( j )
p never reaches the extreme values 0 and 1 (∀p,∀ j ).
In addition, from the two hyperspectral images, corresponding
panchromatic images have been generated by first dividing
each band individually by its empirical mean over the pixels
and then summing all these normalized bands for each pixel.
The contrast has been finally adjusted such that the minimum
and maximum values of the image are 0 and 255, respectively,



Fig. 2. Synthetic data set: abundance maps.

Fig. 3. Synthetic data set. (a) Segmentation map. (b) Color composition of
the hyperspectral image. (c) Panchromatic image.

to obtain an 8-bit image. The generated hyperspectral and
panchromatic images are shown in Fig. 3.

B. Compared Methods

In order to assess the performance of the proposed
spatial–spectral unmixing model, referred to as SP2U,
the unmixing results have been compared with those of several
well-established methods. First, the result of the initialization
method has been used as a baseline. This method is conven-
tional [2] and consists in extracting endmembers using the
VCA method [38] and then solving an FCLS problem. This
first method is referred to as VCA + FCLS hereafter.

The second compared method uses again an FCLS method
to estimate the abundance vectors but uses an alternative end-
member extraction algorithm. This method, called SISAL [41],
tries to estimate the minimum volume simplex containing the
observed hyperspectral data by solving a nonconvex problem
using a splitting augmented Lagrangian technique.

The third compared method relies on a similar linear mixing
model assumed by VCA + FCLS and SISAL + FCLS.
However, instead of estimating the endmember signatures
and abundances sequentially, it performs a joint estimation,
thus yielding an NMF task with an additional sum-to-one
constraint. This method referred to as NMF in the following
is a depreciated version of the SP2U problem (6), where
λ1 = λ2 = λz = 0, and has been solved and initialized
similarly.

The fourth method SUnSAL-TV was introduced in [5] and
proposes to solve a conventional linear unmixing problem
with an additional spatial regularization term to incorporate
spatial information. The regularization term is chosen as a
total variation applied to the abundance maps A. It promotes
in particular similarity of abundance vectors of neighboring
pixels. In this case, the local information is used, whereas
SP2U method relates pixels sharing the same spatial context,
akin to a nonlocal framework. It is important to note that this
method does not estimate the endmember matrix, which is
estimated beforehand using VCA or SISAL.

The fifth method, denoted by n-SP2U, is a naive counterpart
of the proposed SP2U method. Instead of using the coupling
term introduced in Section II-C, the abundance matrix A and
the coding coefficients U are directly considered equal, thus
yielding the following problem:

min
M,A,D

λ0

2
‖Y − MA‖2F + ı

R
d1×R1
+

(M)

+
λ1

2
‖S − DA‖2F + ı

R
d2×R2
+

(D) + ı
SP

R1
(A). (10)

This method is considered for comparison since it may seem
natural when willing to couple factorizations associated with
spatial and spectral unmixing. However, it actually appears
very unlikely to perform well in real scenarios. Indeed,
the naive model n-SP2U actually enforces the same size of
dictionary for the spatial mixing and the spectral mixing.
In realistic cases, we expect to have less spectral signatures
than spatial signatures. Indeed, a given elementary material can
be presented with several spatial patterns, whereas a given spa-
tial pattern would be unlikely associated with distinct spectral
signatures. To account for the case of a given spectral signature
associated with several spatial signatures, the n-SP2U model
would need a larger endmember matrix M with several equal
columns, each one associated with a specific spatial signature
in D. The resulting estimated abundance matrix A would
need to follow a fusion process to sum abundance maps
corresponding to the same spectral signatures.

The last compared method, denoted by c-SPU, is another
simplified version of SP2U, where the spatial data fitting term
has been removed. It corresponds to an NMF-based spectral
unmixing method combined with a clustering of the spectral
abundance vectors. The c-SPU method solves the problem

min
M,A,B,Z

λ0

2
‖Y − MA‖2F + ı

R
d1×R1
+

(M) + ı
SP

R1
(A)

+
λ2

2
‖A − BZ‖2F +

λz

2
Tr(ZT VZ)

+ ı
R

(R1+R2)×K

+

(B) + ı
S

P
K
(Z). (11)

Comparing the results provided by c-SPU with those obtained
by the proposed method SP2U aims at demonstrating the
interest of considering the spatial data fitting term. At a lesser
extent, it will also measure the benefit of introducing the
clustering term, which is expected to act as a regularizer for
the spectral abundance matrix A.



TABLE I

Image 1: QUANTITATIVE RESULTS (AVERAGED OVER TEN TRIALS)

C. Performance Criteria

Performance of all methods has been assessed in terms
of endmember estimation using the average spectral angle
mapper (aSAM)

aSAM(M) =
1

R1

R1
∑

r=1

arccos

(

〈

m
(ref)
r |mr

〉

∥

∥m
(ref)
r ‖2‖mr

∥

∥

2

)

(12)

and also in terms of abundance estimation using the root-
mean-square error (RMSE)

RMSE(A) =

√

1

PR1
‖A(ref) − A‖2F (13)

where m
(ref)
r and A are the r th actual endmember signature

and the actual abundance matrix, respectively.
Two additional information have also been included in the

results: the processing time, which includes the initialization,
the endmember extraction, and the abundances estimation, and
the reconstruction error which measures how the model fits to
the observed data

RE =

√

1

Pd1
‖Y − MA‖2F. (14)

It is worth noting that RE should not be understood as a cri-
terion of unmixing performance. It rather measures the ability
of a given model to fit the observations. Thus, a very low RE
may not be systematically suitable since it could be explained
by overfitting. Conversely, a high RE may help to diagnose
a model unreliability or issues in algorithmic convergences.
However, when comparing a given set of methods, REs of the
same order of magnitude ensure that all methods are able to
describe the data with similar accuracy, and the criteria for
unmixing performance (RMSE and SAM) can be compared
fairly.

D. Results

As stated in Section II-B, the spatial feature matrix S has
been extracted from the panchromatic image. For each pixel,
the spatial feature vector sp (p ∈ {1, . . . , P}) is obtained by
concatenating the values of the pixels in an 11×11-pixel patch
centered on the considered pixel. This choice may seem very
naive, but patch-based image decompositions have proven their
interest for many tasks. This choice has also the advantage of
offering a direct interpretation of the spatial content and cluster
centroids as small 11 × 11 patches. In addition, designing

Fig. 4. Image 1: estimated endmembers.

the most appropriate spatial feature is out of the scope of
this article; its main objective is to introduce the concept of
spatial–spectral unmixing. Moreover, for these experiments,
the actual number of endmembers has been assumed known,
and thus, R1 = 4 for Image 1 and R1 = 9 for Image 2. The
number of dictionary atoms and clusters has been empirically
adjusted and set such that R2 = 20 and K = 30 for Image 1



TABLE II

Image 2: QUANTITATIVE RESULTS (AVERAGED OVER TEN TRIALS)

Fig. 5. Image 1: abundance maps (the colored squares refer to the colors used to plot endmembers in Fig. 4).

and R2 = 30 and K = 40 for Image 2. It is worth noting
that increasing these two parameters tends to improve the
performance up to a certain point, where a slow decreasing
can be observed. Hence, the choice of these values is not
critical as long as they are high enough. It can be explained
by the fact that a sufficient number of atoms and centroids
are needed to explain the data. However, beyond a certain
value, increasing these parameters reduces the regularization
induced by the clustering. In a more general case, using
features more robust to rotation and translation deformation
would likely allow reducing the number of needed clusters and
dictionary atoms. Moreover, the weighting terms of the various
methods have been adjusted manually using a grid search
algorithm in order to obtain consistent results. In particular,
weighting coefficients of SP2U method have been set to
λ̃0 = λ̃1 = λ2 = 1.0 and λz = 0.1.

As the solution of the considered problem suffers from a
permutation ambiguity inherent to factor models, a reordering
of the endmembers is, thus, necessary before any evaluation.
In this experiment, this relabeling is performed such that the
aSAM is minimum. The quantitative results, averaged over ten

trials, have then been computed for Image 1 and Image 2 and
are presented, respectively, in Tables I and II.

The first conclusion of these results is that the SP2U
method gives the best estimation of the endmember matrix.
All other endmember extraction algorithms are clearly behind.
In particular, from Fig. 4, we can see that SP2U is the
only method identifying that there are two spectra very
different from the others which correspond to the two soil
spectra. Considering the degraded results obtained by c-SPU,
it is clear that the spatial model has a real beneficial influ-
ence on the results. Another interesting remark is that the
NMF model barely improves the initializing point given
by VCA + FCLS. It appears to converge in a few iter-
ations to a local minimum close to initialization. Overall,
it seems that including the spatial information allows iden-
tifying more clearly the endmembers in particular in the
considered case where the pure pixel assumption does not
hold.

Then, regarding the estimation of abundances, the evaluation
is less straightforward since it depends on the estimation of the
endmembers. RMSE is computed after the reordering of the



endmembers and, for Image 1, the best abundance maps are
obtained with SISAL + FCLS but they are not associated with
the best estimated set of endmembers. The case of Image 2

is easier to discuss since the best abundance maps, obtained
by SP2U, are associated with the best set of endmembers.
It is also interesting to consider a qualitative evaluation of the
obtained abundance maps depicted in Fig. 5. Even if the quan-
titative results seem to support the quality of the abundance
maps retrieved by SUnSAL-TV, the results visually appear
overly smooth. On the other hand, abundance maps estimated
by SP2U seem visually relevant, but the corresponding RMSE
suffers from an overestimation of abundances corresponding
to soil spectra.

In addition, even if RE is not a relevant criterion to
assess the quality of unmixing results, the values reported in
Tables I and II show that most of the models are equally
good at recovering mixtures explaining the observed data.
The naive counterpart n-SP2U of SP2U exhibits significantly
higher REs, which was expected as explained in Section IV-B.
Some methods such as SISAL + FCLS get slightly lower REs.
However, this can be easily explained by the fact that such a
method aims at merely minimizing the RE, which does not
necessarily lead to better RMSEs.

Finally, it is interesting to have a look at the computation
times. SP2U appears as the slowest method since it inherits
from a much richer model. However, the reported computation
times should be taken cautiously. Indeed, SUnSAL-TV and
SISAL + FCLS were implemented with a fixed number of
iterations and are based on Lagrangian augmented splitting
methods. Conversely, other methods use a PALM algorithm
with a different stopping criterion (see Section III-B).

V. EXPERIMENTS USING REAL DATA

A. Real Data Set

The real aerial hyperspectral image used to conduct the
following experiment was acquired by AVIRIS in 2013 on
a site called Citrus Belt 3, California. The image is composed
of 224 spectral bands from 400 to 2500 nm with a spatial
resolution of 3 m per pixel. After removing bands corre-
sponding to water absorption, a 751 × 651-pixel image with
d1 = 175 spectral bands has been finally obtained. A panchro-
matic image of the scene is computed by normalizing and
then summing all the spectral bands. The resulting image and
a color composition of the scene are presented in Fig. 6.
It is possible to state that the scene includes a desert area
and several vegetation areas. Thus, several soil and vegetation
spectra are expected to be identified.

B. Compared Methods

As explained in Section II, it is common to consider a sum-
to-one constraint for abundance vectors to interpret them as
proportion vectors. However, this assumption is not always
fulfilled in practical scenarios. In the specific case of the
considered AVIRIS image, we decide to drop this constraint
due to important illumination variation in the image. For
example, the desert area on the upper part of the image is
a hill, and the spectrum energy is almost doubled on its sunny

Fig. 6. AVIRIS image. Color composition of (Left) hyperspectral image
and (Right) corresponding panchromatic image.

Fig. 7. AVIRIS image: estimated endmembers. Note that endmembers
estimated by NMF, n-SP2U, and SP2U have been normalized to avoid scaling
ambiguity intrinsic of the estimation method.

side. In order to get a well-defined problem after dropping
the sum-to-one constraint, it is necessary to introduce a new
constraint such that there is no scaling ambiguity between
M and A. The choice has been made to enforce a unit norm of
the endmember spectra. Thus, the initial sum-to-one constraint



Fig. 8. AVIRIS image: estimated abundance maps. The colored squares refer to the colors used to plot endmembers in Fig. 7. However, no reordering has
been performed, i.e., endmembers have no particular relationship between methods.

was moved from columns of A to columns of M. Then, to get
abundance maps summing to one, it is possible to normalize
the obtained solution a posteriori. Similarly, the sum-to-one
was removed for SUnSAL-TV, n-SP2U, and NMF. Moreover,
similar to the synthetic case, parameters of the problem have
been adjusted manually and set to λ̃0 = λ̃1 = λ2 = 1 and
λz = 0.1, R1 = 6, R2 = 20 and K = 30.

C. Results

Since no ground truth is available for this data set, only qual-
itative evaluations of the various methods are performed. First,
Fig. 7 shows the endmembers estimated by all the compared
methods. As explained in the previous paragraph, endmembers
have been normalized except for SISAL and VCA. Regarding
SISAL results, it is possible to note that the method esti-
mates endmember signatures taking negative values. Negative
endmembers cannot be interpreted as real reflectance spectra,
and SISAL, thus, appears the worst compared methods. This

method tries to identify a minimum volume simplex containing
the observations under the assumption that the observations
belong to a (R1 − 1)-dimensional affine set. Thus, these poor
results could be explained by a high noise level or nonlinear
mixtures. It is difficult to objectively compare the results of
the other methods. However, the result obtained by the SP2U
method seems consistent with the visual content of the image
since we can clearly identify: 1) two vegetation spectra (plotted
in pink and orange) with strong absorbance in the visible
domain and strong reflectance in the near-infrared domain [42]
and 2) two soil spectra (plotted in blue and brown) with an
increase of the reflectance from 0.4 to 1 µm [43].

Regarding the abundance maps presented in Fig. 8, it seems
again that the maps produced by SP2U are consistent with the
actual content of the scene. In particular, they are spatially
consistent with natural edges in the image. In addition, SP2U
results seem to be sparse in the sense that only a few
endmembers are used for a given pixel while other methods



Fig. 9. AVIRIS image. Five particular clusters described by their (Left)
spatial positioning, (Middle) mean spatial signature, and (Right) mean spectral
signature.

recover very similar abundance maps with all endmembers, see
VCA + SUnSAL-TV. From Table III, it seems that ensuring
the sum-to-one constraint makes more difficult to fit the obser-
vations since VCA + FCLS has the highest RE. As expected,
the SP2U method remains the slowest due to the overload of
data to manipulate.

In addition, SP2U is not uniquely a spectral unmixing
method and provides much richer interpretation. In Fig. 9,
the results of the clustering performed by the coupling term
are displayed. In particular, Fig. 9 shows the spatial position
of the clusters and the mean spatial and spectral signatures

TABLE III

AVIRIS IMAGE: QUANTITATIVE RESULTS

characterizing the clusters, obtained by (5). In this example,
the first three clusters correspond to soil areas, whereas the
last two are vegetation, more precisely trees. For instance,
the recovered spatial patterns associated with soil are smoother
when the wooded areas are characterized by variations of
higher frequencies.

VI. CONCLUSION

This article proposed a new model to interpret hyperspectral
images. This method enriched the traditional spectral unmixing
modeling by incorporating a spatial analysis of the data.
Two data fitting terms, bringing, respectively, spectral and
spatial information, were considered jointly, thus yielding
a spatial–spectral unmixing. This coupled learning process
was made possible by the introduction of a clustering-driven
coupling term linking the two coding matrices. This clustering
process identified groups of pixels with similar spectral and
spatial behaviors.

The experiments conducted on synthetic and real data
showed that the proposed method performed very well both
at identifying endmembers and estimating abundances. More-
over, the relevance of this method was not limited to the
unmixing results since the outputs of the clustering task were
also of high interest. The identified clusters were characterized
by their average spectral signature and spatial context.

It is worth noting that in this article, the spatial features
were merely chosen as elementary patches directly extracted
from a virtual panchromatic image generated from the hyper-
spectral image. This choice allowed a linear approximation
of these features to be motivated, exploiting a well-admitted
property of image self-similarity. Since the main objective of
this article was to introduce the paradigm of spatial–spectral
unmixing, designing the best spatial feature was out of the
scope of this article. However, to further explore the relevance
of the proposed model, future works should investigate the
benefit of using more complex spatial features. For example,
resorting to a convolutional representation of the image may
be of high interest to identify shift-invariant textured spatial
signatures [44], [45].

APPENDIX

This section provides some details regarding the optimiza-
tion schemes instanced for the proposed cofactorization model.
Using notations adopted in Section III, the smooth coupling



term can be expressed as follows:

g(M,A,D,U,B,Z) =
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For a practical implementation of PALM, the partial gradi-
ents of g(·) and their Lipschitz moduli need to be computed
to perform the gradient descent. They are given by

∇Mg(M,A,D,U,B,Z) = λ0(MAAT − YAT )

∇Ag(M,A,D,U,B,Z) = λ0(M
T MA − MT Y)

+ λ2(A − B1Z)
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where B1 and B2 correspond to the submatrices of B defined
by the R1 first rows and R2 last rows, respectively, such

that B =

(

B1

B2

)

.

All partial gradients are globally Lipschitz as functions of
the corresponding partial variables. The following Lipschitz
moduli can be explicitly derived as follows:

LA(M) = ‖λ0M
T M + λ2IR1‖

LM(A) = ‖λ0AAT ‖

LU(D) = ‖λ1D
T D + λ2IR2‖

LD(U) = ‖λ1UUT ‖

LB(Z) = ‖λ2ZZ
T ‖

LZ(B) = ‖λ2B
T B + λzV‖. (15)
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