R. P. Bazinet and S. Laye, Polyunsaturated fatty acids and their metabolites in brain function and disease, Nat. Rev. Neurosci, vol.15, pp.771-785, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640592

P. C. Calder, Omega-3 fatty acids and inflammatory processes: From molecules to man, Biochem. Soc. Trans, vol.45, pp.1105-1115, 2017.

R. K. Saini and Y. S. Keum, Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance: A review, Life Sci, vol.203, pp.255-267, 2018.

A. J. Sinclair, Long-chain polyunsaturated fatty acids in the mammalian brain, Proc. Nutr. Soc, vol.34, pp.287-291, 1975.

S. J. Fliesler and R. E. Anderson, Chemistry and metabolism of lipids in the vertebrate retina, Prog. Lipid Res, vol.22, pp.79-131, 1983.

, Scientific RepoRtS |, vol.10, p.10785, 2020.

L. Bretillon, Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and the lacrimal gland, and associations with adipose tissue fatty acids in human subjects, Exp. Eye Res, vol.87, issue.08, p.290, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667725

M. Plourde and S. C. Cunnane, Extremely limited synthesis of long chain polyunsaturates in adults: Implications for their dietary essentiality and use as supplements, Appl. Physiol. Nutr. Metab, vol.32, pp.619-634, 2007.

P. E. Wainwright, Dietary essential fatty acids and brain function: A developmental perspective on mechanisms, Proc. Nutr. Soc, vol.61, pp.61-69, 2002.

J. T. Brenna, Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life, Matern. Child Nutr, vol.7, issue.2, pp.59-79, 2011.

V. F. Labrousse, Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice, PLoS ONE, vol.7, p.61, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01191175

H. Demmelmair and B. Koletzko, Importance of fatty acids in the perinatal period, World Rev. Nutr. Diet, vol.112, pp.31-47, 2015.

L. E. Lozada, A. Desai, K. Kevala, J. W. Lee, and H. Y. Kim, Perinatal brain docosahexaenoic acid concentration has a lasting impact on cognition in mice, J. Nutr, vol.147, 2017.

P. C. De-velasco, Nutritional restriction of omega-3 fatty acids alters topographical fine tuning and leads to a delay in the critical period in the rodent visual system, Exp. Neurol, vol.234, pp.220-229, 2012.

H. S. Weisinger, A. J. Vingrys, and A. J. Sinclair, The effect of docosahexaenoic acid on the electroretinogram of the guinea pig, Lipids, vol.31, pp.65-70, 1996.

J. M. Bourre, The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats, J. Nutr, vol.119, pp.1880-1892, 1989.
URL : https://hal.archives-ouvertes.fr/hal-02726718

A. M. Bon, F. Datiche, J. Gascuel, X. Grosmaitre, and E. Guichard, Flavour: From Food to Perception, pp.1-33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582302

L. Bon and A. M. , Comprehensive study of rodent olfactory tissue lipid composition, Prostaglandins Leukot. Essent. Fatty Acids, vol.131, pp.32-43, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626619

A. Hichami, Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats, Behav. Brain Res, vol.184, pp.1-10, 2007.

L. Hamilton, R. Greiner, N. Salem, and H. Y. Kim, n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues, Lipids, vol.35, pp.863-869, 2000.

B. Levant, M. K. Ozias, K. A. Jones, and S. E. Carlson, Differential effects of modulation of docosahexaenoic acid content during development in specific regions of rat brain, Lipids, vol.41, pp.407-414, 2006.

R. T. Holman, The ratio of trienoic: Tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement, J. Nutr, vol.70, pp.405-410, 1960.

A. C. Patterson, A. Chalil, J. J. Henao, I. T. Streit, and K. D. Stark, Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA, Nutr. Res, vol.35, p.16, 2015.

M. R. Flock, W. S. Harris, and P. M. Kris-etherton, Long-chain omega-3 fatty acids: Time to establish a dietary reference intake, Nutr. Rev, vol.71, pp.692-707, 2013.

N. Salem and M. Eggersdorfer, Is the world supply of omega-3 fatty acids adequate for optimal human nutrition, Curr. Opin. Clin. Nutr. Metab. Care, vol.18, p.5, 2015.

K. D. Stark, M. E. Van-elswyk, M. R. Higgins, C. A. Weatherford, and N. Salem, Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults, Progr. Lipid Res, vol.63, pp.132-152, 2016.

B. Choque, D. Catheline, B. Delplanque, P. Guesnet, and P. Legrand, Dietary linoleic acid requirements in the presence of ?-linolenic acid are lower than the historical 2 % of energy intake value, study in rats, Br. J. Nutr, vol.113, p.94, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01409008

Y. Russell, P. Evans, and G. H. Dodd, Characterization of the total lipid and fatty acid composition of rat olfactory mucosa, J. Lipid Res, vol.30, pp.877-884, 1989.

M. Murthy, Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus, J. Lipid Res, vol.43, pp.611-617, 2002.

D. Li, Omega 6 to omega 3 fatty acid imbalance early in life leads to persistent reductions in DHA levels in glycerophospholipids in rat hypothalamus even after long-term omega 3 fatty acid repletion, Prostaglandins Leukot. Essent. Fatty Acids, vol.74, pp.391-399, 2006.

E. M. Novak, R. A. Dyer, and S. M. Innis, High dietary omega-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth, Brain Res, vol.1237, pp.136-145, 2008.

A. Lamaziere, Differential distribution of DHA-phospholipids in rat brain after feeding: A lipidomic approach, Prostaglandins Leukot. Essent. Fatty Acids, vol.84, pp.7-11, 2011.

S. J. Little, M. A. Lynch, M. Manku, and A. Nicolaou, Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: A lipidomic analysis, Prostaglandins Leukot. Essent. Fatty Acids, vol.77, pp.155-162, 2007.

N. G. Bazan and B. L. Scott, Dietary omega-3 fatty acids and accumulation of docosahexaenoic acid in rod photoreceptor cells of the retina and at synapses, Ups J. Med. Sci. Suppl, vol.48, pp.97-107, 1990.

M. Neuringer, W. E. Connor, D. S. Lin, L. Barstad, and S. Luck, Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys, Proc. Natl. Acad. Sci. USA, vol.83, pp.4021-4025, 1986.

C. Schnebelen, Nutrition for the eye: Different susceptibility of the retina and the lacrimal gland to dietary omega-6 and omega-3 polyunsaturated fatty acid incorporation, Ophthalmic Res, vol.41, pp.216-224, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02665008

E. Simon, Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression, Exp. Eye Res, vol.93, pp.628-635, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00788024

D. S. Lin, G. J. Anderson, W. E. Connor, and M. Neuringer, Effect of dietary N-3 fatty acids upon the phospholipid molecular species of the monkey retina, Investig. Ophthalmol. Vis. Sci, vol.35, pp.794-803, 1994.

C. Galli, H. I. Trzeciak, and R. Paoletti, Effects of dietary fatty acids on fatty acid composition of brain ethanolamine phosphoglyceride-Reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids, Biochim. Biophys. Acta, vol.248, pp.449-450, 1971.

K. Yamazaki, M. Fujikawa, T. Hamazaki, S. Yano, and T. Shono, Comparison of the conversion rates of alpha-linolenic acid, vol.18, p.3

, )) to longer polyunsaturated fatty acids in rats, Biochim. Biophys. Acta, vol.18, pp.18-26, 1992.

R. S. Greiner, J. N. Catalan, T. Moriguchi, and N. Salem, Docosapentaenoic acid does not completely replace DHA in n-3 FAdeficient rats during early development, Lipids, vol.38, pp.431-435, 2003.

, Scientific RepoRtS |, vol.10, p.10785, 2020.

N. Salem, J. Loewke, J. N. Catalan, S. Majchrzak, and T. Moriguchi, Incomplete replacement of docosahexaenoic acid by n-6 docosapentaenoic acid in the rat retina after an n-3 fatty acid deficient diet, Exp. Eye Res, vol.81, pp.655-663, 2005.

D. Rice and S. Barone, Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models, Environ. Health Perspect, vol.108, issue.3, pp.511-533, 2000.

R. S. Greiner, T. Moriguchi, B. M. Slotnick, A. Hutton, and N. Salem, Olfactory discrimination deficits in n-3 fatty acid-deficient rats, Physiol. Behav, vol.72, pp.379-385, 2001.

T. S. Ha, R. Xia, H. Zhang, X. Jin, and D. P. Smith, Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila, Proc. Natl. Acad. Sci. USA, vol.111, pp.7831-7836, 2014.

Y. C. Liu, The Drosophila melanogaster phospholipid flippase dATP8B is required for odorant receptor function, PLoS Genet, vol.10, p.9, 2014.

D. C. Mitchell, S. L. Niu, and B. J. Litman, DHA-rich phospholipids optimize G-Protein-coupled signaling, J. Pediatr, vol.143, pp.80-86, 2003.

S. L. Niu, Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency, J. Biol. Chem, vol.279, pp.31098-31104, 2004.

M. P. Bennett and D. C. Mitchell, Regulation of membrane proteins by dietary lipids: Effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function, Biophys. J, vol.95, pp.1206-1216, 2008.

S. E. Feller, Acyl chain conformations in phospholipid bilayers: A comparative study of docosahexaenoic acid and saturated fatty acids, Chem. Phys. Lipids, vol.153, pp.76-80, 2008.

B. J. Litman, S. L. Niu, A. Polozova, and D. C. Mitchell, The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: Visual transduction, J. Mol. Neurosci, vol.16, pp.237-242, 2001.

D. C. Mitchell, S. L. Niu, and B. J. Litman, Enhancement of G protein-coupled signaling by DHA phospholipids, Lipids, vol.38, pp.437-443, 2003.

A. L. Parrill and G. Tigyi, Integrating the puzzle pieces: The current atomistic picture of phospholipid-G protein coupled receptor interactions, Biochim. Biophys. Acta, vol.2, issue.12, 1831.

S. Senapati, Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes, Biochim. Biophys. Acta Biomembr, pp.1403-1413, 1860.

M. J. Sanchez-martin, E. Ramon, J. Torrent-burgues, and P. Garriga, Improved conformational stability of the visual G proteincoupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid, ChemBioChem, vol.14, pp.639-644, 2013.

K. Klasen, Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons, Cell Signal, vol.22, pp.150-157, 2010.

K. Ukhanov, E. A. Corey, and B. W. Ache, Phosphoinositide 3-kinase dependent inhibition as a broad basis for opponent coding in mammalian olfactory receptor neurons, PLoS ONE, vol.8, p.53, 2013.

I. Boekhoff and H. Breer, Termination of second messenger signaling in olfaction, Proc. Natl. Acad. Sci. USA, vol.89, pp.471-474, 1992.

B. W. Ache, Odorant-specific modes of signaling in mammalian olfaction, Chem. Senses, vol.35, pp.533-539, 2010.

K. Ukhanov, E. Corey, and B. W. Ache, Phosphoinositide-3-kinase is the primary mediator of phosphoinositide-dependent inhibition in mammalian olfactory receptor neurons, Front. Cell Neurosci, vol.10, 2016.

R. Zarate, N. El-jaber-vazdekis, N. Tejera, J. A. Perez, and C. Rodriguez, Significance of long chain polyunsaturated fatty acids in human health, Clin. Transl. Med, vol.6, 2017.

N. G. Bazan, Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection, Mol. Aspects Med, vol.64, pp.18-33, 2018.

M. Kalogerou, Omega-3 fatty acids protect retinal neurons in the DBA/2J hereditary glaucoma mouse model, Exp. Eye Res, vol.167, pp.128-139, 2018.

T. Georgiou, Neuroprotective effects of omega-3 polyunsaturated fatty acids in a rat model of anterior ischemic optic neuropathy, Investig. Ophthalmol. Vis. Sci, vol.58, pp.1603-1611, 2017.

Z. Islam, J. R. Harkema, and J. J. Pestka, Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain, Environ. Health Perspect, vol.114, pp.1099-1107, 2006.

F. Imamura and S. Hasegawa-ishii, Environmental toxicants-induced immune responses in the olfactory mucosa, Front. Immunol, vol.7, 2016.

R. P. Herbert, Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway, J. Neuroinflamm, vol.9, 2012.

X. Ibarra-soria, M. O. Levitin, L. R. Saraiva, and D. W. Logan, The olfactory transcriptomes of mice, PLoS Genet, vol.10, p.93, 2014.

K. Kishimoto, K. Matsumura, Y. Kataoka, H. Morii, and Y. Watanabe, Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain, Neuroscience, vol.92, pp.1061-1077, 1999.

M. T. Ma, T. J. Nevalainen, J. F. Yeo, and W. Y. Ong, Expression profile of multiple secretory phospholipase A(2) isoforms in the rat CNS: Enriched expression of sPLA(2)-IIA in brainstem and spinal cord, J. Chem. Neuroanat, vol.39, pp.242-247, 2010.

M. Strokin, M. Sergeeva, and G. Reiser, Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+, Br. J. Pharmacol, vol.139, pp.1014-1022, 2003.

E. Herrera, Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development: A review, Placenta, vol.23, pp.9-19, 2002.

H. Demmelmair and B. Koletzko, Lipids in human milk, Best. Pract. Res. Clin. Endocrinol. Metab, vol.32, pp.57-68, 2018.

L. Y. Haubner, Maternal dietary docosahexanoic acid content affects the rat pup auditory system, Brain Res. Bull, vol.58, pp.1-5, 2002.

K. L. Jen, Perinatal n-3 fatty acid imbalance affects fatty acid composition in rat offspring, Physiol. Behav, vol.98, pp.17-24, 2009.

E. Sosa-castillo, M. Rodriguez-cruz, and C. Molto-puigmarti, Genomics of lactation: Role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk, Br. J. Nutr, vol.118, p.54, 2017.

M. R. Fokkema, Assessment of essential fatty acid and omega3-fatty acid status by measurement of erythrocyte, 22:5omega6/20:4omega6 and 22:5omega6/22:6omega3, vol.20, pp.345-356, 2002.

N. Thiebaud, Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning, J. Neurosci, vol.34, pp.6970-6984, 2014.

, Scientific RepoRtS |, vol.10, p.10785, 2020.

M. C. Lacroix, Long-lasting metabolic imbalance related to obesity alters olfactory tissue homeostasis and impairs olfactorydriven behaviors, Chem. Senses, vol.40, pp.537-556, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02639575

S. Riviere, High fructose diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice, Sci. Rep, vol.6, p.34011, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397534

L. Merle, Maternal high fat high sugar diet disrupts olfactory behavior but not mucosa sensitivity in the offspring, Psychoneuroendocrinology, vol.104, pp.249-258, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02619770

P. G. Reeves, F. H. Nielsen, and G. C. Fahey, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr, vol.123, pp.1939-1951, 1993.

J. Folch, M. Lees, and G. H. Sloane-stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem, vol.226, pp.497-509, 1957.

E. M. Bartlett and D. H. Lewis, Spectrophotometric determination of phosphate esters in the presence and absence of orthophosphate, Anal. Biochem, vol.36, pp.159-167, 1970.

N. Acar, Lipid composition of the human eye: Are red blood cells a good mirror of retinal and optic nerve fatty acids?, PLoS ONE, vol.7, p.2, 2012.

M. Albouery, Age-related changes in the gut microbiota modify brain lipid composition, Front. Cell. Infect. Microbiol, vol.9, pp.444-444, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02622034